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ABSTRACT. Polar ice is known to be one of the most anisotropic natural materials. For a given fabric the
polycrystal viscous response is strongly dependent on the actual state of stress and strain rate. Within
an ice sheet, grounded-ice parts and ice shelves have completely different stress regimes, so one should
expect completely different impacts of ice anisotropy on the flow. The aim of this work is to quantify,
through the concept of enhancement factors, the influence of ice anisotropy on the flow of grounded
ice and ice shelves. For this purpose, a full-Stokes anisotropic marine ice-sheet flowline model is used to
compare isotropic and anisotropic diagnostic velocity fields on a fixed geometry. From these full-Stokes
results, we propose a definition of enhancement factors for grounded ice and ice shelves, coherent with
the asymptotic models used for these regions. We then estimate realistic values for the enhancement
factors induced by ice anisotropy for grounded ice and ice shelves.

INTRODUCTION

The crystallographic structure of an ice crystal presents
a hexagonal symmetry, resulting in a strong visco-plastic
anisotropy. An ice crystal deforms mainly due to sliding
in its basal planes, which are the planes perpendicular to
its hexagonal symmetry axis (i.e. its c-axis). Due to the
deformation, the c-axes of the ice crystals turn to preferential
orientations depending on the strain-rate and stress history,
leading to different types of fabric. For example, under
polar-ice-sheet conditions in uniaxial compression the c-
axes rotate towards the compressional axis, leading to single-
maximum fabrics, whereas in uniaxial tension the c-axes
rotate towards a plane perpendicular to the tension axis,
leading to girdle-type fabrics (Van der Veen and Whillans,
1994). Due to the great variety of flow conditions prevailing
in ice sheets, the type of fabric varies greatly from place
to place.
As a consequence of its strong crystal anisotropy, poly-

crystalline ice is one of the most anisotropic natural
materials, but its anisotropy is strongly related to the
distribution of the crystal orientations. If ice crystals in
a polycrystal are distributed randomly, the mechanical
behaviour of the polycrystal is isotropic. Moreover, for the
same given fabric, the response of the polycrystal is strongly
dependent on the state of stress or strain rate. For example,
as observed experimentally by Pimienta and others (1987),
it is 25 times easier to deform a polycrystal with a single-
maximum fabric in shear perpendicular to the mean c-axis
orientation than in uniaxial compression along the same
orientation.
The grounded parts of ice sheets are dominated by vertical

compression near domes and near the ice surfaces and
by horizontal shear elsewhere. Under a dome most of the
observed fabrics are almost axisymmetric and approximately
centred around the in situ vertical axis. They evolve from
isotropy at the surface to single-maximum fabrics near the
bedrock (Thorsteinsson and others, 1997; Durand and others,

2009a). Along the flanks the vertical evolution of the fabric
is more complex and only a few deep cores drilled along
flanks have been studied. It seems that for such locations the
fabric evolves first toward girdle shapes in the upper part of
the core, and then to a single-maximum fabric deeper, where
vertical compression and shear stresses dominate (Eisen and
others, 2007; Seddik and others, 2008). In both cases, these
types of fabric are easier to shear than isotropic ice, and the
anisotropy induces an enhancement of the flow compared
with an isotropic reference (Mangeney and others, 1996).
In the absence of basal friction, ice shelves are dominated

by longitudinal stretching and lateral shearing. Only a
few authors have studied ice-shelf fabrics (Kirchner and
Faria, 2009; Treverrow, 2009). As shown by Craven and
others (2005, 2009), the Amery Ice Shelf, East Antarctica,
is structured in three layers. The first thin layer near the
surface is composed of meteoritic ice formed by compaction
of the snow accumulated on the ice shelf itself. Deeper,
a thick layer contains the ice which has flowed from the
continent. Its fabric is thus inherited from its initial fabric
when entering the ice shelf and the stress and strain rate
undergone within its travel through the ice shelf. At the
bottom, a third layer, which can be up to 200m thick,
is formed by the accretion of marine ice. The distribution
of marine ice under ice shelves is not uniform, due to
ocean circulation (Fricker and others, 2001). Physically,
marine ice is heavier than meteoritic ice and it is permeable
and isothermal due to the presence of sea water in the
pores (Craven and others, 2009). In borehole studies of
the Amery Ice Shelf, Treverrow (2009) observed girdle-
type fabrics and also multiple-maxima crystal orientation
fabrics. These latter fabrics are characteristic of migration
recrystallization processes which can be initiated by high
enough temperatures and/or stresses, whereas a girdle shape
is characteristic of strain-induced fabrics in tension. When
considering only strain-induced fabrics, polycrystal models
indicate that for a tension state of stress, ice becomes more
and more stiff, because of the fabric evolution to a more

