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AREA-DIAMETER AND AREA-WIDTH RELATIONS
FOR COVERING PLANE SETS

SALVATORE VASSALLO

An area-diameter relation and an area-width relation for plane lattice-point-free-
convex bodies is proved. This implies relations on covering sets with respect to
general lattices.

1. INTRODUCTION AND NOTATIONS

Let E? denote the Euclidean plane and let £? denote the set of lattices L C E?
with det (L) # 0. Further let K? denote the set of convex bodies K C E%. For
K € K%, let A(K), D(K) and A(K) be the area, the diameter and the minimal width
of K respectively. Further for L € £2 let A;(L) be the successive minima of L, that is,
Ai(L) = A;(B?,L) = min{)\ > 0| dim aff(AB?N L) > i} and let p;(L) be the covering
minima of the lattice L, that is, pi(L) = pi(B%,L) = min{p >0|pB*+g, g€ L,
meets every flat F of E? with dim(F) = 2 — 1} (for these definitions see [4] and [5]).

Note that A;(L) is the length of the shortest non-zero vector of L and 2u,(L)
is the maximal distance of two adjacent lattice lines. Therefore det (L) = 2p1A; and
2p1(L) = 1/A1(L*) where L* is the reciprocal lattice of L. The relation 2p; > V/3/2);
will be also useful in the sequel (see, for example, [4]).

Let G(K,L) = card ((intK) N L) denote the lattice point enumerator.

A convex set K is called a lattice-point-free convez set with respect to L, if
G(K,L) = 0. Further K is a covering setif K+ L={K +g|ge L} = E2.

For the integer lattice Z? there are several inequalities relating A(K), D(K),
A(K) and the perimeter P(K) of covering sets or lattice-free convex bodies (see [2]);
but only a few results concerning arbitrary lattices [6, 7, 10, 11].

In this paper we generalise two results of Scott [8, 9] to arbitrary lattices.

2. RESULTS

t
Let us denote by 7 the unique solution of the equation j;, V1-—23dz = n/8 (1~
0.403977 and 7 = sin(¢*), where ¢* is, as in Scott’s theorem [8], the unique solution
of sin (2¢) + 2¢ = w/2) then we get:

Received 4th May, 1994
Work partially supported by M.U.R.S.T. (40% — 60%).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 $A2.0040.00.

163

https://doi.org/10.1017/5000497270001399X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270001399X

164 S. V_a,ssa.]lo 2]

THEOREM 1. If K € K?and L € £?, with G(K,L) = 0, then

and this result is best possible.

REMARK. We have 2u; > 274/A2 + (2m)? if and only if 2u1 > A (27/v1 = 472) =~

1.3711 A, .
THEOREM 2. If K € K?and L € £?, with G(K,L) =0, then

(2) 2A(K) (A(K) — 2m (L)) < M(L)A*(K),

and equality holds if and only if K is a triangle with width A(K) and diameter D(K) =
(A (L)A(K))/(A(K) — 2p(L))-
COROLLARY 1. Let K € K% and L € £? be given such that:

(3) %E—;{{% >k max{2u1,2-r\/)‘f + (2;11)2} , ke Z.

Then G(K,L) > k?, that is, {K + g | g € L} is at least a k?-fold covering of EZ.
COROLLARY 2. Let K € K% and L € L? be given such that:

(4) 24(K) (A(K) — 21 (L)) > M(L)AX(K).

Then K is a covering set.

3. PROOF OF THE RESULTS

PrOOF OF THEOREM 1.

Theorem 1 will be proved by reducing the problem to rectangular lattices and
symmetric convex bodies.

Let {bi,b,} be a Minkowski reduced basis of L (see {2, p.84]), with ||bs|| = A1 (L)
and let 6 be the acute angle between b; and b, (so that 2u;(L) = ||b2|| sin 8).

Let vy = by, and let v, be a vector of length 2u;, perpendicular to v;. Let A
denote the rectangular lattice determined by the basis vectors v, vz . We shall prove
the following:

LEMMA 1. If K is a convex body such that G(K,L) = 0, then there exists
another convex body C containing no points of A, such that

(i) A(C)=A(K), D(C)< D(K),
(i) C is symmetric about the lines z = 1/2, y = 1/2, the coordinates z and
v being relative to the basis vy, v3.
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PRrROOF: Let K' be the convex body obtained from K by symmetrisation with
respect to the line z = 1/2. It is well known that Steiner symmetrisation preserves
convexity and areas, and does not increase diameters (see [1]). Therefore K’ is convex,
A(K') = A(K), and D(K') < D(K).

