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Abstract

Limit theorems are established for some functionals of the distances between two nodes
in weighted random b-ary recursive trees. We consider the depth of the nth node and of
a random node, the distance between two random nodes, the internal path length, and the
Wiener index. As an application, these limit results imply, by an imbedding argument,
corresponding limit theorems for further classes of random trees: plane-oriented recursive
trees and random linear recursive trees.
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1. Introduction

In this paper we establish limit theorems for several basic functionals of the distances between
nodes in weighted random b-ary recursive trees. We consider the depth of the nth node, the
depth of a randomly chosen node, the distance between two randomly chosen nodes, the internal
path length, i.e. the sum of all depths of nodes, and the Wiener index, i.e. the sum of all distances
of pairs of nodes in the tree. All these functionals are well motivated and of importance for
the structure of the tree and for the closely connected analysis of related algorithms (see, for
example, Devroye and Neininger (2004), Mahmoud (1992), Mahmoud and Neininger (2003),
and Su et al. (2006)). They have been studied in a wide variety of tree models.

In Szymański (1987) a procedure is introduced to also obtain nonuniform distributions on
the set of recursive trees, i.e. trees which evolve through a step-by-step insertion of the nodes.
This procedure operates by defining a weight function for each node in terms of its degree and
attaching a new node randomly to a former node with a probability proportional to its weight.
In Quintas and Szymański (1992) a weight function was used which yields trees with bounded
degrees, so-called recursive f -trees. A slight modification of this tree model coincides with
the b-ary increasing tree introduced in Bergeron et al. (1992).

The weighted random b-ary recursive tree is a combination of the b-ary increasing tree and
the continuous-time model of b-ary trees introduced in Broutin and Devroye (2006). In the tree
model of Broutin and Devroye (2006), a copy of a nonnegative vector ((Z1, E1), . . . , (Zb, Eb))

is attached independently to any node in an infinite b-ary tree. The components Zi are random
weights of the edges to the b children of a node, the entries Ei describe the lifetimes of
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Limit theorems in recursive trees 1061

the children. At time t the tree Tt is given by the set of all those nodes for which the sum of the
lifetimes along the path to the root is smaller than t . By a proper choice of the lifetimes, this tree
model without edge weights is close to being a random split tree and, thus, includes important
families of trees, such as random m-ary search trees, quad-trees, and many others. Despite the
bounded branching factor of these trees, it is possible to transfer properties of these weighted
random b-ary trees to trees with unbounded branching factor, e.g. to random recursive trees,
plane-oriented recursive trees, and random linear recursive trees, as introduced in Pittel (1994).
If all lifetimes are independent and exponentially distributed and we consider the tree at the
random moment where it has n nodes, due to the lack-of-memory property of the exponential
distribution, the shape of the tree (i.e. the tree without the edge weights) coincides with the
b-ary increasing tree, in which every external node has the same probability of becoming the
next new internal node.

In Section 2 we introduce the weighted random b-ary trees together with some basic
properties. In Section 3 we derive limit theorems for the depths of the nth node as well as
for a randomly chosen node in the tree and for the distance between two randomly chosen
nodes. In Section 4 we establish a limit theorem for the internal path length and the Wiener
index based on a suitable two-dimensional recursion for their joint distribution by applying the
contraction method. The main problem for the application of the contraction method to this
problem is to derive a second-order expansion for the mean of the Wiener index. Finally, in
Section 5 we obtain as a consequence of the limit theorems for weighted random b-ary trees
corresponding limit results for plane-oriented recursive trees and linear recursive trees.

There are several related results in the literature for the depths and distances of random
recursive trees (see Smythe and Mahmoud (1995) for a survey of early results for recursive
trees). Limit theorems for the depth of the nth node are given in Devroye (1999) for random
split trees and in Mahmoud (1992) for plane-oriented recursive trees. For the depths of a
random node as well as for the distance between two random nodes, limit theorems are given in
Panholzer and Prodinger (2004a), (2004b), Morris et al. (2004), Panholzer (2004a), (2004b),
and Kuba and Panholzer (2010) for several random trees.

The internal path length of a tree has been studied for a large class of trees, including in
particular random recursive trees, random m-ary search trees, and split trees (see Dobrow and
Fill (1999), Rösler (1991), Neininger and Rüschendorf (1999), (2004), and others). The Wiener
index has been investigated in Neininger (2002) for binary search trees and random recursive
trees and in Janson (2003) for simply generated trees.

For several details and extensions of results in this paper, we refer the reader to the dissertation
of Munsonius (2010) on which this paper is based.

We fix some notation for the rest of this paper. We use the notation f ∼ g for two functions
f and g if f (x)/g(x) → 1 for x → ∞. For a real number x, the largest integer smaller than or
equal to x is denoted by �x�. For random variables or distributions, we write ‘

d=’ for equality
in distribution and L(X) for the distribution of X. By N(0, 1) we denote the standard normal
distribution with expectation 0 and variance 1. The Wasserstein metric �2 is defined on the set
of distributions on R

d by

�2(µ, ν) := inf{‖X − Y‖2 : L(X) = µ, L(Y ) = ν},
where the L2-norm ‖ · ‖2 is given by ‖X‖2 = (E[‖X‖2])1/2. We denote convergence in
distribution, convergence in probability, and convergence with respect to the L2-metric by

‘
d−→’, ‘

p−→’, and ‘
L2−→’, respectively. Let M2

0,2 be the set of centered probability measures on
R

2 with finite second moments.
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1062 G. O. MUNSONIUS AND L. RÜSCHENDORF

2. Random weighted b-ary recursive trees

The random b-ary recursive tree is a rooted, ordered, labeled tree where the outdegree is
bounded by b and the labels along each path beginning at the root increase. We define this tree
model by the following recursive procedure. We consider the infinite complete b-ary rooted,
ordered tree and start with the root as the first internal node and its b children as external nodes.
Given the random b-ary recursive tree with n internal nodes, the (n + 1)th internal node is
added in the following way. We choose a random node uniformly distributed on the set of all
current external nodes, change it to an internal node and add the b children of this new node to
the set of external nodes. Finally, the nodes are labeled in the order of their appearance.

Remark 2.1. Considering the above insertion rule, the parent u of the nth internal node is
chosen with probability proportional to b − deg(u), where deg(u) is the number of internal
children of node u in the tree with n−1 nodes and each of the deg(u)+1 possible positions for
the new node are equally likely. In Panholzer and Prodinger (2007) and Kuba and Panholzer
(2010) it was shown that this tree is the same as the b-ary increasing tree, which belongs to
the simple families of increasing trees introduced in Bergeron et al. (1992). In Drmota (2009,
Section 1.3.3) this tree is also called the b-ary recursive tree.