https://doi.org/10.3189/002214310794457209 Published online by Cambridge University Press

https://doi.org/10.3189/002214310794457209


806 Ma and others: Enhancement factors from an anisotropic flow model

textured girdle-type fabric (Castelnau and others, 1996). As
tension dominates the state of stress in ice shelves, we expect
the ice in ice shelves to be stiffer than an isotropic reference,
due to the strain-induced anisotropy.
In this paper, we compare isotropic and anisotropic

velocity fields computed from a flowline model on a
fixed geometry to estimate the flow enhancement induced
solely by the ice anisotropy for both the grounded and the
floating parts of an ice sheet. We first present the nonlinear
full-Stokes anisotropic ice-flow model used for this study
and define the enhancement factors for the grounded and
floating part, respectively. These enhancement factors are
then calculated for various flow configurations, by varying
the basal conditions or the fabric field.

CONTEXT OF ISOTROPIC ICE-SHEET MODELS
In large-scale ice-sheet models, ice rheology is described
using Glen’s isotropic flow law, which links the deviatoric
stress, τ , and the strain rate, ε̇:

ε̇ = Aτn−1e τ , (1)

where τ2e = τijτij/2 is the square of the second invariant of
the deviatoric stress and A is a rheological parameter, which
depends on the ice temperature via an Arrhenius law.
Another characteristic of large-scale ice-sheet models is

that they solve simplified equations based on asymptotic
expansions of the Stokes equations. These equations are
obtained by retaining only the largest components of the
deviatoric stress. For the grounded part, the dominant stress is
the horizontal shear stress and the resulting set of equations is
known as the shallow-ice approximation (SIA; Hutter, 1983).
For ice shelves, the stress is dominated by the longitudinal
component and this leads to the shallow-shelf approximation
(SSA; MacAyeal, 1989). Classically, the SIA is solved for the
grounded part and the SSA is used for ice shelves and the
fast-flowing outlet glaciers. In some recent applications, both
approximations are solved together on the whole ice sheet,
so the SSA is used to determine the sliding velocity on the
grounded part (Bueler and Brown, 2009).
When using Glen’s flow law (Equation (1)), ice-sheet

models show inconsistencies with the real characteristics
of the ice flow, in an opposite way for grounded and ice-
shelf parts. In the grounded part the observed velocities are
underestimated by the models and they are overestimated
on ice shelves. To better reproduce realistic characteristics
of ice sheets, many authors use an ad hoc coefficient to
proportionately modify Glen’s flow law to adjust their results.
This empirical coefficient, E , called the enhancement factor,
modifies Glen’s flow law as follows:

ε̇ = EAτn−1e τ . (2)

For grounded ice, Mangeney and Califano (1998)
developed the SIA equations for an anisotropic rheology
restricted to transverse isotropy with a vertical rotational
symmetry axis everywhere. They showed that, in the
particular case of a linear rheology and a flat bedrock,
the zero-order anisotropic SIA is equivalent to the use
of an enhancement factor in the isotropic SIA. Further
developments by Philip and Meyssonnier (1999) showed
that, in the case of a non-vertical material symmetry axis,
the diagonal components of the deviatoric stress can be
of the same order of magnitude as the shear stress. These
last developments indicate that the above conclusion of

Mangeney and Califano (1998) is only valid in the restricted
case of a vertical material symmetry axis. For a grounded
ice-flow regime, all the applications indicate that anisotropic
ice flows faster than isotropic ice (Mangeney and Califano,
1998; Gagliardini and Meyssonnier, 1999; Staroszczyk
and Morland, 2000), with an enhancement of the flow
depending on the anisotropic polycrystal models. To our
knowledge, the comparison of isotropic and anisotropic
flows for an ice shelf has never been addressed, so the effect
of anisotropy on ice-shelf flows remains unclear. Including
a tensorial anisotropic flow law properly in a large-scale
ice-sheet model is not straightforward, which explains why
all existing ice-sheet models account for anisotropy effects
using the concept of enhancement factors. A valuable
alternative for ice-sheet models is the easy-to-implement
CAFFE model (Continuum-mechanical Anisotropic Flow
model based on an anistropic Flow Enhancement factor e.g.
Placidi and others, 2010), which is based on an anisotropic
flow enhancement factor and therefore preserves the
scalar-viscosity form of Glen’s law.
In some large-scale ice-sheet models, two different values

