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Abstract. We extend the local non-homogeneous 75 theorem of Nazarov, Treil
and Volberg to the setting of singular integrals with operator-valued kernel that act on
vector-valued functions. Here, ‘vector-valued’ means ‘taking values in a function lattice
with the UMD (unconditional martingale differences) property’. A similar extension
(but for general UMD spaces rather than UMD lattices) of Nazarov—Treil-Volberg’s
global non-homogeneous 7h theorem was achieved earlier by the first author, and it
has found applications in the work of Mayboroda and Volberg on square-functions and
rectifiability. Our local version requires several elaborations of the previous techniques,
and raises new questions about the limits of the vector-valued theory.
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1. Introduction.

Background and motivation. This paper is a continuation of [4], where the first
author extended the ‘global’ non-homogeneous Th theorem of Nazarov, Treil and
Volberg [12] to L spaces of vector-valued functions. The goal of the paper at hand
is to obtain a similar extension for the ‘local’ version of Nazarov, Treil and Volberg’s
result [13].

By ‘local’ we understand that the 7h conditions involve a family (an ‘accretive
system’) of testing functions by, one for each cube Q, where by is only required to
satisfy a non-degeneracy condition on its ‘own’ Q; this contrasts with the ‘global’ Th
conditions, where a single testing function b should be appropriately non-degenerate
over all positions and length-scales. While the two types of 7b theorems are not strictly
comparable, the verification of the local conditions has turned out more approachable
in a number of applications.

By ‘vector-valued” we understand functions taking values in a possibly infinite-
dimensional Banach space X. It is well known that the most general class of Banach
spaces in which extensions of deeper results in harmonic analysis can be hoped
for consists of the spaces with the UMD property (unconditionality of martingale
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differences); see [1, 3]. The quest for vector-valued extensions of theorems in classical
analysis has three types of motivation:

First, by revisiting a proof in a more general framework we can often develop new
insight into the original argument; in particular, the tools available in an abstract UMD
space often lead us into discovering new martingale structure behind the classical scene.
In the present case, for example, we are led to study the 7 estimates for martingale
difference expansions adapted to an accretive system of functions, where mainly the
Hilbert space L? theory for such expansions existed so far. While the I/ theory for
the ‘globally’ adapted martingale differences was developed in [4], the local setting
brings several new complications, most prominently the fact that the expansion is no
longer with respect to a basis of adapted Haar functions but rather with respect to an
overdetermined frame.

Second, new connections between different properties of Banach spaces are
revealed, when looking for the minimal conditions under which we can run a given
classical analysis argument. In particular, for vector-valued functions, there appears
a subtle difference between the square function estimates for the adapted martingale
difference operators and for their adjoints, and we are only able to handle the latter case
under the additional assumption that our Banach space is a function lattice. Whether
this assumption could be eliminated from certain key inequalities raises interesting
questions for further investigation.

Finally, the extended scope of the theorem allows for wider applications. The
applications of vector-valued singular integrals in general are widespread; for the
vector-valued non-homogeneous 7'h theorem [4] in particular, we mention the work of
Mayboroda and Volberg [10] on square functions and rectifiability, see [10, p. 1056].

Now, let us turn to a more detailed discussion of the objects of this paper.

Calderon-Zygmund operators. Let u be a compactly supported Borel measure
on RY which satisfies the upper bound
w(Bx. ) <r',  de(0,N], (1.1)

for any ball B(x, r) of centre x € RV and radius r > 0. A d-dimensional Calderén—
Zygmund kernel is a complex-valued function K(x, y) of variables x,y € RV, x # y,
such that

1
[K(x,p)| < |x——y|‘[ (1.2)

and, if 2|x — X’| < |x — y|, then

|x — x|

|K(x,y) = K(X', )l + |K(y, x) = K(y, X)| < | (1.3)

x _y|d+a

forsome a > 0. An operator T acting on some functions is called a Calderon—Zygmund
operator with kernel K if

10 = [ K Gdue). x ¢ supps. (14)
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Testing functions. Following [13] we say that a collection {bo} C L¥(R", u; C)
of functions is an L®-accretive system (supported on cubes) if for every cube Q in RY
there exists a function by from the system such that

> 8 Q). (1.5)

suppbo € O, llbollieg < 1. ‘ /Q bod

Here the constant § € (0, 1) is not allowed to depend on Q.

We say that {bp} is an L*>°-accretive system for a Calderon-Zygmund operator T if,
for every cube Q in RY, there is a function b¢ from the system such that the conditions
(1.5) hold true and

I ThollL=(.) < B, (1.6)

where B > 0 is a constant that is independent of Q.

Banach spaces. We want to study the action of 7 as in (1.4) on the Bochner space
LP(RN, u; X) of functions with values in the Banach space X. As is well-known, even
for the simplest non-trivial case where 7 is the Hilbert transform withd = N = 1 and
u is the Lebesgue measure, a necessary condition for the boundedness on the Bochner
space is that X be a UMD space [1]. For the more complicated operators as described,
we will need to assume some further conditions.

We will make the more restrictive assumption that X is a UMD function lattice,
i.e., X isa UMD space whose elements are represented by functions on some measure
space, and the norm of X is compatible with the pointwise comparison of functions
in that |f| < |g| pointwise implies that ||f||x < |lgllx. See [14] for more information
on function lattices with the UMD property. We will make use of this assumption
both directly, via Theorem 4.16, and through the following consequence established
by Hytonen, McIntosh and Portal [7]: such spaces satisfy the so-called RMF property,
also introduced in [7], which means the boundedness of the so-called Rademacher
maximal function from L”(RY, u; X) to L”(RY, ). A detailed study of this property
can be found in Kemppainen [8]. The RMF property is used to estimate the so-called
paraproducts arising in the proof of the 7'b theorem; for the same purpose, RMF
was also assumed in an earlier version of the global non-homogeneous 7'h theorem
[4], but it was subsequently circumvented there. In addition, we make explicit use of
the lattice structure at one specific point of the proof to obtain a certain auxiliary
square function estimate. We do not know about the necessity of this assumption,
so it seems interesting to single out the place where we use it for possible further
investigation. Note that many of the concrete UMD spaces appearing in harmonic
analysis, like the 7 and Lorentz spaces, are all lattices; others, like Sobolev spaces,
can still be identified with closed subspaces of such lattices, e.g. for @ ¢ CV, we have
Whr(Q) ~ {(f. g) € LP(Q) x L(Q)N : g = Vf} c L/(QN = U’(U,]-io Q;), where the
Q;’s are disjoint copies of €2; but some other examples of UMD spaces like the Schatten
ideals C, fall outside this class of spaces.