It is well known that, for b = 2, the b-ary recursive tree is isomorphic to the random binary
search tree.

The random b-ary recursive tree can also be defined as uniformly distributed on the set of
ordered, labeled, rooted b-ary trees where the labels increase along each path beginning at
the root. Note that in this class we have to distinguish trees where the nodes are in different
positions, i.e. a tree where a node is at the leftmost position is not identical to the tree where
this node is at the second position from the left also in the case that there are no other siblings
of this node. The equivalence of the distributions is already mentioned in Stanley (1997) for
the binary case (i.e. b = 2). For the general case, this can be seen by induction on the size of
the tree (see Munsonius (2010)).

Now, we introduce edge weights. Let Z := (Z1, . . . , Zb) ∈ R
b≥0 be a random vector with

nonnegative entries and attach to every node u of the complete infinite b-ary tree an independent
copyZ(u) ofZ. We consider the entries ofZ(u) as weights of the edges from u to its b children.
If all theZ(u) are independent of Tn, we refer to Tn supplied with the family {Z(u)} as a random
b-ary recursive tree with edge weights Z.

While the entries of the vector Z may depend on each other, we assume throughout this
paper that they are identically distributed, i.e. for all i, j ∈ {1, . . . , b}, we have

Zi
d= Zj .

This assumption is not restrictive for the intended limit theorems as can be seen by a permutation
argument (see Munsonius (2010, pp. 14–15)). Furthermore, we assume that µ := E[Z1] and
0 ≤ σ 2 := var(Z1) < ∞.

Given a random b-ary recursive tree with weighted edges, we denote by Tn,1, . . . , Tn,b the
subtrees rooted at the children of the root from left to right. Let In,j := |Tn,j | be the number
of internal nodes in the subtree Tn,j , and let In := (In,1, . . . , In,b) be the vector of the subtree
sizes. For the edge weight of the edge between the root of Tn and the root of Tn,i , we write Zi
instead of Z(0)i . From the definition we see that, conditioned upon their sizes, the subtrees are
again independent, b-ary recursive trees. This property of Tn is fundamental when using the
contraction method.
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The subtree sizes In = (In,1, . . . , In,b) of a random b-ary recursive tree can be described by
a Pólya urn with b colors, starting with one ball of each color, where each drawn ball is returned
to the urn with b − 1 additional balls of the same color. Then, the number of drawings of one
color corresponds to the number of internal nodes in the corresponding subtree. We summarize
some well-known results needed later (see, e.g. Johnson and Kotz (1977, Sections 4.5.1 and
6.3.3)). The explicit formula for the distribution of the subtree size is given by

P(In+1,1 = k) = 1

b − 1

�(k + 1/(b − 1))

�(k + 1)

�(n+ 1)

�(n+ 1 + 1/(b − 1))
. (2.1)

The first and second moments are

E[In,1] = 1

b
n, E[I 2

n,1] = 1

2b − 1
n2 + b − 1

b(2b − 1)
n,

and E[In,1In,2] = n(n− 1)

b(2b − 1)
.

(2.2)

For the normalized subtree sizes, we have In/n → (D1, . . . , Db) =: D almost surely, whereD
is a Dirichlet β(1/(b−1),...,1/(b−1)) distributed random vector, with parameters (1/(b − 1), . . . ,
1/(b − 1)) (see, e.g. Athreya (1969)).

Furthermore, we have the asymptotic expansions

E[In,1 log In,1] = 1

b
n log n− b − 1

b2 n+ o(n) (2.3)

and

E[I 2
n,1 log In,1] = 1

2b − 1
n2 log n− b − 1

(2b − 1)2
n2 + o(n2) (2.4)

as n → ∞. For details and proofs of (2.3) and (2.4), see Munsonius (2010).

3. Limit theorems for depths and distances

In this section we consider the depth of one (random) node and the distance between two
random nodes in a b-ary recursive tree with edge weights. The (weighted) depth of a node is
given by the sum of the edge weights along the unique path from the root to that node. The
(weighted) distance between two nodes is defined in the same way as the sum of the edge
weights along the unique path between these nodes.

With the aid of a central limit theorem given in Javanian and Vahidi-Asl (2006) (see also
Kuba and Panholzer (2010)) for the unweighted depth of the nth node, in Theorem 3.1 below we
obtain the central limit theorem for the weighted depth of the nth node. We then use this result
to derive the central limit theorem of a randomly chosen nodeDU in Corollary 3.1 below. The
result of Javanian and Vahidi-Asl (2006) corresponds to the case of all edge weights being 1,
i.e. µ = 1 and σ 2 = 0.

Theorem 3.1. (Central limit theorem for Dn.) Let Dn be the weighted depth of the node with
label n in a random b-ary recursive tree with edge weights Z and 0 ≤ σ 2 = var(Z1) < ∞.
Then we have, for n → ∞,

E[Dn] ∼ µ
b

b − 1
log n and var(Dn) ∼ (µ2 + σ 2)

b

b − 1
log n. (3.1)
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Furthermore, for n → ∞, it holds that

Dn − bµ log n/(b − 1)√
(σ 2 + µ2)b log n/(b − 1)

d−→ N(0, 1).

Proof. Let D̃n be the depth of the node with label n in a random b-ary recursive tree with
constant edge weights (1, . . . , 1). The weighted depthDn is the sum of independent, identically
distributed random variables, as the path to the root never contains two nodes at the same level.
So, for independent copies Z̃k of Z1, we have

Dn
d=
D̃n−1∑
k=0

Z̃k.

Since D̃n is independent of the summands, Wald’s equation yields E[Dn] = µE[D̃n], and by
direct calculation we obtain var(Dn) = µ2 var(D̃n) + σ 2 E[D̃n]. Thus, the claims for the
expectation and variance in (3.1) follow from the results of Javanian and Vahidi-Asl (2006)
for D̃n.