of the enhancement factor are used, depending on the
stress regime (e.g. Huybrechts, 1990). For grounded ice, an
enhancement factor for shear stress, ESIA (>1), is introduced
in the ice rheology for the SIA equations, whereas for ice
shelves and ice streams an enhancement factor in tension,
ESSA (<1), modifies Glen’s law in the SSA equations. This
contrast of rheology between the grounded ice and the ice
shelf can be characterized by the ratio of the enhancement
factor for the grounded part over the enhancement factor
for ice shelves, i.e. ESIA/ESSA. In his model, Huybrechts
(1990) used a contrast ratio of ESIA/ESSA = 5. Ritz and
Pollard (personal communications, 2009) apply a contrast
ratio of 10 in their models. Although all the values of the
contrast ratio used by these authors have the same trends,
they were estimated empirically in order to obtain realistic
results with the various ice-sheet models. The aim of this
paper is to quantify which part of these enhancement factors
can be attributed to strain-induced anistotropy, by comparing
isotropic and anisotropic ice-flow results.

THE ANISOTROPIC ICE-FLOW MODEL
Anisotropic law and fabric evolution
In this section, we briefly present the anisotropic ice-flow
model used in this study. For more details the reader can refer
to previous publications related to the model itself (Gillet-
Chaulet and others, 2005, 2006; Durand and others, 2007;
Martı́n and others, 2009). The fabric is described using the
concept of orientation tensors. The second- and fourth-order
orientation tensors are defined as

a(2)ij = 〈cicj〉 and a(4)ijkl = 〈cicjck cl 〉 , (3)

where c is the c-axis unit vector and 〈〉 denotes the
average over all the grains that make up the polycrystal.
In this continuum description of the fabric, the polycrystal
represents the local behaviour of a representative elementary
ice volume. By assuming that the fourth-order orientation
tensor, a(4), is given as a tensorial function of a(2) (Gillet-
Chaulet and others, 2006), the fabric can be described in a
very condensed way using only a(2). By definition, tr a(2) = 1,
so that only the first two eigenvalues, a(2)1 and a(2)2 , and three
Euler angles are needed to completely define the fabric. As
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a consequence, modelled fabrics are orthotropic, i.e. the
c-axis distribution presents three orthogonal symmetry
planes. Although the orthotropy is a simple form of the most
general anisotropy, it is thought to be a good compromise
between physical adequateness and simplicity. The second-
order orientation tensor allows us to describe all the observed
fabric patterns: for random c-axis distributions the diagonal
entries of a(2) are a(2)11 = a(2)22 = a(2)33 = 1/3, for a single-
maximum fabric with its maximum in the third direction,
a(2)33 > 1/3 and a(2)11 ≈ a(2)22 < 1/3, and for a girdle-type fabric
in the plane (x1, x2), a

(2)
33 < 1/3 and a(2)11 ≈ a(2)22 > 1/3. When

the material symmetry axes are those of the general reference
frame, as for the three particular previous fabrics, the non-
diagonal entries of a(2) are nulls.
The behaviour of the polycrystal is described by the

general orthotropic linear flow law (GOLF; Gillet-Chaulet
and others, 2005). In this law, ice is assumed to behave as a
linearly viscous orthotropic material. In the present paper,
following Pettit and others (2007) and Martı́n and others
(2009), the GOLF law is extended to a nonlinear form by
adding an invariant in the anisotropic linear law. The simple
choice is either to add the second invariant of the strain
rate (Martı́n and others, 2009) or the second invariant of
the deviatoric stress (Pettit and others, 2007). No theoretical
or experimental results are presently available that allow us
to discard either of these two solutions, and other solutions
based on anisotropic invariants of the deviatoric stress and/or
the strain rate are also possible. Here the nonlinearity of
the law is introduced through the second invariant of the
deviatoric stress. With this definition, the anisotropy factors
of the polycrystalline law for a given stress are identical in
the linear and nonlinear cases. In other words, for a given
fabric and a given state of stress, the corresponding strain rate
relative to the isotropic response is the same for the linear and
nonlinear cases. Using the strain-rate invariant, in the same
way as Martı́n and others (2009), leads to different anisotropy
factors (as defined here) in the linear and nonlinear cases.
Therefore, the proposed expression of the nonlinear GOLF
law is

3∑
r=1

[
ηr tr (Mr · ε̇)MD

r + ηr+3 (ε̇ ·Mr +Mr · ε̇)D
]