We are ready to formulate our main result.

THEOREM 1.7. Suppose that X is a UMD function lattice. Assume that T is a
Calderon—Zygmund operator, and that there exists two L*°-accretive systems of complex—
valued functions, b = {byy} for T and b* = (b} for T*. Then, under the qualitative a
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prioriassumptionthat T € L(LP(RN, u; X)) for somep € (1, 00), we have the quantitative
bound

TNl ccr@y usxy < C,

where the constant C = (N, d, a, 8, B, p, X) > 0 is independent of T.

Having stated this, we should admit two things. First, this result remains valid for
general UMD spaces. Second, it follows relatively easily, even in the just mentioned
more general form, from a combination of the results of [4], [13] and [12]. Namely,
Nazarov, Treil and Volberg’s local Th theorem [13] states that under the mentioned
assumptions we have the scalar valued bound ||T'|| zz2@my ) < C. Then, the converse
direction of Nazarov, Treil and Volberg’s global Th theorem [12] tells that T satisfies
the global T (or even T'1 conditions) || T'1|lgmomy ..y + | T* LMo,y < C, where
BMO(R", 1) is an appropriate bounded mean oscillation space adapted to the non-
homogeneous situation. Finally, the vector-valued global Th theorem of [4] completes
the argument, as we have just checked that its assumptions are satisfied.

What, then, is the point of struggling for a weaker statement, when a stronger one
is available for free? Sure, we can still develop some new insight into the proof technique
of [13], but there is also a more substantial reason on the level of actual results. Namely,
the proof of Theorem 1.7 that we give immediately yields a further generalization to the
case of operator-valued kernels K, i.e., for kernels K(x, y) € £(X). Then the associated
L(X)-valued operator T in (1.4) is genuinely an object of the vector-valued realm, and
the above shortcut via the scalar-valued theory is no longer available.

Rademacher—Calderon—Zygmund operators. Let us consider an operator 7 given
by the same formula (1.4) as before, but with K(x, y) € L(X). The kernel bounds (1.2)
and (1.3) will have to be replaced by certain operator-theoretic analogues involving
the notion of R-boundedness (see definition in (2.2)), and we refer the reader to
Section 14 for a precise statement. We then say that K is a d-dimensional Rademacher—
Calderon-Zygmund kernel, and that T is an L£(X)-valued Rademacher—Calderon—
Zygmund operator. For further details, we refer to Section 14.

The testing functions are now as follows. We say that {le} is an L*-accretive
system for an £(X)-valued Rademacher—Calderon-Zygmund operator 7' if, for every
cube Qin R", there is a function b1Q from the system such that the conditions (1.5) hold
true for bg = by, and Thy, : RV — Y satisfies || Thyy||z~wv u:v) < B, where ¥ C L(X)
is an UMD function lattice which has cotype 2 (see definition in (2.3)), and whose unit
ball By is an R-bounded subset of £(X). In a similar manner, we say that {sz} is an
L>-accretive system is for 7* if, for every cube Q in R", there is a function b2Q from
the system such that the conditions (1.5) hold true for by = b2Q and T *b2Q RN > 7
satisfies || 7" *b2Q|| Lo@®Y,u:z) < B, where Z C L(X*) is an UMD function lattice which
has cotype 2 and whose unit ball B, is an R-bounded subset of £(X™).

The following local Th theorem for operator-valued kernels is obtained by
employing the entire power of the proof of Theorem 1.7, with minor necessary
adjustments. Unlike Theorem 1.7, it cannot be obtained by a shortcut from the scalar-
valued T'h theorem of Nazarov, Treil and Volberg [13]. We do not know if the function
lattice assumption is necessary in the following theorem; we will make some comments
on its usage in the course of the proof.
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THEOREM 1.8. Suppose that X is a UMD function lattice. Assume that T is an
L(X)-valued Rademacher—Calderon—Zygmund operator, and that there exists two L*°-
accretive systems, b' = {le}for T and b*> = {sz}for T*. Then, under the qualitative a

prioriassumption that T € L(LP(RY, u; X)) for somep € (1, o0), we have the quantitative
bound

TN zer @y sxy < C,
where the constant C = C(N,d, «,8, B,p, X, Y, Z) > 0 is independent of T.

Concerning the interest and potential applicability of such a result over the simpler
Theorem 1.7, we make the following remarks. First, in applying the global vector-
valued T'b theorem from [4], Mayboroda and Volberg [10, p. 1056] specifically use the
operator-kernel version [4, Th theorem 4]. Second, in the mentioned application, all
the Banach spaces are function lattices, so that this assumption is not too restrictive
for such purposes. We also recall, although this is not directly connected to the non-
homogeneous issues at hand, that the theory of singular integrals with operator-
kernel has been a necessary strengthening of the vector-valued scalar-kernel theory in
applications like the maximal regularity question for partial differential equations; see
in particular the influential paper [17].

Organization of the paper. In order to keep the notation somewhat lighter, we
will concentrate in the main body of the paper on the proof of Theorem 1.7 about
scalar-valued kernels. Mostly, however, this argument goes through without trouble
for the operator-kernel version of Theorem 1.8 as well, and we only explain a few
necessary modifications in the final Section 14. After collecting some preliminaries in
Section 2, the proof of Theorem 1.7 is presented in Sections 3 through 13:

Sections 3 and 4 present a detailed analysis, and related inequalities, of functions
fe (RN, u; X) and g € LY(RY, u; X*) in terms of appropriate adapted martingale
difference operators Dg. In Section 5, these expansions of functions then give a
representation of the operator 7 in terms of matrix elements 7o, where R and QO
range over dyadic cubes, and the rest of the proof is concerned with the estimation of
different parts of this matrix.

Section 6 presents a general martingale decoupling inequality — our best substitute
for orthogonality estimates in L> —, which will be used several times during the proof.
The parts of the matrix Tro leading to different types of treatment are as follows: the
separated cubes (handled in Section 7), the deeply nested cubes (Sections 8 through
10, where the last one deals with the paraproduct part of the operator), and the near-
by cubes of comparable size (Sections 11 and 12). Finally, Section 13 collects the
different estimates together, and also takes care of the remaining ‘bad’ cubes which
were excluded from the previous cases.