Now, let xn = b log n/(b − 1), f (x, y) = √
x2/(x2 + y2), and Z∗

i := (Z̃i − µ)/σ . Then
we obtain the representation

Dn − bµ log n/(b − 1)√
(σ 2 + µ2)b log n/(b − 1)

d=
∑D̃n−1
k=0 Z̃k − bµ log n/(b − 1)√
(σ 2 + µ2)b log n/(b − 1)

= f (σ, µ)

√
�xn�
xn

1√�xn�
�xn�−1∑
k=0

Z̃∗
k + f (µ, σ )

D̃n − xn√
xn

+ f (σ, µ)
1√
xn

(D̃n−1∑
k=0

Z̃∗
k −

�xn�−1∑
k=0

Z̃∗
k

)
. (3.2)

In the proof of the central limit theorem of Doeblin–Anscombe in Chow and Teicher (1997,
Section 9.4), it was shown that, for n → ∞, the last term of (3.2) converges to 0 in probability.
Since the first two terms on the right-hand side of (3.2) are independent and both converge
in distribution to normal distributions with variances f (µ, σ )2 and f (σ, µ)2, respectively, we
obtain, for independent standard normal distributed random variables N and N ′,

Dn − bµ log n/(b − 1)√
(σ 2 + µ2)b log n/(b − 1)

d−→
√

σ 2

σ 2 + µ2N +
√

µ2

σ 2 + µ2N
′ d= N(0, 1).

Now we can transfer this result to the depth of a uniformly distributed node. For the
unweighted case, this result was proved in Panholzer and Prodinger (2004a) using generating
functions.

Corollary 3.1. (Central limit theorem forDU .) Let Un be uniformly distributed on {1, . . . , n},
and let DUn be the weighted depth of the node with label Un in a random b-ary recursive tree
with edge weights Z and 0 ≤ σ 2 < ∞. Then we have, for n → ∞,

DUn − bµ log n/(b − 1)√
(σ 2 + µ2)b log n/(b − 1)

d−→ N(0, 1).
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Proof. Let ε ∈ (0, 1
2 ) and Iε := [εn, n]. For k ∈ Iε, we have | log(k/n)| ≤ − log ε and

1 = lim
n→∞

log ε + log n

log n
≤ lim
n→∞

log k

log n
≤ 1.

Together with Theorem 3.1 this yields, for n → ∞,

Dk − bµ log n/(b − 1)√
(σ 2 + µ2)b log n/(b − 1)

=
√

log k

log n︸ ︷︷ ︸
→1

Dk − bµ log k/(b − 1)√
(σ 2 + µ2)b log k/(b − 1)

+ bµ log(k/n)/(b − 1)√
(σ 2 + µ2)b log n/(b − 1)︸ ︷︷ ︸

→0
d−→ N(0, 1). (3.3)

Since P(Un ∈ Iε) ≥ 1 − ε, the convergence in (3.3) yields

lim inf
ε→0

lim
n→∞ P

(
DUn − bµ log n/(b − 1)√
(σ 2 + µ2)b log n/(b − 1)

≤ x, Un ∈ Iε
)

→ P(N ≤ x)

for a standard normal distributed random variable N . The claim follows with

lim sup
ε→0

lim sup
n→∞

P

(
DUn − bµ log n/(b − 1)√
(σ 2 + µ2)b log n/(b − 1)

≤ x, Un /∈ Iε
)

≤ lim sup
ε→0

P(Un /∈ Iε) = 0.

We now turn to the distance between two random nodes. In the unweighted case, the central
limit theorem is proved by using generating functions given in Panholzer and Prodinger (2004a).
We give a short self-contained proof of this result that is based on a simple stochastic argument
which traces the problem back to the depth of random nodes.

The distance is given by the sum of the edge weights along the unique path between these
nodes. This path can be found by starting at each node and going up in the tree until the two
paths coincide. The node at which the two paths meet is called the last common ancestor (LCA)
of the nodes.

The key idea is to express the distance as the sum of the respective depths of the two nodes
minus two times the depth of the LCA. We first show that the depth of the LCA is bounded
in probability. A similar idea was used in the recent thesis of Ryvkina (2008) in the case of
random split trees.

Lemma 3.1. (Depth of the LCA.) Let Ũn and Ṽn be two independent random variables uni-
formly distributed on {1, . . . , n}. Denote by R(n) the (unweighted) depth of the LCA of the
nodesUn and Vn with labels Ũn and Ṽn, respectively, in a random b-ary recursive tree of size n.
For any real sequence fn with fn → ∞, we have, as n → ∞,

R(n)

fn

p−→ 0.

Proof. Let E[In,1] = α1n and E[I 2
n,1] = α2n

2 + α3n with αi ∈ R. First, we note that, for
m ≥ 0,

P(R(n) ≥ m) = (bα2)
m + r(m, n), (3.4)

where r(m, n) ≤ m(max{α1, α2, α3}b)m/n.
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This can be seen in the following way. If we have R(n) ≥ m + 1, both nodes have to lie
in the same subtree and the depth of the LCA related to this subtree has to be greater than m.
Conditioned upon the sizes of the subtrees, the depth of the LCA related to the subtree with
size ki is distributed as R(ki). We obtain

P(R(n) ≥ m+ 1) =
∑
k∈N

b
0

b∑
i=1

P(R(n) ≥ m+ 1, Un, Vn ∈ Tn,i | In = k)P(In = k)

=
∑
k∈N

b
0

b∑
i=1

(
ki

n

)2

P(R(ki) ≥ m)P(In = k).

Equation (3.4) can now be proved by induction on m. In our case we have max{α1, α2, α3} =
1/b. This yields, for every ε > 0 and any sequence fn with fn → ∞ and fn = o(n),

P(R(n) ≥ εfn) ≤ (bα2)
εfn + εfn

n
→ 0

since 0 < α2 < 1/b. Then surely P(R(n) ≥ εfn) → 0 also holds for any sequence fn → ∞.

Lemma 3.2. Let Ũn and Ṽn be two independent random variables uniformly distributed on
{1, . . . , n}, and let �̃Un,Vn be the (unweighted) distance between the nodes Un and Vn with
labels Ũn and Ṽn, respectively, in a random b-ary recursive tree of size n. Then we have, for
n → ∞,

�̃Un,Vn − 2b log n/(b − 1)√
2b log n/(b − 1)

d−→ N(0, 1).

Proof. The unweighted distance between Un and Vn is given by

�̃Un,Vn = D̃′
Un

+ D̃′
Vn
,

where D̃′
Un

= D̃Un − R(n) is the unweighted distance between Un and the LCA of Un and Vn,
and D̃′

Vn
is defined similarly. Since D̃′

Un
and D̃′

Vn
are independent by the construction of the

tree, the claim follows by application of Lemma 3.1 and Corollary 3.1.

Equipped with these preliminaries, we now obtain the central limit theorem for the distance
between two uniformly distributed nodes in random weighted b-ary recursive trees.