= 2Aτn−1e τ , (4)

where A is the temperature-dependent Glen’s law parameter
for isotropic ice. The six dimensionless anisotropy viscosities
ηr (a(2)) and ηr+3(a(2)) (r =1, 2, 3) are functions of eigenvalues
of the second-order orientation tensor, a(2), which represent
a measure of the anisotropy strength. The three structure
tensors, Mr , are given by the dyadic products of the three
eigenvectors of a(2), which then represent the material
symmetry axes. In the method proposed by Gillet-Chaulet
and others (2006), the six dimensionless viscosities, ηr (a(2)),
are tabulated as a function of the fabric strength (i.e. the a(2)i )
using amicro/macro model.When the ice is isotropic, ηr = 0
and ηr+3 = 1 (r =1, 2, 3), and Equation (4) reduces to Glen’s
flow law (Equation (1)).
Following Gillet-Chaulet and others (2006), the six dimen-

sionless viscosities, ηr (a(2)), are tabulated using the visco-
plastic self-consistent (VPSC) model (Castelnau and others,
1996, 1998). The two crystal parameters in the VPSC model
used to tabulate the GOLF law were chosen to reproduce the
experimentally observed polycrystal anisotropy. Following

Gillet-Chaulet and others (2006), we use the shear strain
rates ratio for a polycrystal with a single-maximum fabric
and an isotropic polycrystal both experiencing the same
shear stress. This anisotropy factor in shear is hereafter
denoted ks and, according to the experimental results of
Pimienta and others (1987), ks ≈ 10. In other words, the
VPSC parameters are chosen so that under simple shear a
polycrystal with a single-maximum fabric is ks times easier
to deform than the corresponding isotropic polycrystal. The
experimental results of Pimienta and others (1987) indicate
that an isotropic polycrystal is much easier to deform
than a single-maximum fabric polycrystal experiencing the
same uniaxial compressional stress. These experiments allow
the definition of a second anisotropy factor for uniaxial
compressional stress, denoted kc. In what follows, the
anisotropic polycrystal response deduced from the GOLF
law (Equation (4)) is such that ks = 10 and kc = 0.4.
The value kc = 0.4 is in accordance with the experimental
results of Pimienta and others (1987) obtained from uniaxial
compression tests on polycrystals with a single-maximum
fabric. The anisotropy factors ks and kc are independent of
Glen’s flow-law exponent, n, with the adopted nonlinear
formulation.
Assuming that recrystallization processes do not occur and

that the ice fabric is induced solely by deformation, the
evolution of the second-order orientation tensor, a(2), can
be written as

Da(2)

Dt
=W · a(2)− a(2) ·W −

(
C · a(2) + a(2) · C

)
+2a(4) : C ,

(5)
whereW is the spin tensor, defined as the antisymmetric part
of the velocity gradient. The tensor C is defined as

C = (1− α)ε̇+ α ks A τn−1e τ . (6)

The interaction parameter, α, controls the relative weighting
of the strain rate and the deviatoric stress in the fabric-
evolution equation (Equation (5)). When α = 0 the fabric
evolution is solely controlled by the state of the strain rate,
whereas when α = 1 the fabric evolves solely under the
influence of the deviatoric stress. In between, as for the
VPSC, both the strain rate and deviatoric stress contribute
to the fabric evolution. In what follows, the interaction
parameter is set to α = 0.06, in accordance with the crystal
anisotropy and the VPSCmodel used to derive the polycrystal
behaviour (Gillet-Chaulet and others, 2006). In Equation (5),
the fourth-order orientation tensor is evaluated assuming a
closure approximation giving a(4) as a tensorial function of
a(2) (Gillet-Chaulet and others, 2006).

Flow equations
As shown in Figure 1, the domain geometry represents
a two-dimensional flowline ice sheet and ice shelf. This
geometry is the steady-state solution obtained with the
same model assuming an isotropic rheology for step 12
of the MISMIP 3a experiment (Marine Ice Sheet Model
Intercomparison Project; Durand and others, 2009b). Here
we summarize the set-up of this experiment. The bedrock
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Fig. 1. Geometry of the ice sheet, notation and boundary conditions
for the various experiments.