2. Preparations.

Notation. We denote N = {1,2,...} and Ny = {0, 1, ...}. All distances in R"
are measured in terms of the supremum norm, defined by |x| = [|x||s for x € RV,
Accordingly, we henceforth write B(x, ?) for the £ ball in RV centered at x with radius
t > 0. (Note that the main assumption (1.1) is still true, possibly after scaling u by
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a constant.) We assume that K is a d-dimensional Calderon-Zygmund kernel in RY,
satisfying both (1.2) and (1.3) for some « > 0. In the sequel » > 0 is a (large) integer
which is to be quantified later. We fix a constant y,

y €0, 1), dy/(—-y)=a/4 2.1

< o
Y=2d+a)
We denote

9(/):{%} forj=0,1,2,....

A cube Q in R has sides parallel to the coordinate axes, and its side length is
denoted by £(Q). If O, R C RY are cubes, their long distance D(Q, R) is defined by
D(Q, R) = €(Q) + dist(Q, R) + £(R).

UMD and R-boundedness. A Banach space X has the UMD property if there is
a constant C > 0 so that

>
k=1

<C

n
2 ende
k=1

whenever (d;);_, is a martingale difference sequence in L7(u; X) and &, = £1. This
property is known to be independent of the parameter p € (1, 00), and its validity for
dyadic martingales with respect to the Lebsgue measure already implies the general
condition, [9]. UMD spaces are reflexive.

Let (ex)kez be a sequence of Rademacher functions, i.e., a sequence of independent
random variables attaining values 1 with an equal probability P(e, = —1) = P(g; =
1) = 1/2. By  we denote the probability space supporting the distribution of (&g )xez.
The Khintchine—Kahane inequality says that

n
> ek
k=1

for all p € (0, 00). For X = C, this is called just Khintchine’s inequality, and the right

Lr(u;X) L (p;X)

n

> ek
k=1

~

Lr(:X)

L2(2:X)

hand side can be written as the quadratic expression (ZZ:I |§k|2) "2 Because of this,
inequalities for the random series involving the g, are often referred to as ‘square-
function’ estimates even in the vector-valued case, even if no squares explicitly appear.

We recall that an operator family 7 C £(X], X3) is called Rademacher-bounded,
or R-bounded, if there is a constant C such that foralln e N, all &, ...,&, € X; and
allTy,..., T, €T,

<C
LX(:X2)

(2.2)

n
D e Tk
Je=1

Denote the smallest admissible C by R(7).
We will often use the following Stein’s inequality (more precisely, its vector-valued
extension due to Bourgain [2]), which says that an increasing sequence of conditional

n
D ek
pa

L2(2X1)
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expectations Ej is R-bounded on L7(RY, u; X) if X is a UMD space:

n

C Zekfk

k=1

Lr(QxRN;X) Lr(QxRN;X)

with constant C > 0 independent of the sequence (f){_, C L”(R", u; X).

A different condition arises by requiring the pointwise (in x € RY) R-boundedness
of the sequence of vectors Eif(x) € X ~ L(C, X), where the last identification is the
obvious one: &£ € X is identified with the operator A € C — A& € X. We denote

Mgf(x) := RUE (x) : k € Z}),
and say that X has the RMF (Rademacher maximal function) property, if Mg :

LP(RY, u; X) — LP(RY, u) boundedly for some (and then all) p e (1, 0o). This notion
was introduced in [7]; see [5, 7, 8] for more information.

Cotype of a Banach space. A Banach space X is said to have cotype s € [2, 00),
i.e., there is a constant C > 0 such that for all sequences (Ej);’:] in X we have

n 1/s
(Dsj&) <C
Jj=1

This leads to an improvement of the contraction principle, [4, Proposition 11.4].

n

Z &;&j

J=1

2.3)

LA(Q:X)

PROPOSITION 2.4. Let X be a Banach space of cotype s € [2, 00) and suppose that
{oj : jeN}C L(Q) for some o-finite measure space 2 and t € (s, 00). Then

o0 o0
Z &0;&j Z &j&;j
j=1 j=1

ifig :jeNyC X.

Some of the subsequent estimates are based on the fact that every UMD has cotype
s for some s € [2, 00). (See e.g. [14, p. 202] for the stronger property that every UMD
has type ¢ for some ¢ € (1, 2].)

S sup ||,0j||Lr(§2) :

LH(S:L2(2:X)) J L2(2:X)

Generic dyadic systems. Let D denote the standard dyadic system, consisting of
all of the cubes of the form 2*(m + [0, 1["), where k € Z and m € Z". We also denote

Dy =1{0eD: Q) =2".

A generic dyadic system, parametrised by g € ({0, 1}V)Z, is of the form

D(B) = | Du(B),

keZ

where

DuB) = (R+x(8) : Re D). ()= B2

Jj<k
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Given Q € D(B) and n € Ny, then the expression Q™ denotes the dyadic ancestor of
O of the n’th generation, i.e., it is the unique cube such that Q ¢ Q" e D(B) and

UQ™) = 2"¢(Q).

Random dyadic systems. The generic dyadic systems give rise to random dyadic
systems by assigning the complete product probability measure Pg on the set ({0, 1}V)?
so that the coordinate functions B;, j € Z, are independent and Pg[B; = n] =27V if
n e {0, 1}V,

REMARK 2.5. As many (but not all) papers in the area, we will use two independent
random dyadic systems D = D(8) and D’ = D(B’) to insert randomization into the
argument. It seems to us that this is a necessary technicality in the present context, see
Remark 12.22 for a critical point in the proof.

Altogether, it seems that the most elaborate versions of 7’1 and 7' theorems need
two independent systems. For example, consider the non-homogenecous 7'1 theorem,
even just the scalar version. The original global T'1 (actually, 7b) formulation was
proved by Nazarov, Treil and Volberg [12] by using two independent systems. Now
there is a more recent local 7’1 theorem by Volberg [16], proven by just one random
system, but it appears that this version is not quite as strong as the ‘global 7'1’. Indeed,
Volberg makes the assumption

IT1olI72 + 1T 1ol < C(Q),

where the L?-norms are computed over the whole space and estimated by the measure
of O, whereas the global ‘T'1 € BMO’ conditions of Nazarov, Treil and Volberg can be
easily deduced from the local assumptions

0T Lol 72y + 10T 1ol 72, < CH(AQ). 4> 1.

Here the L?>-norms are local, and estimated by the (possibly much larger) measure of
the expanded cube 1L Q.

Letn e Z. A cube Q € D is called n-bad (w.r.t. D’) if there exists R € D’ such that
€(Q) < 27"™¢(R), dist(Q, IR) < £(Q) L(R)' .

