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AREA-DIAMETER AND AREA-WIDTH RELATIONS
FOR COVERING PLANE SETS

SALVATORE VASSALLO

An area-diameter relation and an area-width relation for plane lattice-point-free-
convex bodies is proved. This implies relations on covering sets with respect to
general lattices.

1. INTRODUCTION AND NOTATIONS

Let E2 denote the Euclidean plane and let C2 denote the set of lattices L C E2

with det(L) ^ 0. Further let K? denote the set of convex bodies K C E2. For
K € K?, let A(K), D(K) and A(K) be the area, the diameter and the minimal width
of K respectively. Further for L G C2 let Xi(L) be the successive minima of L, that is,
Xi(L) = Xi(B2,L) = min{A > 0 | dim aff(A52 n L) ^ i} and let m(L) be the covering
minima of the lattice L, that is, iii(L) = m(B2,L) = min{/j > 0 | fiB2 + g, g £ L ,
meets every flat F of E2 with dim(F) = 2 - i} (for these definitions see [4] and [5]).

Note that Xi(L) is the length of the shortest non-zero vector of L and 2/xi(L)
is the maximal distance of two adjacent lattice lines. Therefore det(Z) = 2/XiAi and
2fii(L) — l/Xi(L*) where L* is the reciprocal lattice of L. The relation 2//i ^ \/3/2Ai
will be also useful in the sequel (see, for example, [4]).

Let G(K,L) = card ((intK) n L) denote the lattice point enumerator.
A convex set K is called a lattice-point-free convex set with respect to L, if

G(K, L) — 0. Further A" is a covering set if K + L — {K + g | g 6 L} = E2.
For the integer lattice Z2 there are several inequalities relating A(K), D(K),

A(K) and the perimeter P(K) of covering sets or lattice-free convex bodies (see [2]);
but only a few results concerning arbitrary lattices [6, 7, 10, 11].

In this paper we generalise two results of Scott [8, 9] to arbitrary lattices.

2. RESULTS

Let us denote by T the unique solution of the equation Jo y/l — x2dx = TT/8 (T ~
0.403977 and r = sin(<f>*), where <j>* is, as in Scott's theorem [8], the unique solution
of sin (2<f>) + 2<j> = TT/2) then we get:
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164 S. Vassallo [2]

THEOREM 1 . If K e K2 and L e C2, with G{K,L) = 0, then

and this result is best possible.

REMARK. We have 2m > 2TyJ\2 + (2/ti)2 if and only if 2/xj > A 1 ( 2 T / \ / 1 - 4T2) ~
1.3711 Ai.

THEOREM 2 . If K e>C2and L e C2, with G(K,L) = 0, then

(2) 2A(Jir) (A(iJT) - 2 w ( i ) ) < A ^ A ^ t f ) ,

and equality holds if and only if K is a triangle with width A(K) and diameter D(K) =

COROLLARY 1. Let K £ K2 and L e C2 be given such that:

>(3)

Then G(K, L) ^ k2, that is, {K + g | g G L} is at least a k2 -fold covering of E2.

COROLLARY 2 . Let K e K,2 and Le C2 be given such that:

(4) 2A(K) (A(tf) - 2n(L)) > Ai(£)A2(Jf).

Then K is a covering set.

3. PROOF OF THE RESULTS

PROOF OF THEOREM 1.

Theorem 1 will be proved by reducing the problem to rectangular lattices and
symmetric convex bodies.

Let {bi,b2} be a Minkowski reduced basis of L (see [2, p.84]), with ||bi|| = Ai(£)
and let 6 be the acute angle between bj and b2 (so that 2/*1(Z<) = ||b2||sinfl).

Let Vi = b i , and let v2 be a vector of length 2/xi, perpendicular to Vi. Let A
denote the rectangular lattice determined by the basis vectors Vi, v2 . We shall prove
the following:

LEMMA 1. If K is a convex body such that G(K,L) — 0, then there exists
another convex body C containing no points of A, such that

(i) A{C) = A(K), D(C)^D(K),
(ii) C is symmetric about the lines x = 1/2, y = 1/2, the coordinates x and

y being relative to the basis Vi, v2.
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PROOF: Let K' be the convex body obtained from K by symmetrisation with
respect to the line x — 1/2. It is well known that Steiner symmetrisation preserves
convexity and areas, and does not increase diameters (see [1]). Therefore K' is convex,
A{K') = A(K), and D{K') < D(K).