topography, in metres, is given as

b(x) = 729 − 2184.8×
[
(x − Lg)
750 km

]2

+ 1031.72×
[
(x − Lg)
750 km

]4

− 151.72×
[
(x − Lg)
750 km

]6
, (7)

where Lg is the length of the grounded part of the ice sheet.
Using this bedrock and a uniform and constant surface
accumulation of 0.3ma−1, the purpose of the MISMIP
experiments was to compute various steady-state geometry
configurations by varying Glen’s flow-law parameter, A. In
this paper, only diagnostic simulations are performed and
the upper and lower free surface, z = zs(x) and z = zb(x),
respectively, are fixed and equal to the steady solutions
obtained at step 12 (i.e. for A = 7.89MPa−3 a−1). The
grounding-line position is also fixed and is arbitrarily taken
to be x = 0. Diagnostic simulations are justified since the
objective here is to infer the velocity enhancement due to
ice anisotropy by comparing isotropic and anisotropic flows
for the same geometry.
Ice-flow variables, velocity and isotropic pressure, are

computed by solving the following field and boundary
equations:

div u = 0, zb ≤ z ≤ zs, (8)

divσ + ρig = 0 , zb ≤ z ≤ zs, (9)

σ · n = 0, z = zs, (10)

τnt = t · (σ · n)|b = C umt
u · n = 0

}
z = zb ; x ≤ 0 , (11)

t · (σ · n)|b = 0
u · n = 0

}
z = zb; x > 0, (12)

u = 0, x = −Lg, (13)

σnn = −max [ρwg (lw − zb), 0
]
, x = Ls. (14)

Equations (8) and (9) express mass and momentum conserva-
tion, respectively. Here u is the velocity vector, σ = τ−pI is

Table 1. Values of the parameters used in this study

Parameter Value

A 7.89MPa−3 a−1

C 2.5× 10−2 MPam−1/3 a1/3
g 9.81m s−2
ks 10
kc 0.4
Lg 732 km
Ls 1068 km
m 1/3
n 3
α 0.06
ρw 1000 kgm−3
ρi 900 kgm−3

the Cauchy stress tensor, p is the isotropic pressure, ρi and ρw
are the density of ice and sea water, respectively, lw is the sea
level, n and t are the normal and tangential unit vectors to
the free surfaces and g = (0, 0,−g ) is the gravity vector. The
upper surface is stress-free (Equation (10)) and for the lower
surface the boundary conditions depend on whether the ice
is grounded or floating. Where ice is grounded, the normal
velocity is null and a Weertman-type friction law applies
(Equation (11)), with C the friction parameter, whereas for
the ice shelf bottom both normal velocity and tangential
friction are null (Equation (12)). The left boundary condition
(Equation (13)) expresses a symmetry axis in x = −Lg, and
the right boundary condition (Equation (14)) is the end of
the ice-shelf front, x = Ls. In the case of evolving fabric, the
Stokes equations are coupled using the constitutive relation
(Equation (4)) to the orientation tensor evolution equations
(Equation (5)), as explained by Gillet-Chaulet and others
(2006). The values of the various parameters in the equations
are listed in Table 1. This set of equations is solved using the
finite-element code Elmer/Ice; details on the numerics are
given by Gillet-Chaulet and others (2006).

NUMERICAL EXPERIMENTS
Definition of the enhancement factors
The objective of these simulations is to infer the value of
the enhancement factors for the grounded part, ESIA, and the
ice-shelf part, ESSA, by comparing anisotropic and isotropic
results. It is easy to define, for each depth, values of the
enhancement factors as a function of the local anisotropy
and a given state of stress, but the objective here is to
quantify the vertically integrated effect of anisotropy. Indeed,
some models are vertically integrated, and the enhancement
factors must then be determined from the global anisotropy
effect from the surface to the bedrock.
For the grounded part, the dominant stress is the horizontal

shear stress. From our full-Stokes anisotropic model, the
enhancement in shear should be computed by comparing
the shear strain rate, ε̇xy , for the anisotropic and isotropic
cases. Because the shear strain rate varies with depth, the
comparison has to be done on the resulting horizontal
velocity, which is the horizontal surface velocity, us, minus
the basal velocity, ub (where basal sliding exists). Therefore,
the enhancement factor in shear is determined as

ESIA =
uanisos − uanisob

uisos − uisob
. (15)
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Table 2. Settings for the various simulations. See text for explanations

Test Domain Fabric Sliding

Exp. 1 Sheet and shelf SMAX No
Exp. 2 Sheet and shelf SMAX Yes
Exp. 3 Shelf Girdle —
Exp. 4 Shelf Evolved —

The enhancement factor, ESIA, is thus only evaluated from the
part of the horizontal velocity induced by shear deformation.
With our definition of the polycrystal anisotropy, we know
that ESIA ≤ ks, equality being reached in the particular case of
a homogeneous single-maximum fabric over all the domain.
For the ice shelf, the dominant stress is horizontal tension.