If Q is not n-bad (w.r.t. D’) then it is n-good (w.r.t D’). The set of n-good cubes in D is
denoted by

Dn—good = Dn—good(y,r)~

The family of n-bad cubes in D is denoted by D,.pad = Dy-bad(y,r)- A cube O € D; is
R-bad, R € D]’-, if Qis (j —i— 1)-bad. A cube Q € D is R-good if it is not R-bad. The
family of R-good cubes in D is denoted by Dg.go0d = DPr-good(y,r- The family of R-bad
cubes in D is denoted by Dr-pad = DPRr-bad(y.r)-

In a symmetric manner we define the n/Q-bad and n/ Q-good cubes in D'.

REMARK 2.6. Assume that Q € D is R-good, where R € D'. Then

dist(Q, IR) > £(Q) €(R)' ™" > £(Q)/ X+ g(R)I—e/Ad+a),
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for every R e D’ satisfying £(R) > 27'¢(R) v 2"¢(Q). The second inequality follows
from the estimate y < a/2(d + «) in (2.1).
Here is a useful lemma controlling the probability of bad cubes:
LEMMA 2.7. Let n € Z and Q € D = D(B) be fixed. Then
2~ (rvayy

Pﬂ’[Q S Dn-had(%"ﬂ = 2N1 — 2= :

Proof. Just follow the proof of [13, Lemma 7.1] with n v r in place of r. O

Various estimates are conducted while keeping the parameters 8, 8’ € ({0, 1}V}Z,
and hence also the associated dyadic systems, fixed. During these estimates, we will
assume that these fixed dyadic systems satisfy the following condition: there are (fixed)
cubes Qp € D(B) and Ry € D(B’) for which

£(Qo) = £(Ry) = 2 and supp u C Qp N Ry. (2.8)

From the probabilistic point-of-view this assumption is justified by the following
lemma, when applied to the compact set K = supp u:

LEMMA 2.9. Let K C RN be a bounded set. Denote by A the set of parameters
o € ({0, YN for which K is not contained in any cube R € D(c). Then P(A4) = 0.

Proof. By using completeness of P, it suffices to show that A4 is contained in a set
of probability zero. To this end, we use the fact that K is bounded as follows: there are
dyadic cubes Oy, ..., O € Dy from the standard dyadic system of sufficiently large
generation k € Z such that K C UfilQ/. Thus, if o € A and n € N, n > r, there exists
an index j € {1,2,...,2"} and a cube R € Dy4,(0) so that dist(Q;, dR) = 0. Hence
Qe f),,.bad(w) with respect to D(o'). We have shown that

2N
Ac(Uto : Q) € Dubadiy.n wrt. Do)}

n>=r j=1

Using Lemma 2.7, we see that the probability of the right hand side is zero. ]

Layers of cubes. Following [13] we will define certain layers of cubes in a given
dyadic system D. For this purpose, we fix 8, 8’ € ({0, 1}V)Z, and assume that Qy € D =
D(B) and Ry € D' = D(B’) are cubes such that (2.8) holds true. By s € Z we denote a
sufficiently large integer for which Qy € D, and Ry € D;.

Let £y = {Qo} be the zeroth layer of cubes. Assume that the layers Lo, ..., £;— of
cubes have been defined. We then define the j 't layer of cubes L; as follows. If £;_1 = 9,
we set £; = ). Otherwise we consider a cube R € £;_;. We say Q € D is R-maximal, if
it is the maximal cube in D satisfying the conditions Q C R and

v
0

Then we denote £; = Ugeg, {Q € D : Qis R-maximal}. By analogy, we define the
layers £ associated with the system D',

< 8 Q).
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Assuming that D > Q C Qy, we denote by Q¢ the smallest cube in U;>¢L; that
contains Q. Such a cube exists because QO C Oy € U;>0L;, and it is also unique due to
properties of dyadic cubes; hence Q° is well defined. If Q ¢ Qy then we denote Q¢ = Q)
for the sake of convenience. Note that, in any case, we have

bl du
e

In an analogous manner, we define R € U;>(L; for cubes R € D".
For a fixed j € N, we have the estimate

> 82 (0). (2.10)

(U R)=0-0m@ foroes. @1

ReL;: RGO

A proof is in [13, pp. 269-270]. Here 7 € (0, 1) is a constant, depending only on §p.
This estimate generalises by simple iteration as follows:

LEMMA 2.12. Let Q € D and Q € Ly for M € Ny. Then, for j > 1, we have the
estimate

M( U s): > <)
SeLars:SCO

SGCMH‘ISQ Q

REMARK 2.13. Lemma 2.12 yields that p-a.e. point x € Qp belongs to at
most finitely many cubes in the family Ujen,L;. To prove this, let us denote f =
>0 20e ¢, Xo- The cubes in £; for j € N are disjoint, and they are all included in
Qo = 0 € Ly. Using Lemma 2.12 with Q = Qp and M = 0, we get

ooy =Y. Y mQ) < M(Qo)(l +y (- r)’) < o0, (2.14)
j=0 j=0

QeL;

The claim follows.

Carleson embeddings. Let D be a generic dyadic system and letd; € LY(RY, u; R),
k € Z, be a sequence of functions, and denote

lQ Z Skdk

k:2k<0(Q)

1
{di}kezlcarp) = sup ————

ST T hep ()P
wQ)#0

LP(RY xQ,u®P;R)

If di, = Edy for all k € Z, then the Carleson norms are equivalent for all p € [1, c0).
For a proof, see Proposition 3.1 in [4]. We recall two Carleson embedding theorems;
The following result is Theorem 3.4 in [4].

THEOREM 2.15. Let X be a UMD space and 1 < p < oo. Let {dy}rez € L'(RY, u; R)
be a sequence such that d;, = Eydy for every k € Z. Then

Z EkdkEkf

keZ

S dictkez Nl cart (o) I | 2 ®Y i)
LP(RN xQ, u®@P;X)
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for every f € LP(RY, u; X).

The following embedding result for RMF spaces is essentially Theorem 8.2 in [7],
where it is stated for the Lebesgue measure; see also [5] for a general measure u and an
interesting converse statement.

THEOREM 2.16. Let X be an RMF space, 1 < p < oo, and n > 0. Assuming that
{di}xez is a sequence in L'(RY, u; R), then

ZekdkEka < Hdidkezllcarsn @y 1 Loy ey
keZ U(R‘VXQ,[A(@P;X)

for every f € LP(RY, u; X).

3. Adapted martingale decompositions. Throughout this section we assume that
X is a Banach space and that b = b' is an L>®-accretive system. The assumption that
b = b' is only for notational convenience, and all of the results throughout this section
remain valid if we replace b' with 5> and the random dyadic system D with D’.