Theorem 3.2. (Central limit theorem for the distance.) Let Ũn and Ṽn be two independent
random variables uniformly distributed on {1, . . . , n}, and let �Un,Vn be the distance between
the nodes Un and Vn with labels Ũn and Ṽn, respectively, in a random b-ary recursive tree of
size n with edge weights Z where var(Z1) = σ 2 ∈ [0,∞). Then we have, for n → ∞,

�Un,Vn − 2bµ log n/(b − 1)√
2(σ 2 + µ2)b log n/(b − 1)

d−→ N(0, 1),

where µ = E[Z1].
Proof. We prove the claim analogously to the proof of Theorem 3.1. We make use of the fact

that the weighted distance is given by the sum of the edge weights along the path between Un
and Vn. This path consists of �̃Un,Vn edges, as given in Lemma 3.2. Except for the two edges
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which belong to the LCA of Un and Vn, the edge weights in the sum building the weighted
distance are independent. Hence, we represent �Un,Vn as

�Un,Vn
d=
�̃Un,Vn−2∑
i=1

Z̃i + Ẑ1 + Ẑ2,

where Z̃1, . . . , Z̃n, (Ẑ1, Ẑ2) are independent and Z̃i
d= Z1.

Using the same arguments as in the proof of Theorem 3.1 as well as Lemma 3.2, we conclude
the proof. The additional term Ẑ1 + Ẑ2 vanishes due to the scaling.

4. The internal path length and the Wiener index

The internal path length of a tree is the sum of the depths of all nodes. The Wiener index
of a tree is the sum of all distances between pairs of nodes. We denote by Pn the internal path
length and by Wn the Wiener index of a random b-ary recursive tree of size n with weighted
edges.

The vector consisting of the Wiener index and the internal path length satisfies a recursion
formula in dimension two. We will use this recursion to establish a limit theorem via the
contraction method. Since we apply the contraction theorem in L2, we have to center this
vector. Therefore, we have to derive an asymptotic expansion of the expectation of the internal
path length and of the Wiener index. The expectation of the internal path length is given in
Bergeron et al. (1992) for the unweighted tree. It can also be obtained by summing up the exact
expectations for the unweighted depths given in Javanian and Vahidi-Asl (2006).

Unlike for the internal path length, it seems that there is no simple way currently available
to determine the expectation of Wn directly. In Roura (2001), the asymptotic expansion of a
certain class of recursively defined sequences was proved. We show that the expectation of
the Wiener index belongs to this class and we accordingly obtain the needed asymptotic of the
expectation.

Lemma 4.1. Let (Wn, Pn) be the vector containing the Wiener indexWn and the internal path
length Pn of a random b-ary recursive tree of size n with edge weights Z. Then we have the
recursion formula (

Wn

Pn

)
d=

b∑
i=1

[
1 n− In,i
0 1

](
W
(i)
In,i

P
(i)
In,i

)
+ b(n) (4.1)

with

b(n) =

⎛
⎜⎜⎜⎜⎜⎝

b∑
i=1

ZiIn,i + 1

2

∑
i =j
(Zi + Zj )In,iIn,j

b∑
i=1

ZiIn,i

⎞
⎟⎟⎟⎟⎟⎠ , (4.2)

where (Z1, . . . , Zb), (Wn, Pn), (W
(1)
n , P

(1)
n ), . . . , (W

(b)
n , P

(b)
n ) are independent and

(W(i)
n , P (i)n )

d= (Wn, Pn) for i ∈ {1, . . . , b}.
Proof. Let Tn be a random b-ary recursive tree with weighted edges. By Pn,i we denote the

internal path length of Tn,i . For u ∈ Tn,i , letD(i)u be the depth of node u in Tn,i . Thus,D(i)u is the

https://doi.org/10.1239/jap/1324046019 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046019


1068 G. O. MUNSONIUS AND L. RÜSCHENDORF

sum of the weights of the edges along the path from nodeu to node i. Obviously,D(i)u +Zi = Du.
So we obtain

Pn =
b∑
i=1

(Pn,i + ZiIn,i). (4.3)

The Wiener index is given by
Wn :=

∑
{u,v}⊂Tn
u=v

�u,v,

where �u,v is the weighted distance between u and v. We distinguish two cases—either the
nodes u and v lie in the same or in different subtrees of the root—and we rewrite the Wiener
index as

Wn =
b∑
i=1

∑
{u,v}∈Tn,i

�u,v + 1

2

∑
i =j

∑
u∈Tn,i
v∈Tn,j

�u,v +
∑
u=0

�0,u.

For u ∈ Tn,i and v ∈ Tn,j with i = j , we have�u,v = D
(i)
u +D

(j)
v + Zi + Zj . Summing this

equation over u ∈ Tn,i and v ∈ Tn,j we obtain∑
u∈Tn,i
v∈Tn,j

�u,v = In,jPn,i + In,iPn,j + (Zi + Zj )In,iIn,j .

With
∑
i =j In,j = n− 1 − In,i and (4.3), we obtain

Wn =
b∑
i=1

(Wn,i + (n− In,i)Pn,i)+
b∑
i=1

ZiIn,i + 1

2

∑
i =j
(Zi + Zj )In,iIn,j .

The claim follows since the subtrees are (conditioned upon their sizes) independent random
b-ary recursive trees.

In order to apply the contraction theorem to the vector (Wn, Pn), we have to identify the
expectation. In Bergeron et al. (1992) the first- and second-order terms of the expectation of
the internal path length of b-ary recursive trees without edge weights are determined. Since the
edge weights and the shape of the tree are independent, using Wald’s equation, we obtain the
following lemma.

Lemma 4.2. Let Pn be the internal path length of a random b-ary recursive tree with edge
weights Z. Then there exists a constant cp ∈ R such that, for n → ∞,

E[Pn] = b

b − 1
µn log n+ cpn+ o(n). (4.4)

Remark 4.1. Lemma 4.2 can also be proved by a direct calculation using an exact formula
for the expectation of the unweighted depth given in Javanian and Vahidi-Asl (2006). We then
obtain the constant cp in (4.4) in terms of an infinite series. As remarked by a reviewer, this
series can be expressed in a closed form by using the psi function (also called the digamma
function), which is the logarithmic derivative of the gamma function, i.e. ψ(u) = �′(u)/�(u),
and we obtain

cp = µ

b − 1

(
−1 − bψ

(
2b − 1

b − 1

))
.
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It remains to determine an expansion of the expectation of the Wiener index. From (4.1) we
obtain

E[Wn] =
b∑
i=1

E[W(i)
In,i

] + E[t (n)]

with

t (n) :=
b∑
i=1

(n− In,i)P
(i)
In,i

+ b1(n), (4.5)

where b1(n) denotes the first entry of the vector b(n) in (4.2). Since all subtrees and their sizes
are identically distributed, the above equation can be simplified:

E[Wn] = b

n−1∑
k=0

E[Wk]P(In,1 = k)+ E[t (n)]. (4.6)

There is no obvious way to solve this recurrence. However, to apply the contraction method,
a second-order asymptotic expansion of the expectation is sufficient. In Roura (2001), certain
recursions, as in (4.6), were considered and some sufficient conditions for the asymptotic
expansion of the solution were identified. We need two notions from Roura (2001).