We shall show now that G(K', A) = 0. If -K"' contained a lattice point of A, say
the point mvi + nv2, then the line y = n, for the symmetry of K' with respect to
z = 1/2, intersects if' in a line segment of length greater than Aj. The same line also
intersects if in a line segment of the same length and this implies that G(K,L) > 0,
contradicting the hypothesis. Therefore G(K',A) = 0.

A similar argument shows that if we now symmetrise K' with respect to the line
y — 1/2, we obtain a convex body C with the required properties. D

In view of Lemma 1, to deduce the inequality of Theorem 1 it suffices to prove the
following:

LEMMA 2 . Let A be a rectangular lattice with basis {Aiei, A2e2} (so that
Aj(A) = A,- where i = 1,2 )̂. For any convex body K, symmetric with respect to
the hues x = Ai/2 and y = A2/2 with G{K,\) — 0

(5)

and the inequality is sharp.

REMARK. For the original lattice L, Lemma 2 implies

so that, by 2fi1(L) > (v
/3/2)A1(£), we obtain 2ryJ\\(L) + (2fi1(L))2 ^ T\iy/7 > Aj.

PROOF: TO better utilise the symmetry of K, we translate the origin to the
point (Ai/2, A2/2). Then the lattice A is changed into the grid T = {(Ai(m + 1/2),
A2(n + l/2)) | m , n e Z } .

For the sake of brevity we write D = D(K) and A = A(K).
Since K is centrally symmetric, it lies within the disc x2 + y2 ^ D2/4 . If D ^

yj\\ + Aj, no point of F is interior to this disc and then:

Therefore we may suppose D > ŷ Af + \\.
Let Q be the part of K lying in the quadrant x ^ 0, y ^ 0. Because of the

convexity of K, Q lies below some line / through the point P = ((Ai/2),(A2/2)) with
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non positive slope and with equation y = (A2/2) + m(x — (Ai/2)). Let us denote by
X and Y respectively the intersection of the line / with the coordinate axes and by V

the disc x2 + y2 ^ D 2 / 4 . We distinguish two cases:

(a) X,Y({V;

(b) exactly one of the points X, Y is exterior to T>.

In case (a) the area of Q is given by:

A(Q) = J^D2-2 jf [y/(D/2)2 -u2-qj du

where q is the distance of the line I from the origin.

We have thus:

A

and a short calculation shows that this function attains its maximum when q =

(l/2)yAf + Af, that is, when the line I is normal to the segment OP, and the diameter

D satisfies the equation Jj 1~(«/ D ) 3 yj\ - t2 dt = TT/8, that is, D ~ 1.09317 v'Aj + X2,

so that we obtain:

( 6 ) D(K)

(Actually the function A(K)/D(K) is an increasing function of q and q ^

(l/2)-\/Af + A|, moreover its derivative with respect to D vanishes if and only if D(K)

satisfies the above equation.)

If A2 ^ 2T\/\\ + X\, the previous solutions are acceptable since for this value of

D(K) the points X and Y are exterior to the disk T>. Otherwise the maximum value of

A(K)/D(K) is taken when the line I is normal to the segment OP and passes through

the point Y: obviously in this case we have A(K)/D(K) < 2ry/\2 + X2 < ^2 •

In case (b) let us suppose that Y £ T>, so Q is a subset of the trapezium T

bounded by the coordinate axes, the line / and the line x = D/2. This trapezium has

area A{T) = (D/8) [2A2 + m(D - 2Ai)].

If D ^ 2Aj, this area is at most (D(A")A2)/4 and thus

m i W <r A
1 ] D(K) < 2-

If D < 2Ai, then A(T) is an increasing function of m so that it is easy to see that the
maximum of the area of the region Q is taken when the point Y belongs to the line /.

In this case we have A(K)/D(K) < 2T^X\+X\. D
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REMARK. Inequality (7) could seem too wide, but the example of a rectangle with
diagonal-length D and an edge-length A2 shows that this bound is best possible when
D-> 00.

PROOF OF THEOREM 2.