Adapted conditional expectations. Let D = [ J,_, D be a generic system of dyadic
cubesinRY andf € L] (R"; X).In what follows we will define various operators acting
on this function. First of all, the conditional expectation for k& € Z is defined by

1
Ef =Y 1ollo. (o= rQ)/Qfdu.

QeDy

If u(Q) = 0 for a cube Q, we agree that (f)p = 0. If Q € Dy is a cube, then the local
version of this conditional expectation is defined by E¢f := 1o Eyf. The corresponding
martingale difference is defined by Df := Ex_if — Exf and its local version is Dgf :=
1oDyf . For the L*-accretive system b = {bp} and k € Z, we define

b= lgbg.
QeDy

The b-adapted conditional expectation and its local version, for k € Z and Q € Dy, are
defined by

a a Ekf a a
Ef =Wy Eof = 10El.
k

The corresponding h-adapted martingale difference and its local version are

Dif == E{_\f —Elf.  Daf :=1oDif.

where k € Z and Q € Dy.
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We agree on the following slightly abusive notation:

{blac—l = bli} = U Q’

o
0'=(0") . (3.1)
X =10 # b =R\ =bpt= | @
0eDy
0=0"#0

where k € Z.

A representation for Df. Here wecompute a useful representation for the adapted
martingale differences of / € L}OC(RN ; X). For this purpose, we let Q € D; and denote
by Qi, ..., Qv € Dj_; the subcubes of Q (in some order) so that Ulzil Q; = Q. Then

‘g « o e
Dof = 1o(Ef_\f ZbQ,, b < bQU>Q1
Writing (f)o M(Q) Z, 1 (OD() o5 We get
w(Q) by )
D lo, 1
of = ng’( oo @ W0 oo

This computations motivates the following definition: If u(Q;) # 0, we define

a ._ bQE'I n(Qi) bQ“
Po.i = 0 —
(boe)o, m(Q) (boe)o

(3.2)

Otherwise we define g ; = 0.
The following lemma draws conclusions from above, and provides further
properties for the resulting decomposition. The proof is straightforward.

LEMMA 3.3. Let f € L, (RY; X) and Q € Dy. Let Qy, ..., Qv € Dy denote the
subcubes of Q in some order. Then we can write

N
D =Y (owh.
i=1

Furthermore, if i € {1,2,...,2N}, then
a) g e < 1
b) ||¢Q,,||Ll(du) w(0);
¢) supp(ggp ;) C O;
d) [av 96 du = 0.
Within these estimates, the implicit constant depends on § in (1.5).

A representation for (D{)*. 'We compute the adjoint of the »-adapted martingale
difference operator Dj for k € Z. For this purpose we fix f € I’(RV;X) and g e
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LY(RN; X*), where 1/p + 1/q = 1. Recall that

Eif Eif
Dif = E{_\f — Eif = b} — b 4
kf kflf k.f bkilEkfle,I bk Ekbz (3 )

The self-adjointness of the expectation operator Ej yields

(- Eie) = <b’i%bz’Ekg> - <E"( ZEfb,ﬁ)’g>'

As a consequence, we find that

/ ) _ E(y)

Akf = (Ek)fZEk(b Ekbz .

KELbe
Substituting this identity to (3.4), we get the representation

E(bp_1f)  Ecbif)

: 3.5
E b, Eb! (3:5)

DS = Ajof — A =

A representation for (D,Z)Z. Assuming that k,/ € Z,

b g (o B s b . 1= K
EibS

EYEf = k E
= "Eibf EYf, if7 <k

Here we used twice the identity E, = EiE; if [ < k. As a consequence, we have the
identity

(DY? = (Ef_, — B = (E{_))’ — E{_|E} — E{E{_, + (E{)’
= (E{_,)’ — E{_|E{ —E} + E{ = E{_|D.

=0

Using the notation (3.1), we write D}f for a function f" € Ll (RY; X) as follows:

Ef  EJ
D =1 b ba( _ _)
o= YoV g~ Bl
Ey\f Ef
" l{b;"l#hz}(bZIEkle 1 i Exby )
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Using this and the basic properties of the operator E;_;, we get

Cl

E,‘j_lDZf— _1b Ek 1Dif
b} E f E,
~ 1 b, 1—bZ}Ek71ba - ]fa kfa
Ek_lb k—lb Ekb
b/ac 1 E\f Exf
_— ol Ep_1bf_, ———— — Ep_ b}
+Ek lb 1 7b) ( k=10 lEk lb k—1 kEka)

b Ek—Lf By
V=0T B iby Eih

«  Ef o Exf
* l{bZI#bZ(bklEkle 1 - bkEka>
b B, Eklbz>

1 a a E k —
+ i 70 Af(Eka Ek—lb/ac_l Ekbz

where we have denoted

0. b A et
W = by #bY) Ekbz B Ek_1bla( 1 Ekbli

The following lemma draws conclusions from the computations above.

LEMMA 3.6. Let k € Z. Then
(DY = Dif + ofEif.  iff € LRV X). (3.7)
Furthermore, the functions wj have the following properties a)—c):
a)wi(x):OifxeRN\{b # bih
b) lofllirew S 1,
C) Ek_la),‘j =0.
The implicit constant in b) depends on § defined in (1.5).

Proof. The identity (3.7) is established above. The property a) is clear; b) follows
from (1.5) and (2.10). For ¢) we notice that

Erbf  Ex by Ex_1b}
Er 10 = lya up — =0.
k—1Wy {bkl#bk}< Ekbz Ek71b271 Ekbz

g

We also define the following two local versions of w{. Let Q € Dy and denote by
01, ..., Ow € Dy the subcubes of Q. Then we define

wg = lowy, wg; = lgwp. (3.8)
The following lemma collects the basic properties of these local versions.

LEMMA 39.IfQ e Dandf € Llloc(lRN; X), then

(DY)f = Dof + whEqf. (3.10)
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Also,

ol S 1w(Q) and | il iy S Q) fori=1,2,...,2". (3.11)

Proof. Assume that Q € Dy. Then, by using (3.7), we get
(DgYf = 10D{(1Df) = 1o(D{Y(1of ) = Dpf + w)Eof.

The estimate (3.11) follows from Lemma 3.6. ]

A decomposition of functions. Recall that b is an L*°-accretive system. In the
sequel we assume that b = b' and consider the cube Qy € Dy that is defined in (2.8). It
is a large cube such that the support of u is contained in it.

We will show that

) N [0¢] .
f_bQo O;RR” = Z Djf

j==00

where the convergence takes place both pointwise p-almost everywhere and also in
L7(RY, u; X)-norm. We begin with the following lemma.