Definition 4.1. Let ω(z) ≥ 0 be a function on [0, 1] such that 1 ≤ ∫ 1
0 ω(z) dz < ∞. Further-

more, assume that there is some µ < 0 such that
∫ 1

0 ω(z)z
µ dz converges. Then we say that

ω(z) is a shape function.

Definition 4.2. We say that

Fn =
⎧⎨
⎩
bn if 0 ≤ n < N ,

tn +
∑

0≤k<n
ωn,kFk if n ≥ N (4.7)

is a ‘continuous recursive definition’ of Fn if and only if there exists some shape function ω(z),
some constant 0 < q ≤ 1, and some function Mn = �(nq) with integer values such that, with
zn,j = j/Mn, 0 ≤ j ≤ Mn, In,j = [zn,j n, zn,j+1n), 0 ≤ j < Mn, and

εn,j =
∣∣∣∣ ∑
k∈In,j

ωn,k −
∫ zn,j+1

zn,j

ω(z) dz

∣∣∣∣, 0 ≤ j < Mn,

∑
0≤j<Mn

εn,j = O(n−�) for some � > 0.

One of the main conclusions of Roura (2001) is the following theorem.

Theorem 4.1. (Roura (2001, Theorem 3.3(1)).) Let Fn be a function defined by a continuous
recursive definition, and let Bna logc n · ξn be the main term of tn, where B > 0, a and c are
arbitrary constants, and ξn = µn or ξn = 1/µn for some sublogarithmical function µn. Let
ϕ(x) = ∫ 1

0 ω(z)z
x dz and H = 1 − ϕ(a). If H > 0 then

Fn ∼ tn

H
.
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To determine the asymptotic expansion of E[Wn] via this theorem, we have to find the
asymptotic expansion of E[t (n)] and show that (4.6) is a continuous recursive definition of
E[Wn].
Lemma 4.3. ForN = 1, b1 = 0, andωn,k = bk/nP(In,1 = k), (4.7) is a continuous recursive
definition with the shape function ω(z) = b/(b − 1)z1/(b−1).

Proof. We set Mn = n, b0 = 0, and F0 := 0. It is clear that the given function ω(z) is a
shape function.

For the proof, it is sufficient to show that

n−1∑
k=0

∣∣∣∣ωn,k −
∫ (k+1)/n

k/n

ω(z) dz

∣∣∣∣ = O(n−1/(2(b−1))). (4.8)

For k = 0, we have
∫ 1/n

0 ω(z) dz = n−b/(b−1). Thus, it suffices to consider the terms with
k ≥ 1. Since ω is increasing, we have

b

b − 1

1

n

(
k

n

)1/(b−1)

≤
∫ (k+1)/n

k/n

ω(z) dz ≤ b

b − 1

1

n

(
k + 1

n

)1/(b−1)

.

This implies that∣∣∣∣
∫ (k+1)/n

k/n

ω(z) dz− b

b − 1

1

n

(
k

n

)1/(b−1)∣∣∣∣ ≤ b

b − 1

1

n1+1/(b−1)
((k + 1)1/(b−1) − k1/(b−1))

≤ b

b − 1
n−(1+1/(b−1)),

where we have used the fact that (k + 1)1/(b−1) − k1/(b−1) ≤ 1. With the triangle inequality
we obtain∣∣∣∣ωn,k −

∫ (k+1)/n

k/n

ω(z) dz

∣∣∣∣ ≤
∣∣∣∣ωn,k − b

b − 1

1

n

(
k

n

)1/(b−1)∣∣∣∣+ b

b − 1
n−(1+1/(b−1)).

Using (2.1) and Stirling’s formula for the gamma function, we obtain, by analytical computa-
tions, ∣∣∣∣ωn,k − b

b − 1

1

n

(
k

n

)1/(b−1)∣∣∣∣ = O(n−1−1/(2(b−1))) (4.9)

for all k ∈ {1, . . . , n− 1}. Summing (4.9) over k = 1, . . . , n− 1 yields (4.8), completing the
proof.

In order to use Theorem 4.1 to obtain the asymptotic behavior of E[Wn], it remains to identify
the first-order term of E[t (n)] in (4.5). Using the fact that all subtrees are identically distributed,
we obtain, from (4.5),

E[t (n)] = b E[(n− In,1)P
(1)
In,1

] + bµE[In,1] + b(b − 1)µE[In,1In,2].
Since In,1 < n, we have bµE[In,1] = o(n2). By Lemma 4.2, there exists a function ε1 with
ε1(n) = o(n) for n → ∞ such that

E[Pn] = b

b − 1
µn log n+ cpn+ ε1(n) for all n ∈ N.
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This yields

E[(n− In,1)P
(1)
In,1

] =
n−1∑
k=0

E[(n− In,1)P
(1)
In,1

| In,1 = k]P(In,1 = k)

= n

(
b

b − 1
µE[In,1 log In,1] + cp E[In,1] + E[ε1(In,1)]

)

−
(

b

b − 1
µE[I 2

n,1 log In,1] + cp E[I 2
n,1]
)

+ o(n2).

Since, almost surely, In,1 → ∞, we have E[ε1(In,1)] = o(n), and using (2.2), (2.3), and
(2.4), we finally obtain

E[t (n)] = b

2b − 1
µn2 log n+

(
b − 1

2b − 1
cp − b2 − b

(2b − 1)2
µ

)
n2 + o(n2). (4.10)

Combining these results, we obtain an asymptotic expansion of E[Wn] of second order.

Theorem 4.2. (Expectation of the Wiener index.) Let Wn be the Wiener index of a random
b-ary recursive tree of size n with edge weights Z. Then there exists a constant cw ∈ R such
that, for n → ∞,

E[Wn] = b

b − 1
µn2 log n+ cwn

2 + o(n2).