The enhancement factor for the ice shelf must then be
computed by comparing the horizontal strain rate, ε̇xx ,
for anisotropic and isotropic cases. In the case of perfect
basal sliding, ε̇xx is almost constant with depth, so the
enhancement factor can be evaluated at any elevation in the
ice shelf. However, the SSA is also used to determine the ice-
stream basal velocity. In this case, the tension enhancement
factor should be inferred from the bottom value of the
horizontal strain rate, ε̇xx |b. Therefore, we define the tension
enhancement factor by

ESSA =
ε̇anisoxx |b
ε̇isoxx |b

. (16)

From the definition of the polycrystal anisotropy, the tension
enhancement factor, ESSA, should be greater than the
anisotropy factor in compression, kc (ESSA ≥ kc). Here again,
the equality is reached for a homogeneous single-maximum
fabric over the whole ice shelf.

Enhancement factor for grounded ice
The experiments are listed in Table 2. For all anisotropic
experiments, the corresponding isotropic experiment (not
listed) is used as the reference to compute the enhancement
factor (Equations (15) and (16)). For the grounded part, two
experiments were performed for various basal conditions,
one assuming no sliding at the base (exp. 1) and the second
with basal sliding (exp. 2). For these two experiments, the
fabric is given and its evolution is not computed. Due to the
fixed geometry and the strong changes in the flow condition
at the grounding line, it was not possible to achieve a steady-
state fabric field. Nevertheless, as shown below, the fabric
was computed on the ice shelf where we did not have data
input, using a simplified geometry model.
As shown in Figure 2 (dashed curve), for these two

experiments the applied (fixed) fabric is a single-maximum
fabric which becomes more and more concentrated from the
surface to the bedrock as a function of the reduced depth.
This is a typical fabric profile under a dome where ice is
submitted to a compression stress, but it applies also along
a flank where, due to shear, the fabric is known to evolve
to a single-maximum pattern near the bedrock (Seddik and
others, 2008). In what follows, this imposed fabric profile is
referred to as the single-maximum (SMAX) fabric profile.
Results for the grounded part are shown in Figure 3. As

expected (Mangeney and Califano, 1998; Gagliardini and
Meyssonnier, 1999; Staroszczyk and Morland, 2000), the
surface velocity, us, for the anisotropic fabric is greater than

Fig. 2. Vertical fabric profiles given as the evolution of the diagonal
components of the second-order orientation tensor, a(2), for the
imposed single-maximum (SMAX) fabric (dashed curve) and the
computed steady-state solution in the ice shelf at x = 320 km (solid
curve) and x = 800 km (dotted curve).

that of the isotropic fabric, which confirms that the anisotropy
makes the ice softer in the grounded part, where shear stress
dominates. The enhancement factor evolution along x is
calculated using Equation (15) for both with basal sliding
and no basal sliding. Even if the surface velocities in the
case of basal sliding are much greater than those in the
case of no sliding, for the same anisotropy, both give the
same enhancement factor ESIA = 4.5. The same values
of ESIA derived from two experiments with various basal
conditions indicate that, here, basal sliding has almost no
effect on the ice shear deformation. It should be noted that
the enhancement factor is also uniform on all the grounded
part. Mangeney and others (1996) obtained an enhancement
factor of 1.7 and Gagliardini and Meyssonnier (2002) found
a value of 1.75. These small values are explained by the
uniform-stress polycrystal model used in their approach,
which had a limited anisotropy factor, ks < 2.5. With ks = 5,
Staroszczyk and Morland (2000) obtained an enhancement
factor of 4. We recall that in our work Ks is set to its
experimental value of 10.1.
Certainly because the simulations are performed using

a fixed geometry, irregularities of the velocity field are
observed in the vicinity of the grounding line (over a
distance of a few ice thicknesses). Because the problem
of the grounding-line dynamics is not the intended subject
of this paper, results in the vicinity of the grounding line
are not discussed. These irregularities of the velocity field
also explain why it was not possible to compute the steady-
state fabric field associated with this ice-sheet geometry. At
the dome, because of the vanishing horizontal velocity, the
enhancement factor, ESIA, is not defined.