LEMMA 3.12. For p almost every point x in Qy, we have

blo(x)i= lim b(x) = lim Ecbj(x).

Furthermore, the limit satisfies the estimate |b® . (x)| > 82, where § > 0 is defined in
connection with (1.5).

Proof. By Remark 2.13 we may restrict ourselves to those points x € Qp that
belong to at most finitely many cubes in the family Ujen, £;. Because the family Ujen £;
is countable, we can also assume that u(Qx(x)) # 0 for every k € Z where (Qx(x))iez
is the unique sequence of cubes such that x € Qk(x) € Dy, for every k € Z. Finally, we
can also assume that

kEIEloo(bQ)Qk(x) = bo(x), ifQe U L;. (3.13)
JeNo

Indeed, by martingale convergence, the identity (3.13) holds true for almost every
x € Q if Qs fixed, and the family U;en L is countable.

Fix a point x as described above and consider the sequence (Qx(x))xez. Note that
X € Or(x) C (Qr(x))? for every k < s. In particular, there is an index k(x) < s such that
(Or(x))* = (Ory(x))* if k < k(x). As a consequence, for k < k(x), we can write

b)) = D 1o(0)boe(x) = big,e(¥) = bgy vy (X)-
0€Dy
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It follows that limy_. _oo b{(xX) = b(Q,,,(x)- On the other hand, if k < k(x), we use the
assumption (3.13) for

Erbi(x) = (b)) 0uv) = (boey) 0uv) = (b0ro0)) 0ut)

ke (3.14)
— by = lim _bi(x).

This s as required. Finally, since p(Qx(x)) # 0 for every k, we can use (2.10) to conclude
that |p% . (x)] = limy— —co [(b0r ) 0um)] = 8% O

With the aid of this lemma, we can establish useful convergence results. For this
purpose, we fix f € L}OC([RRN ; X). By martingale convergence, limy_, _, Erf(x) = f(x)
for u-a.e. x € RY and, as a consequence of Lemma 3.12, we have

Ef(x) k—-c

EYf () = b s
k

S(x) (3.15)

for p-a.e. x € RV, Recall that £(Qy) = 2° and suppu C Qp. Hence, for points x in
Qo = @, we have

Ef(x) ) {1 o, ) {f ry
Esb?(x) QO (bQo ) Qo QO bQo YRV

ESf (x) = b{(x)

Using also (3.15) yields the decomposition

(fmw

— = lm
J % <bQ0>RN k——00

Eif — Ef
s o (3.16)
= lim Z (E\f — Eif) = Z Df

k——o00 X
j=k+1 M Jj=—00

that is valid p-almost everywhere in RY. In the last step we used the identity E¢f = E¢f
if i > s for s defined in (2.8); hence, fo = 0 p-almost everywhere if j > s.

Let us then consider the convergence in the /7-norm with 1 < p < oco. In order to
do this, we fix f € L”(RV, u; X). Let j < 5. Using (2.10), we see that |E;bf| = 82 almost
everywhere and, by (1.5), we have [|5/||1=(,) < 1. Hence the following norm-estimates
are valid pointwise p-almost everywhere

« B
fEb“

IES |x = <8 NEflx <82Mf € L’(RY, i; R),

where M is Doob’s maximal operator. Hence, by the dominated convergence theorem,
we see that the decomposition (3.16) converges in LP(RY, u; X).

4. Norm estimates for adapted martingales. We prove ‘square-function’ estimates
for the adapted martingale differences and their adjoints, see Theorems 4.1 and 4.16.
The first result is true for general UMD spaces, whereas the UMD function lattice
property is needed in proof of the second theorem. This dichotomy between the square-
function estimates for the Df and their adjoints, (D{)*, seems somewhat unexpected: In

J
the original scalar-valued argument of Nazarov, Treil and Volberg [13, Section 3], only
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the estimate for Dj is proven explicitly, while the dual case is just stated, suggesting
that it should follow in a similar way. To some extent it does, but this similarity seems
to break down in the vector-valued realm, and we will give a careful consideration of
both estimates in this section. We begin with:

THEOREM 4.1. Let X be a UMD space and 1 < p < oo. Then

oo

D eDif

o0 ‘U([RNXQ,;UX)P,X)

S W@y pex 4.2)

for every f € LP(RY, u; X).

In what follows we prove Theorem 4.1. For this purpose we first prove various
lemmata; the following is a consequence of Theorem 2.15.

LEMMA 4.3. Let X be a UMD space and 1 < p < co. Then

o0

Z o 20 E LfH S W@y wx) (4.4)

je—o LRV %2, u®@P:X)

Sor every f € LP(RN, u; X).

Proof. If j e Z, then xj_1 := l{ba by = Ej- 11 b b} belongs to L'(RY, u;R).
Therefore we can invoke the Carleson embeddmg theorem 2.15. Hence we can bound
the left hand side of (4.4) by a constant multiple of [|{x;}jcz |l car (p) If Il - The first factor
is estimated as follows:

Iz lewt) < sup o5 > loxilo
(Q) J:Y=0Q)
u(Q)#O

Fix Q € D with u(Q) # 0. Fix r € N such that 9¢ € L,. Using the definition (3.1) and
Lemma 2.12, we obtain

DT Moxili =w@+) " >0 u(S)

J:2<e(0) k=1 SeL,;:SCQ

<@+ Y (-0 S Q).

k=1

Taking the supremum over Q € D as above, we have [[{x;}jez |l car' (D) <1. ]
Another useful estimate is the following.
LEMMA 4.5. Let X be a UMD space and 1 < p < co. Then

D Vo7

=00 ) HU(RNXQ neP;X)

S W@y, wx) (4.6)

for every f € LP(RYN, u; X).
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Proof. Using (2.10) and that

L =y Ej1 b = 1o —pey Ej1 b, 4.7)
we see that the following identities hold pointwise u-almost everywhere in {b¢ = bi}:

Ef Ef _E Ef
E b, Eb T E_bf Eb

1
=E; — E;_ E
Lf(jlba Eba>+( if - f)Eba
—D;b{ D 1
= Lj_ Lf /_ baEba+ ]fEba
Hence, the left hand side of (4.6) is dominated by
j=Zoo G =V pap e E;_ de ba Ej LfH = 8] {bﬁlzbﬁ}fbf ,LfHU 4.8)

Observe that by (2.10) we have |E;bf| > 82 for p-almost every point. Therefore the
contraction principle gives the followmg estimate for the second term in (4.8):

(o]

Z &l =pny Eb“ f

J==© J=—0©

~

ejDJ“

The UMD-property of X allows us to dominate the right hand side by a constant
multiple of ||f]],.