Proof. It suffices to show that, for n → ∞,

Gn := 1

n

(
E[Wn] − b

b − 1
µn2 log n

)
∼ cwn.

From (4.6), we obtain the recursion

Gn =
n−1∑
k=0

ωn,kGk + sn,

with ωn,k as in Lemma 4.3 and

nsn = E[t (n)] − b

b − 1
µn2 log n+

n−1∑
k=0

b P(In,1 = k)
b

b − 1
µk2 log k

= E[t (n)] − b

b − 1
µn2 log n+ b2

b − 1
µE[I 2

n,1 log In,1].

Using (2.3), (2.4), and (4.10), we also obtain

nsn =
(
b − 1

2b − 1
cp − b

2b − 1
µ

)
︸ ︷︷ ︸

=:ĉ

n2 + o(n2).

In short, we write sn = ĉn+ o(n).
Lemma 4.3 shows thatGn is defined by a continuous recursive definition. The main term of

s(n) is given by ĉn. We set ξn = 1, a = 1, c = 0, andB = ĉ. Then,B < 0. To use Theorem 4.1,
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we need B > 0. Multiplying the recursion by −1 shows that Theorem 4.1 also works in the
case B < 0. In the terminology of Roura (2001), we will show that H = 1 − ϕ(1) > 0. Note
that

ϕ(1) =
∫ 1

0

b

b − 1
z1/(b−1)+1 dz = b

2b − 1
< 1.

Therefore, H = (b−1)/(2b−1) > 0 and Theorem 4.1 yieldsGn ∼ s(n)/H . Thus, we finally
obtain the expansion

E[Wn] − b

b − 1
µn2 log n = cwn

2 + o(n2)

with cw := cp − b/(b − 1)µ.

Upon determining the asymptotic expansion of the expectation, we now use the recursion
formula for the vector consisting of the internal path length and the Wiener index to show a
limit theorem via the contraction method.

Theorem 4.3. (Limit theorem for (Wn, Pn).) Let (Wn, Pn) denote the vector of the Wiener
index and internal path length of a random b-ary recursive tree of size n with random edge
weights Z, where σ 2 = var(Z1) < ∞. Then we have

�2

((
Wn − E[Wn]

n2 ,
Pn − E[Pn]

n

)
, (W, P )

)
→ 0,

where (W, P ) is the unique distributional fixed point of the map T : M2
0,2 → M2

0,2 given for
ν ∈ M2

0,2 by

T (ν) := L

( b∑
i=1

[
D2
i Di(1 −Di)

0 Di

](
X
(i)
1

X
(i)
2

)
+
(
b∗

1
b∗

2

))
with

(
b∗

1
b∗

2

)
= b

b − 1
µ

b∑
i=1

Di logDi

(
1
1

)
+

⎛
⎜⎜⎜⎜⎝
∑
i =j

(
1

2
(Zi + Zj )+ b

b − 1
µ

)
DiDj

b∑
i=1

ZiDi

⎞
⎟⎟⎟⎟⎠ ,

where D := (D1, . . . , Db) has the Dirichlet distribution with parameter (1/(b − 1), . . . ,
1/(b−1)), L(X(i)) = ν forX(i) := (X

(i)
1 , X

(i)
2 ), andX(1), . . . , X(b),D, andZ are independent.

Proof. We define wn := E[Wn] and pn := E[Pn], and, for the standardized vector Xn, we
obtain from (4.1) the recursion

Xn :=
⎛
⎜⎝
Wn − wn

n2

Pn − pn

n

⎞
⎟⎠ =

b∑
i=1

A
(n)
i X

(i)
In,i

+ b(n)

with

A
(n)
i :=

⎡
⎢⎣

1

n2 0

0
1

n

⎤
⎥⎦[1 n− In,i

0 1

] [
I 2
n,i 0
0 In,i

]
=

⎡
⎢⎢⎣
I 2
n,i

n2

In,i(n− In,i)

n2

0
In,i

n

⎤
⎥⎥⎦
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and b(n) = (b
(n)
1 , b

(n)
2 )�, where

b
(n)
1 = 1

n2

{ b∑
i=1

ZiIn,i + 1

2

∑
i =j
(Zi + Zj )In,iIn,j − b

b − 1
µn2 log n− cwn

2 + o(n2)

+
b∑
i=1

wIn,i + n

b∑
i=1

pIn,i −
b∑
i=1

In,ipIn,i

}

and

b
(n)
2 :=

b∑
i=1

Zi
In,i

n
− b

b − 1
µ log n− cp + o(1)+ 1

n

b∑
i=1

pIn,i .

Using
∑b
i=1 In,i = n− 1, it follows that

n

b∑
i=1

pIn,i − b

b − 1
µn2 log n = n

b

b − 1
µ

b∑
i=1

In,i log
In,i

n
+ cpn(n− 1)+ o(n2)

and
b∑
i=1

wIn,i −
b∑
i=1

In,ipIn,i = (cw − cp)

b∑
i=1

I 2
n,i + o(n2).

The equation

1 −
b∑
i=1

(
In,i

n

)2

=
∑
i =j

In,iIn,j

n2 + o(1)

yields, with ZiIn,i = o(n2) and cp − cw = b/(b − 1)µ,

b
(n)
1 = b

b − 1
µ

b∑
i=1

In,i

n
log

In,i

n
+
∑
i =j

(
1

2
(Zi + Zj )+ b

b − 1
µ

)
In,i

n

In,j

n
+ o(1). (4.11)

By similar arguments we have

b
(n)
2 = b

b − 1
µ

b∑
i=1

In,i

n
log

In,i

n
+

b∑
i=1

Zi
In,i

n
+ o(1). (4.12)

In order to use the contraction method as in Neininger (2001, Theorem 4.1), it suffices to
show that, for n → ∞,

(A
(n)
1 , . . . , A

(n)
b , b(n))

L2−→ (A∗
1, . . . , A

∗
b, b

∗), (4.13)

E[1{In,i≤l}∪{In,i=n} ‖(A(n)i )�A(n)i ‖op] → 0 (4.14)

for all l ∈ N, and
b∑
i=1

E ‖(A∗
i )

�A∗
i ‖op < 1, (4.15)

where ‖ · ‖op is the operator norm.
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LetD := (D1, . . . , Db) be the almost-sure limit of In/n, which is Dirichlet distributed with
parameter (1/(b−1), . . . , 1/(b−1)). By (4.11) and (4.12), we have, almost surely, b(n) → b∗
as n → ∞ with

b∗ = b

b − 1
µ

b∑
i=1

Di logDi

(
1
1

)
+

⎛
⎜⎜⎜⎜⎝
∑
i =j

(
1

2
(Zi + Zj )+ b

b − 1
µ

)
DiDj

b∑
i=1

ZiDi

⎞
⎟⎟⎟⎟⎠ .