Enhancement factor for the ice shelf
As the ice shelf is dominated by longitudinal stretching and
lateral shearing instead of horizontal shearing, application
of the SMAX fabric profile is inappropriate. We performed
two furher experiments, exp. 3 and exp. 4, to infer the
influence of fabric type on the flow. For these experiments,
the domain was restricted to the ice-shelf part in order to be
able to compute the steady-state fabric field, as depicted in
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s

Fig. 3. (a) Horizontal velocity at the surface of the grounded part of
the ice sheet as a function of distance from the grounding line,
for the isotropic fabric (dotted curves) and SMAX fabric profile
(dashed curves), and with and without sliding (triangle and no-
symbol curves, respectively). (b) Corresponding enhancement factor
in shear evaluated from Equation (15) in the case of sliding (triangles)
and no-sliding (no symbol).

Figure 4. For this restricted geometry, all the flow equations
are the same, except that the left-side boundary conditions
(Equation (13)) are modified to impose an inflow flux given
by u(0, z) = 50ma−1 and v (0, z) = 0. This imposed inflow
velocity corresponds approximately to the mean horizontal
velocity at the grounding line for exp. 1.
In exp. 3 a constant girdle fabric (a(2)1 = 0.01, a(2)2 = a(2)3 =

0.495), representing the expected fabric for a longitudinal
uniaxial tension stress, is imposed on all of the ice-shelf
domain. For exp. 4 the fabric field is computed as the steady-
state solution of the coupling between the flow equations
and the fabric-evolution equations, assuming a SMAX profile
as a boundary condition for the inflow boundary, x = 0.
We checked that, whatever the initial fabric in the ice shelf
(isotropic or SMAX profile), the problem converges to the
same steady solution. This test with various initial conditions
allows us to check whether the steady state of the ice flow is

-

. 0 0

00

Fig. 4. Geometry and boundary conditions for the ice-shelf
experiments.

s

Fig. 5. (a) Horizontal velocity at the surface of the ice shelf as a
function of the distance from the grounding line, for the isotropic
fabric (dotted curve), SMAX fabric profile (dashed curve), girdle
fabric (dot–dashed curve) and computed steady-state fabric (solid
curve). (b) Corresponding enhancement factor in tension evaluated
from Equation (16).

achieved or not and validates the numerical method used to
compute the fabric field. The steady-state fabric profiles for
the ice shelf at x = 320 and 800 km are shown in Figure 2
(solid and dotted curves, respectively). The evolution with
depth of the computed fabric is different from the SMAX
one but, due to the plane strain hypothesis, the fabric does
not evolve to a girdle fabric. Comparison of these fabric
profiles taken at two different locations indicates that the
vertical evolution of the fabric is fairly similar throughout
the ice shelf.
Results for the ice-shelf part are presented in Figure 5. In

the absence of horizontal shearing, the velocity is constant
with depth and its value increases almost linearly with
distance to the grounding line. The surface velocities for the
isotropic case and the three anisotropic cases (SMAX, girdle
and steady-state fabrics) are shown in Figure 5a. The surface
velocity, us, for the isotropic case is greater than any one
of the anisotropic cases, indicating that anisotropic ice is
stiffer under the stress conditions prevailing in ice shelves.
For each experiment, the corresponding enhancement-
factor evolution along the flow direction, inferred from
Equation (16), is shown in Figure 5b. As for the grounded
part, for a given experiment, the value of the enhancement
factor, ESSA, is almost uniform over the whole ice shelf. Its
value is 0.71 for the SMAX fabric and 0.58 for the girdle
fabric. For the computed steady-state fabric, the mean value
of ESSA is ∼0.57.
We also tested imposing an isotropic fabric as a boundary

condition for the inflow boundary x = 0 (instead of a SMAX
profile) and varying the value of the inflow velocity (from
u(0, z) = 50 up to 300ma−1). All the results (not shown)
indicate that the inferred enhancement factors, ESSA, for these
cases range between 0.52 and 0.71, greater values being
obtained for the SMAX fabric profile. For the flow regime
prevailing in ice shelves, whatever the fabrics, the flow
enhancements induced by ice anisotropy are very similar.
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Effect of non-isothermal conditions
In these applications, enhancement factors were inferred
using isothermal conditions, whereas ice-sheet models use
a non-constant temperature field. For the grounded part,
increasing temperature with depth leads to a greater value
of the enhancement factor, ESIA, because it increases the
shear deformation near the bedrock where the fabric is the
most concentrated. We performed simulations assuming a
fixed temperature field function of the reduced depth as
observed at the Greenland Icecore Project (GRIP) site (fig. 2a
in Gagliardini andMeyssonnier, 2000). These results indicate
that for a variable temperature the enhancement factor,
ESIA, is equal to 5.6. Finally, isothermal and non-isothermal
simulations give a range for ESIA of 4.5–5.6, the greater value
obtained for a non-constant temperature certainly being the
more realistic.
For the ice shelf, the steady-state fabric obtained with

isothermal conditions was used to test the influence
of variable temperature conditions, assuming the same
temperature profile as for the grounded part. The value of the
enhancement factor in tension for a variable temperature is
ESSA = 0.60, to be compared with the value of 0.57 obtained
with the isothermal conditions. These results indicate that an
evolving temperature with depth has almost no influence on
the resulting enhancement factor. In tension, contrary to what
happens in shear, the flow is controlled by the layer with the
lesser fluidity, i.e. the upper layers where the temperature
is low.