For the first term in (4.8) we use the Carleson embedding theorem. Using (4.7)
and (2.10) we see that 1 i E; - 1b“| and |E; b"| are bounded from below by 82 in
u-almost every point. Thus the contractlon prmmple gives the estimate

oo Dba
2 ol =g e B

‘U (4.9)
Jj=—00

Dbl Ej\f
UI

If jeZ, then diy:=Djbj €L RN, u;R) and D;bi = E;_D;by. Therefore the
Carleson embedding Theorem 2.15 applies, and it gives the estlmate

Z & Db E;- Lf‘ < fllz sup 0 ng exdy :
“ D L'(RY xQ, u®P;R

In order to estimate the right hand side, we fix a cube Q € D for which u(Q) # 0. We
have

lo Z er—1Dpbi||  + Cu(Q).

k:2k<e(Q)

H 1 0 Z Ekdk

k:2k<e(Q)

L! L
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The first term on the right hand side is

H 1Q Z Ek—1 Z 1RDka

k:2k<¢(Q) ReD;:RCO L
= Z Ek—1 Z DRbRa = Z ERDRbRu = ZQ.
k:2k<e(0) ReD;:RCQ L ReD:RCQ Ll

Assume that 0 € £,, where u € N. We write Xy in terms of the layers of cubes as
follows

o0
So= ‘ ( DS ) )SRDRbRa
RCQ:R=Q  j=1 SCQ:SeL,; RCS:R'=S L
The triangle inequality gives
EQ < lQ Z ERDRan
RCQ:R‘=(0¢ L
. (4.10)
+ Z Z lS Z SRDRbS = ZQl + EQ,2~
L!

j=1 SCO:SeL,; RCS:R'=S

Observe that Drbg« = Dr(1pbg«) if R C Q. Hence, by applying Holder’s inequality
and (1.5),

Z €RDR(1 Qan)
RCQO:R'=0"

o1 < ol S uw(0) Pl gboellz < 1(Q).
LZ

The second term X, is first estimated in a similar manner. Then we use Lemma 2.12
as follows:

$25)) Y, wS) =@ (11— S ). (4.11)
j=1

j=1 SCQ:SeLyy;

We have shown that Xy < X1 + Zp2 S n(0Q). Collecting the estimates above, we see
that the left hand side of (4.9) is bounded by a constant multiple of ||f| z». O

We are now ready for the proof of Theorem 4.1.
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Proof of Theorem 4.1 We decompose Dj'f as follows:

E}—lf ba E]f
lE e, Eb!

Ty
01 =5110 Ej_1b" Eb
1}

Dif = EL\f — E)f =

(4.12)
=I(j)

/ i/ E/f
J— 7

=I1(j)

First, using the contraction principle followed by Lemma 4.5 yields

Zt?fl{b;'l—b;'}bfl(/)” < 2811{1:;1—17;?}1(/')” Sl (4.13)
Jj=—00 L Jj=—00 L

In order to estimate the remaining quantity, we fix j € Z and use the identity

Ef = E;_f — Df for

i B,k B
w‘(alwl_@q> A gt

This representation leads to the estimate

[e¢]

> 8/‘1(b;'1¢b;-'}11(f)H
L

j=—00

= 1 b.;l_l ba E
D el Eb,  Eb lf (4.14)
J— '—

j=—00

=

Z &l 0 EbaleH

Jj=—00

The last term above is estimated by using first (1.5) and (2.10) with the contraction
principle, and then followed by the UMD-property of X. This results in the required
upper bound c||f||z» for the term in question.

Applying the contraction principle to the first term in the right hand side of (4.14)
yields the estimate

Z &l 20y EJT[;JG_I a Ejb} -

J==00 L
o0
S| elesnEaS H
Jj=—00 L

Using Lemma 4.3, we see that the last term can be dominated by ¢||f|.».
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By collecting the estimates beginning from (4.14), we get

S Wl (4.15)

00 E‘—].f Elf
ey | B9 = —b
Z &j {bjl#bj}( J-1 Ej_lb](-l,l ! E/bja>

Jj=—00

)i

The required estimate (4.2) follows now by combining the identity (4.12) with the
estimates (4.13) and (4.15). ]

Estimate for the adjoints (D{)*. Here we prove a norm estimate under the UMD
function lattice assumption. The need for this assumption was somewhat unexpected to
us, but with our present techniques, we were unable to avoid it. Proving (or disproving)
the dual square-function estimate in the absence of the lattice assumption would be an
interesting question for a deeper understanding of the vector-valued theory.

THEOREM 4.16. Let X be a UMD function lattice and 1 < p < oco. Then

3 DS

keZ

S W@y wx) 4.17)
LP(RN xQ,u®@P, X)

for every f € LP(RY, u; X).

In order to prove Theorem 4.16, we first prove the following Carleson embedding
for UMD function lattices.

PROPOSITION 4.18. Let X be a UMD function lattice and 1 < p < oco. Let
{d € L'"RY, ; R)}ez, {r € LP(RY, 113 R)hkez,

be such that dy = Eydy and |cillp~ < 1 for every k € Z. Then

> exdcEx(eif)

kez

5 ||{dk}kel||Car1(D)Hf”U(RN,M;X) (4-19)
LP(RY xQ, u®P, X)

for every f € LP(RY, u; X).

Proof. Since X is a lattice of functions, for £ € X, we can consider its pointwise
absolute value |€| € X, which satisfies ||£|xy = || |£] || x. Moreover, we have the following
inequalities, which can be seen by the argument on [14, p. 212]:

J ),
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Since Ejdy = di, we have Ey|di| = |di|. Hence, by the Carleson embedding Theorem
2.15, we can estimate the left hand side of (4.19) as follows

12
LHS(4.19) = <Z |di Ex(crf )|2)
keZ D®RY,p.X)
N
< (Z (1| Exl/1) )
kez DR, X)
= ZskldklEkU‘IH S II{dk}kezHcarl(D)HVH|U(R~,M,X)'
kez L RY. . X)
The required estimate now follows because |||/ |p =11l U

We also need the following notation and representation formulae.

If k € Z, we write Qy(x) for the unique cube in Dy containing the point x € R".

For n € Ny and x € RY, we denote by 0"(x) € £, the cube in the nth layer that
contains the point x (if such a cube exists), see Section 2. We also denote o,(x) =
log,(¢(Q"(x))if x € Q"(x) € L, and 0,,(x) = —ooif thereis no cube in £, which contains
the point x.