For the sake of brevity we write A = A(K), A = A(K), Ai = Ai(Z) and m =

First we observe that the inequality in Theorem 2 can be written

Ai A - 2/ii

2 l A2 " '

Therefore we can take K to be the set realising the minimum of the left-hand side
of this inequality.

Because of A ^ 2^i + (\/3/2)Ai < 4/ii (see [10]), (A — 2/Xi)/A2 is an increasing
function of A and hence we choose K with A and A as large as possible.

It is clear that K must be one of the following sets:

(a) a triangle with one (or two) of its sides on a lattice line;
(b) a triangle with one lattice point on each of its sides;
(c) a quadrilateral with one lattice point on each of its sides.

Moreover it is easy to see that in cases (a) and (c), K circumscribes a parallelogram
(which is a cell of L) with one side of length Ai and altitude 2/xi, and in case (b) K
circumscribes a triangle with one side of length Ai and relative altitude 2/ii.

Let if be a triangle (cases (a) and (b)).
In this case we have

(8) A=*

where the second inequality follows immediately from (A — 2/xi) D ^ AjA proved in
[11] and where equality holds if and only if if is a triangle of width A(K) and diameter
D{K) = Ai(£)A(J0/(A(*:) - 2^(L)).

Thus it is sufficient to establish (2) in case (c).
Let K be the quadrilateral XYZT and let 0,B,C,E be lattice points such that

O G [X,Y], B G [Y,Z], C 6 [Z,T], E € [T,X], OB = E~C = \ u l}OE = B!jE =
(p (ip < TT/2), ~0E~sin<p = B~C sin ip = 2/xi. Let m = TY and let n be the length of the
width of K in the direction normal to TY and let us put OE = u. Further let 1? be
the angle between the lines EC and XZ.

By computing the area of K and the areas of its component parts we obtain:

i/ncost? + Aim sin (y> — •&) if •d ^ T / 2 ,
= mn — <2A

vncosd + Aim sin (y> + 1?) if 1? > TT/2.
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As i? > IT 12 implies <p +•& < TT — <p, we have mn ^ vn + Aim sin tp in either case,
and equality holds if the line XZ is parallel to the line OB. Thus we can suppose
2A — mn = vn+ \\msin<p. Let m ^ n s o that n ^ Ai simp + v. Then

j/n2 f ./A2 , , 2 1
2^4 = mn = ;—: ^ max < r , (Ai sin tp + v) > .

n — Xismip (A — Xismtp )

Let m < n s o that m < Ai sintp + v and further let us suppose that the lines XT

and YZ are parallel or meet in the half-plane containing Z and determined by XY.

(In the other cases the proof is similar.) Then A ^ TO sin ( X T V l ^ msin<^. Since

m — v

is a decreasing function of m, then

2A ^ max \ —: , (Ai sin ip + vf , -—-—: \ .
[ A — Ai sin <p A — v sin ip )

Now it is a straightforward calculation to show that

2 At A
2 \

) >max A — Ai sin tp' A — v sin tp j A — v sin tp

so that Theorem 2 follows. D

P R O O F OF COROLLARIES.

As Corollary 2 is an obvious consequence of Theorem 2, we shall only prove Corol-

lary 1.

The idea of the proof follows an analogous argument given by Hammer in [3] (see

also [11]) which we repeat here for completeness.

Let us suppose k ^ 1 (if k = 0 the result is obvious) and consider the similarity

transformation K -» K' = {l/k)K.

Obviously A(K') = (l/k2)A{K) and D(K') = (l/k)D(K). Now let {bi,b2} be
a basis of L with |b; | = A< and let Q = gibi + g2b2 be a lattice point with 0 ^ g< ^

(Jb - l)Ai (i = 1,2). Then for the translate K" of K' given by K" = K' - (l/k)Q we

have
A{K") _ A(K') 1 A(K) > max 1 2/X!, 2ry/X\ + (2/ij)2 1 .
D(K") D(K') k D(K)

Thus, by Theorem 1, K" contains a lattice point T. Then K' contains the point
T + (l/k)Q, so that K contains the point V = fc(T + (l/k)Q) = kT+Q. Since Q can
be chosen in k2 different ways, by selecting each of qi ,92 m k different ways we have
Jfc2 distinct lattice points in K. D
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