We shall show now that G(K',A) = 0. If K' contained a lattice point of A, say
the point mv; + nvy, then the line y = n, for the symmetry of K' with respect to
z = 1/2, intersects K' in a line segment of length greater than A;. The same line also
intersects K in a line segment of the same length and this implies that G(K, L) >0,
contradicting the hypothesis. Therefore G(K',A) = 0.

A similar argument shows that if we now symmetrise K' with respect to the line
y = 1/2, we obtain a convex body C with the required properties. 0

In view of Lemma 1, to deduce the inequality of Theorem 1 it suffices to prove the
following:

LEMMA 2. Let A be a rectangular lattice with basis {\ie;, Azex} (so that
Ai(A) = X\ where 1 = 1,2). For any convex body K, symmetric with respect to
the lines £ = A1 /2 and y = A, /2 with G(K,A) =0

A e 75

and the inequality is sharp.

A

REMARK. For the original lattice L, Lemma 2 implies

S < mex {20, 2D, 2N + @m(o) |,

so that, by 2u1(L) > (v3/2)M(L), we obtain 2r(/A2(L) + (2ua(L))* > TAVT > M.

PROOF: To better utilise the symmetry of K, we translate the origin to the
point (A;1/2,A2/2). Then the lattice A is changed into the grid T' = {(A;(m + 1/2),
A2(n+1/2)) | m,n € Z}.

For the sake of brevity we write D = D(K) and A = A(K).

Since K is centrally symmetric, it lies within the disc z2 + y> < D?/4 . If D <
v/AZ+ 22, no point of T is interior to this disc and then:

D* < T(y/ M+ X)D <27 (y/X2 + X3)D.

Therefore we may suppose D > /A2 + A2,
Let @ be the part of K lying in the quadrant z > 0, y > 0. Because of the
convexity of K, Q lies below some line ! through the point P = ((A,/2),(A2/2)) with

A<

NE
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non positive slope and with equation y = (A2/2) + m(z — (A1/2)). Let us denote by
X and Y respectively the intersection of the line ! with the coordinate axes and by D
the disc 2% + y? < D?/4. We distinguish two cases:
(a) X,Y ¢ D;
(b) exactly one of the points X,Y is exterior to D.
In case (a) the area of Q is given by:

AQ) = 7507 - 2/ (o= (,/(D/z)2 _uwr o q) du

where q is the distance of the line ! from the origin.
We have thus:

2 V1-(2¢/D)?
%=4q 1—(%‘1) +:1—rD—2D/ VI—dt
0

and a short calculation shows that this function attains its maximum when ¢ =
(1/2)4/A% + A%, that is, when the line [ is normal to the segment OP, and the diameter

D satisfies the equation [ 1~(a/D)* V1-12dt = n/8, that is, D ~ 1.093174/A% + A2,

so that we obtain:

(6) % —2r /X 4 A2,

(Actually the function A(K)/D(K) is an increasing function of ¢ and ¢ <
(1/2)4/A2% + A2, moreover its derivative with respect to D vanishes if and only if D(K)
satisfies the above equation.)

If A2 < 274/A2 + AZ, the previous solutions are acceptable since for this value of
D(K) the points X and Y are exterior to the disk D. Otherwise the maximum value of
A(K)/D(K) is taken when the line [ is normal to the segment OP and passes through
the point Y : obviously in this case we have A(K)/D(K) < 2r/A2 + A% < A,.

In case (b) let us suppose that ¥ € D, so @ is a subset of the trapezium T
bounded by the coordinate axes, the line ! and the line £ = D/2. This trapezium has
area A(T) = (D/8)[2A2 + m (D — 2X;)].

If D > 2),, this area is at most (D(K)Az)/4 and thus

A(K)

) D(K) < Aa.

If D < 2);, then A(T) is an increasing function of m so that it is easy to see that the
maximum of the area of the region @ is taken when the point Y belongs to the line [.

In this case we have A(K)/D(K) < 2r+/A% + 2. a
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REMARK. Inequality (7) could seem too wide, but the example of a rectangle with
diagonal-length D and an edge-length A, shows that this bound is best possible when
D - .