By the boundedness of the function x �→ x log x on [0, 1] and as In,i/n ∈ [0, 1], there exists a
constant C such that

|b(n)1 | ≤ C + 1

2

∑
i =j

|Zi + Zj |.

By the assumption that E[Z2
1] < ∞, we obtain the uniform integrability of b(n)1

2
and, con-

sequently, the convergence of b(n)1 with respect to the L2-norm. Similar arguments yield the
L2-convergence of b(n)2 and the convergence of A(n)i with respect to the L2-norm to

A∗
i =

[
D2
i Di(1 −Di)

0 Di

]
.

This shows condition (4.13).
Condition (4.14) follows from the deterministic boundedness of ‖A(n)i ‖op and from the fact

that
lim
n→∞ P({In,i ≤ l} ∪ {In,i = n}) = 0,

which results from (2.1) or the almost-sure convergence of In/n to a continuous distribution.
It remains to show (4.15). Solving the characteristic equation for the matrix (A∗

i )
�A∗

i we
find that its eigenvalue λ(Di) being larger in absolute value is given by

λ(Di) = D2
i

(
1 −Di +D2

i + (1 −Di)

√
D2
i + 1

)
.

Elementary calculations show that x > x2(1 − x + x2 + (1 − x)
√
x2 + 1) for all x ∈ (0, 1).

Thus, we obtain

E[λ(Di)] < 1

b − 1

∫ 1

0
x1/(b−1) dx = 1

b
,

which finally yields

E

[ b∑
i=1

‖(A∗
i )

�A∗
i ‖op

]
= E

[ b∑
i=1

λ(Di)

]
< 1.

Remark 4.2. Since convergence with respect to the �2-metric implies convergence of the
second moments, Theorem 4.3 shows that, for the variance of Pn,

var(Pn) ∼ var(P )n2,

where var(P ) < ∞ can be calculated via the fixed-point equation in Theorem 4.3.
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5. Application to linear recursive trees and plane-oriented recursive trees

The results on random weighted b-ary trees also imply limit theorems for further classes of
recursive trees with not necessarily bounded outdegree of the nodes, such as random recursive
trees or plane-oriented recursive trees (PORTs).

Pittel (1994) introduced the so-called linear recursive tree in which, for every new node, the
parentu is chosen from the already existent nodes with a probability proportional to 1+βdeg(u),
where β ≥ 0 is the parameter of the tree and deg(u) denotes the number of internal children of
node u. For β = 0, we obtain the random recursive tree. The PORT—going back to Szymański
(1987)—without the consideration of the orientation, corresponds to the β = 1 case.

For our purpose, we consider the random linear recursive tree with parameter β ∈ N0 and
give a construction in this case. Starting with one internal node and one external child, in
each step a uniformly distributed external node is chosen and replaced by an internal one.
Furthermore, in each step, β + 1 external siblings and one external child of the new node are
added to the tree. By this construction, the number of external children of a node u is given by
1 + βdeg(u), which corresponds to the weight defined above. Since the new node is chosen
with uniform distribution on the set of external nodes, the probability that an internal node
becomes the parent of the new node is proportional to 1 + βdeg(u). Hence, this construction
yields the linear recursive tree with parameter β.

Let T denote the linear recursive tree with parameter β, and consider simultaneously the
b-ary recursive tree with b = β + 2 and edge weights z := (1, 0, . . . , 0) denoted by T ′. The
tree T with two internal nodes corresponds to the tree T ′ with one internal node. In both of
these trees we have the same number of external nodes. We identify the internal node labeled
2 in T with the root of T ′ and the external siblings of the first one with the external children of
the root in T ′ where the edges have weight 0. The external child of node 2 in T corresponds in
T ′ to the child of the root where the edge has weight 1.

Now, in both tree models and in each insertion step an external node is chosen, changed to
an internal node, and b external nodes are added. We identify these new nodes in the same way
as above, i.e. the new external siblings of the new internal node T correspond to the children of
the corresponding new internal node in T ′ where the edge weights are 0 and the child of the new
node T is identified with the child of the new node in T ′ where the edge weight is 1. Then, the
depth of a node in the linear recursive tree is equal to the weighted depth of the corresponding
node in the b-ary recursive tree plus 1.

This relationship between both tree models was used in Broutin and Devroye (2006) when
investigating the height of linear recursive trees. In Figure 1 a linear recursive tree T and its
correspondent b-ary recursive tree T ′ for the b = 3 case is shown. The nodes in T ′ indicated
by small squares correspond to the nodes in T which are children of the root.

A fundamental difference between both tree models is that the b-ary recursive tree is an
ordered tree, and the linear recursive tree is not. To obtain a transformation between both
models, we can define an equivalence relation on the set of ordered b-ary trees which identifies
trees that correspond to the same linear recursive tree. Ifψ(Tb(n)) denotes the set of equivalence
classes of b-ary recursive trees with n nodes and Tn+1 denotes the set of all unordered recursive
trees with n+ 1 nodes, we can show the following lemma.

Lemma 5.1. For any n ∈ N, there exists a bijection

ϕ : Tn+1 → ψ(Tb(n)).

Moreover, let Tlin(b−1)(n+ 1) be a random linear recursive tree of size n+ 1 and let Tb+1(n)
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T T ′
1

3 4

6
7

9

11 8 10

2 5 8

2

43

10 5 6

117

9

Figure 1: A linear recursive tree T with 11 nodes and its correspondent ternary tree T ′ (without the edge
weights).

be a random (b + 1)-ary recursive tree of size n. Then we have

ψ(Tb+1(n))
d= ϕ(Tlin(b−1)(n+ 1)).

This lemma can be proved rigorously by induction on n (for the details, see Munsonius
(2010)).

To transfer the limit results for functionals of random b-ary recursive trees to random linear
recursive trees, we have to investigate the behavior of the functionals under the bijection ϕ. For
a node u ∈ T , we denote the subtree of T rooted at u by Tu. Let

� := {(u, v) ∈ T × T | v ∈ Tu}
be the set of all pairs of nodes such that the second node lies in the subtree which is rooted to
the first node.