Which enhancement factor for ice streams?
In the previous subsections, we have shown that the
calculated enhancement factors in shear, ESIA, and in tension,
ESSA, are almost uniform over the grounded part and the ice-
shelf part, respectively. Let us now consider the transition
zone between these two parts, where both the longitudinal
and shear stress have the same magnitude. For this purpose,
exp. 2 (SMAX fabric profile and sliding) was repeated for
different friction coefficients, ranging from 0.3C to 1.2C ,
where C is the value used in the previous simulations and
is given in Table 1. As shown in Figure 6, the value of the
enhancement factor in tension, ESSA, decreases from 1, where
sliding is negligible, to its ice-shelf value (ESSA = 0.71) just
downstream of the grounding line. The smaller the friction
parameter is, the longer the stream, and the decrease of ESSA
follows the stream length. This variation of ESSA characterizes
the fact that the longitudinal stress becomes progressively
greater than the shear stress as the ice moves down in the
ice stream.
Therefore, the value of the enhancement factor used in

the SSA, if it is being applied to an ice stream, should not
be constant and equal to that of the ice shelf, but should
decrease from 1 at the onset of the ice stream to its ice-shelf
value at the grounding line.
Again, because of the fixed domain geometry, the

diagnostic velocity field in the vicinity of the grounding line is
not smooth, inducing large oscillations of the enhancement
factor in tension.

CONCLUSIONS
In this work, we have estimated the enhancement factors
induced solely by the ice anisotropy for an ice sheet with a
grounded part and an ice shelf. For this purpose, anisotropic

Fig. 6. Enhancement factor in tension, ESSA, as a function of distance
to grounding line, evaluated from Equation (16) for different friction
parameters from faster flow, 0.3C (circles) and 0.5C (lozenges), to
slower flow, C (triangles) and 1.2C (squares). The value of C is given
in Table 1 and corresponds to that used in the previous experiments.

and isotropic models were applied simultaneously and com-
pared. For grounded ice the anisotropic flow is computed
assuming a fixed fabric profile, as observed below a dome.
Two basal boundary conditions (no sliding and sliding) were
applied. The results show that the basal sliding has almost
no effect on the enhancement factor for the grounded part.
For the isothermal case, the value of the enhancement factor
is 4.5, whereas it is 5.6 in the regime where temperature
increases with depth.
For the floating part, owing to the lack of knowledge

of the distribution of the fabric with depth, we conducted
simulations in which the fabric was evolved to obtain the
steady-state fabric field. A single-maximum fabric profile and
a constant girdle fabric were also imposed on the ice shelf.
These applications with different fabric fields show that the
value of the enhancement factor in tension ranges from 0.58
to 0.71.
These two different values of the enhancement factor for

the grounded ice and the ice shelf can be quantitatively
explained by the anisotropic behaviour of polar ice and
the difference of stress regime between the grounded and
floating parts. In a large-scale model, a contrast ratio
ESIA/ESSA ranging between 5 and 10 should be used to
empirically account for the anisotropy effect in the various
parts of the ice sheet.
Many other phenomena, such as basal sliding for

grounded ice or basal melting below ice shelves, are also not
well constrained in ice-sheet models, so the enhancement
factors used by ice-sheet modellers not only contain an
adjustment for ice anisotropy but, possibly, also for these
poorly known bottom boundary conditions. In fact, some of
the anisotropy effects might be accounted for by adjusting
basal conditions instead of ice rheology, as demonstrated
by Bueler using an inverse method constrained by the
surface velocity of Greenland (personal communication from
E. Bueler, 2010).
It should be noted that anisotropy induces other complex

effects that cannot be properly modelled using an isotropic
law and the concept of an enhancement factor. The use
of enhancement factors should therefore be restricted to
large-scale ice-sheet models in which the simplified Stokes
equations do not allow an anisotropic flow law to be properly
incorporated. For higher-order or full-Stokes models, a
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more accurate way of dealing with anisotropy requires the
implementation of an anisotropic flow law.
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