Proor oF THEOREM 2.

For the sake of brevity we write A = A(K), 4 = A(K), Ay = Ai(L) and py =
p(L).

First we observe that the inequality in Theorem 2 can be written

A A-2,
oA~ AT = 0.

Therefore we can take K to be the set realising the minimum of the left-hand side
of this inequality.

Because of A < 2y, + (\/5/2)1\1 < 4p; (see [10]), (A —2p,)/A? is an increasing
function of A and hence we choose K with A and A as large as possible.

It is clear that K must be one of the following sets:

(a) a triangle with one (or two) of its sides on a lattice line;
(b) a triangle with one lattice point on each of its sides;
(c) a quadrilateral with one lattice point on each of its sides.

Moreover it is easy to see that in cases (a) and (c), K circumscribes a parallelogram
(which is a cell of L) with one side of length A; and altitude 2y, and in case (b) K
circumscribes a triangle with one side of length A, and relative altitude 2pu;.

Let K be a triangle (cases (a) and (b)).

In this case we have

1 A A?
= — £ —
(8) A=3DA< g

where the second inequality follows immediately from (A —2p;) D < A\jA proved in
[11] and where equality holds if and only if K is a triangle of width A(K) and diameter
D(K) = M(L)A(K)/(A(K) — 2u1(L)).

Thus it is sufficient to establish (2) in case (c).

Let K be the quadrilateral XY ZT and let O, B,C, E be lattice points such that
O € [X,Y], Be[Y,Z], C € [2,T), E€[T,X], OB =EC = )\, BOE = BCE =
¢ (p <7/2), OEsing = BCsingp = 2u;. Let m = TY and let n be the length of the
width of K in the direction normal to TY and let us put OF = v. Further let ¥ be
the angle between the lines EC and X Z.

By computing the area of K and the areas of its component parts we obtain:
vncosd + Aymsin(p —9) if 9 < 7/2,

2A=mn=
{ vncosd + Aymsin(p +9) if 4> «w/2.
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As ¥ > m/2 implies ¢ + ¥ < 7 — ¢, we have mn  vn + A;msingp in either case,
and equality holds if the line X Z is parallel to the line OB. Thus we can suppose
2A=mn=wvn+ Aymsine. Let m 2> n so that n < A\ysinyp + v. Then

vn? vA? 2
=mn= —— K _— i .
24 =mn — . ma.x{A —n sin(p’(Al sinp + v) }
Let m < n so that m < A; sing + v and further let us suppose that the lines XT
and Y Z are parallel or meet in the half-plane containing Z and determined by XY .
(In the other cases the proof is similar.) Then A < msin ()Tﬁ ) < msingp. Since
2y -
24 = mn = AL50P
m—v

is a decreasing function of m, then

A2 M A2
2A$ma.x{ v So,(/\15intp+v)2 —1—}

A — Ay sin A —vsing
Now it is a straightforward calculation to show that

A1 A? _ A A2
T A-vsing

vA? )
ma.x{———(p,()q sing + u)2 A

A — Apsin —vsing

so that Theorem 2 follows. 0

PROOF OF COROLLARIES.

As Corollary 2 is an obvious consequence of Theorem 2, we shall only prove Corol-
lary 1.

The idea of the proof follows an analogous argument given by Hammer in {3] (see
also [11]) which we repeat here for completeness.

Let us suppose k > 1 (if & = 0 the result is obvious) and consider the similarity
transformation K — K' = (1/k)K.

Obviously A(K') = (1/k?)A(K) and D(K') = (1/k)D(K). Now let {b;,b;} be
a basis of L with |b;| = A; and let @ = ¢;b; + g2b2 be a lattice point with 0 < ¢ €
(k — 1)A; (i =1,2). Then for the translate K" of K' given by K" = K' — (1/k)Q we

e (K") _ A(K') _ 1 A(K) o
A(K K 1 2
== = - Az 2 .
D0 = D) = £ () > = 2o 2ri + '}
Thus, by Theorem 1, K" contains a lattice point T'. Then K' contains the point
T+ (1/k)Q, so that K contains the point U = k(T + (1/k)Q) = kT + Q. Since Q can
be chosen in k? different ways, by selecting each of ¢;,¢; in k different ways we have
k? distinct lattice points in K. 1]
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