Lemma 5.2. Let ϕ denote the bijection of Lemma 5.1, let T be a recursive tree, and let ϕ(T )
be weighted with the edge weight vector z = (1, 0, . . . , 0).

(a) Let D(u) denote the depth of node u in T , and let Db(w) denote the weighted depth of
nodew in ϕ(T ). Then we haveD(u) = Db(ϕ(u))+ 1 for all nodes u which are different
from the root.

(b) Let �(u, v) denote the distance between nodes u and v, where the label of node u is
less than the label of v in the recursive tree T , and let �b(ϕ(u), ϕ(v)) be the distance
between the corresponding nodes in ϕ(T ). Then

�(u, v) = �b(ϕ(u), ϕ(v))+ 2 1(u,v)∈� .

The proof is by induction on n (see Munsonius (2010)). From these relationships between
the depth and the distances in recursive trees and their images under ϕ, we can now deduce
formulae for the internal path length and the Wiener index in linear recursive trees. For a tree
T , let P(T ) denote its internal path length and let W(T ) be its Wiener index.

Corollary 5.1. Let ϕ be the bijection of Lemma 5.1, let T be a recursive tree with n nodes, and
let ϕ(T ) be the weighted b-ary tree with edge weight vector z = (1, 0, . . . , 0). Then we have

P(T ) = P(ϕ(T ))+ n− 1 (5.1)
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and
W(T ) = W(ϕ(T ))+ (n− 1)2 − P(ϕ(T )). (5.2)

Proof. Lemma 5.2(a) immediately yields (5.1).
To see (5.2), we argue as follows. By Lemma 5.2(b) we get all distances between nodes

other than the root. So we have, with (5.1),

W(T ) =
∑

1<u<v

(�b(ϕ(u), ϕ(v))+ 2 1(u,v)∈�)+
∑
1<v

�(1, v)

= W(ϕ(T ))+ 2
∑

1<u<v

1(u,v)∈� +P(T )

= W(ϕ(T ))+ 2

((
n− 1

2

)
− |�|

)
+ P(ϕ(T ))+ n− 1.

So we have to determine |�|. For v ∈ {2, . . . , n}, there are exactly D(v) nodes along the path
from v to the root, including the root. This means that there are D(v) − 1 tuples in � where
the second entry is v. Summing over all v ∈ {2, . . . , n} yields

|�| = P(T )− (n− 1) = P(ϕ(T )).

So, we finally obtain

W(T ) = W(ϕ(T ))+ 2

(
(n− 1)(n− 2)

2
− P(ϕ(T ))

)
+ P(ϕ(T ))+ n− 1

= W(ϕ(T ))+ (n− 1)2 − P(ϕ(T )).

For the functions considered, it does not matter whether we weigh the edges of a random
b-ary recursive tree in a definite order or not. In order to apply the results of the last sections,
we need the edge weights to be identically distributed. So we take as edge weights the vector
(Z1, . . . , Zb) with

P((Z1, . . . , Zb) = ei) = 1

b

for e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc, and, thus, µ = 1/b and σ 2 = (b − 1)/b2.
As a result, we obtain the corresponding limit theorems for random linear recursive trees

combining Lemmas 5.1 and 5.2 with Theorem 3.1.

Theorem 5.1. (Depth of node n.) LetDn denote the depth of the node with label n in a random
linear recursive tree of size n with weight function u �→ 1 + (b − 2) deg(u) for b ≥ 2. For
n → ∞, we have E[Dn] = log n/(b− 1)+ o(log n), var(Dn) = log n/(b− 1)+ o(log n), and

Dn − log n/(b − 1)√
log n/(b − 1)

d−→ N(0, 1).

Similarly, using Corollary 3.1 and Theorem 3.2, we obtain a limit theorem for the depth and
distance of random nodes.

Theorem 5.2. (Depth and distance of random nodes.) LetDU denote the depth, and let�U,V
be the distance of uniformly distributed nodes U and V in a random linear recursive tree of
size n with weight function u �→ 1 + (b − 2) deg(u) for b ≥ 2.
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For n → ∞, we have E[DU ] = 1/(b − 1) log n+ o(log n) and

DU − E[DU ]√
log n/(b − 1)

d−→ N(0, 1).

Furthermore, E[�U,V ] = 2/(b − 1) log n+ o(log n) and

�U,V − E[�U,V ]√
2 log n/(b − 1)

d−→ N(0, 1).

Finally, the following limit theorem for the internal path length and the Wiener index is a
consequence of the imbedding procedure and Theorem 4.3 for random b-ary recursive trees.

Theorem 5.3. (Limit theorems for Pn and Wn.) Let Wn denote the Wiener index, and let Pn
be the internal path length of a random linear recursive tree of size n with weight function
u �→ 1 + (b − 2) deg(u) for b ≥ 2. Then we have, for n → ∞,

E[Pn] = 1

b − 1
n log n+ (cp + 1)n+ o(n)

and

E[Wn] = 1

b − 1
n2 log n+

(
cp + b − 2

b − 1

)
n2 + o(n2),

where cp is given in Remark 4.1. Furthermore, we have(
Wn − E[Wn]

n2 ,
Pn − E[Pn]

n

)
d−→ (W, P ),

where L(W, P ) is given in Theorem 4.3.

Proof. The expectation of Pn andWn follows directly from Lemma 4.2, Theorem 4.2 (with
cw = cp − 1/(b − 1)), Corollary 5.1, and Lemma 5.1.

Let ϕ be the bijection of Lemma 5.1. Let Tn be a random linear recursive tree of size n with
weight function u �→ 1 + (b − 2) deg(u). Then, Remark 4.2 yields

P(ϕ(Tn))− E[P(ϕ(Tn))]
n2

p−→ 0.

The combination of Corollary 5.1 and Theorem 4.3 now implies the claim.

Random PORTs without the order of the nodes are equal in distribution to random linear
recursive trees with parameter β = 1. Since the considered functionals are invariant under
changing the order of the tree, the limit theorems above provide in particular the corresponding
limit theorems for the PORT. Limit theorems for the depth of a (random) node and the distance
between two random nodes, as well as the expectation of the internal path length and of the
Wiener index, are given in Morris et al. (2004). The limit theorem for the depth of node n in
the PORT is proved in Mahmoud (1992). We obtain the results for PORTs as a corollary of
Theorem 5.3

Corollary 5.2. (PORTs.) The depth of thenth node and of a random node, the distance between
two random nodes, the internal path length, and the Wiener index of a PORT satisfy the same
limit theorem as the random linear recursive trees in the b = 3 case.
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