If x € Uger, O, we denote b"(x) = bgn(x)(x). Note that, for k < s (recall that Qy €
Dy) and x € Qy,

ou1(x) <k <0,(x) &= (Or(x)* = 0"'(x) € L,. (4.20)

In particular, if (4.20) is valid, then b (x) = b(g,(x)«(x) = b"(x).
We also denote

E, = ZEQ, ne{0,1,...).
QeL,

LEMMA 4.21. Let x € RN and p € (1, 00). Then

J
<),

Sor every f € LP(RN, u; X).

4
dP()

S 0B, ("))
n=0

P
D erlyy wp(OE1(b§_/)(x)| dP(e) + | Eg,(bo,/)(x)I"

keZ

Proof. Denote Ay = Dy N (U2, L,). Lete € Qand x € RN. By (3.1),

> el (OB (B X)) =Y > exEg(boif )(x)

kez keZ Qedr-y
o (4.22)
= o1 Y Eglbof)(x).
n=1 QeLl,
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If x e Qe L,, then O = 0= Q"(x). Hence, 1pbp«f = 1pb"f, and applying the last
identity to the right hand side of (4.22), we get
[o¢] [o¢]
LHSA22) = eniet 3 EoW'N0) = 3 0041 Eny (0.

n=1 QeL, n=1

The required identity follows by taking p-absolute values, integrating, and relabeling
the random variables &4, ()1 1. O

LEMMA 4.23. Let x € RN and p € (1, 00). Then

/Q ‘ gEnEam(wf )(x) de(g) — /Q

for every f € IP(RYN, u; X).

P
Z e lip 260 (X) Er—1 (b )(x)| dP(e)
keZ

Proof. Let Ay be as in the previous proof. Let x € RY and ¢ € Q. Then, if x € Q €
L, with n > 1, we have x € (QV)* € £,_;, and therefore

B"H(X) = bgimi()(X) = biomy(x).

Using this identity, we get

Z i Ly by () Ex—1 (D3 )(x) = Z &k Z Eg(bgmyf)(x)

keZ keZ — Qedp
00 )

= Z Eo,(x)+1 Z EQ(b”_lf)(x) = Z8(Tn+l(x)+1EUn+l(bnf)(x)'
n=1 QeL, n=0

The required estimate follows by taking p-absolute values, integrating, and relabeling
the random variables o, 1(x) + 1. ]

We are ready for the proof of Theorem 4.16.
Proof of Theorem 4.16 By (3.5), we get

E_1(b5_.f) _ Ex(byf)
Ebl_ | Ed
Eb? — Ejibl_,

=—5 = T FE (b
EbiEe bl k—1(bg_1f) +

(DS =
4.24
Ee (b0 f) — Ex(bf) #4249

Ekbz

Denote dy = Exb{ — E_1b}_, for k € Z. Then |d)| < 2 and Ej_dy = di. By (2.10), we
have |EbiE_1b{_,| = 8% for p-almost every point in RY. Hence, by the contraction
principle and Proposition 4.18, we obtain

Eybl — By bt

k—1 a
74 7 7 Er—1 (b5 1f)

S Hdictkez | car (o I |l 2@ s )
L (RN xQ,u®P, X)

(4.25)

https://doi.org/10.1017/5S0017089514000123 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089514000123

40 TUOMAS P. HYTONEN AND ANTTI V. VAHAKANGAS

Let us prove that |[{di}iezllcarip) S 1. Let Q € D be such that w(Q) # 0. Then
1{/7;71:;7;:}61/( = _l{b/‘ﬁq:bZ}Dkbli’ and therefore

H IQ Z Skdk

2k<e(Q)

Z Eprbpa

PCQ

< HIQ Z exclipe_ beydi

+
LY (RN xQ, u®@P;R) %<4(0) 1

1
(4.26)

The first term on the right hand side of (4.26) is first estimated by using contraction
principle. Then proceeding as in the proof of Lemma 4.3 gives the upper bound cu(Q)
for that term.

The second term on the right hand side of (4.26) is estimated as in connection
with (4.10), yielding the same upper bound cu(Q). Combining the estimates above, we
find that ||{dk}k€Z||Carl(D) 5 1.

It remains to prove that

Ei1(b;_.f) — Ex(bif)
Z Ek Ekbz

S W@y, wx)- (4.27)

keZ LP(RY xQ,u®P, X)

By (2.10), we have |Eb{| > 82 for p-almost every point in R". Using the contraction
principle we eliminate the terms 1/E;b; from the left hand side of (4.27). Then we
consider the following decomposition, where k € Z,

Ep1(bi_1f) — Ex(bif) = Ex—1 (xe-1(b5_y — bQf) + (Ex—1 — EQ)(bif)
= xk1E-1 (b1 — Bf) + Dr(bf).
where we have denoted -1 = lipe_ 20}

Using Proposition 4.18, we obtain the following norm-estimate involving the first
term on the right hand side of (4.28)

(4.28)

Z e xk—1Er—1 ((0F_, — b)f) H

a7 LR xQ,u®P, X) 4.29)
5 ||{Xk}keZ||Car1(D)|lf||U(RN,M;X)~
On the other hand, the proof of Lemma 4.3 shows that [[{xx}kezllcar () <1

In order to complete the proof of (4.27), we still need to prove the following
estimate involving the second term on the right hand side of (4.28),

Z exDr(bif) H S W@y psx)- (4.30)

keZ LP(RN xQ, u®@P, X)

For this purpose, we introduce independent Rademacher variables & € (€2, P). For
x € Qp and k < 5, we denote &{(x) = &, if n is such that 0, 1(x) < k < 0,(x). By the
fact that (RY \ Qp) = 0 and (4.20), we find that the functions &g, fork < s, are defined
u-almost everywhere and they are Dj-measurable.

Then, for every x € Qpand ¢ € 2, we have

/Q ];dP(s) = /;2
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Recall that Dib¢ = 0 p-almost everywhere if k > s and w(RY \ Qp) = 0. Hence, by
integrating, and using the UMD-property of X and measurability of &{, we obtain

LHS430)=| ) ska(sgbkf)H
k<s LP (RN xQ,u®P, X)
> Di(EbYS) H > # DY)
k<s LP(RN, ;. X) k<s LP(RN p:X)

Reindexing the last sum gives

LHS(4.30) < H > 1an+l<k<gneka(bkf)H

—0 k<s RN, MX)

< H 36 Y oy ko D)
n=0 k<s

L (RN, p;.X)

In the last inequality we used the fact that the indicatgrs X > o, (v)<k<on(x) are Dy-
measurable by (4.20). Taking the expectation over & € 2, we find that

LHS(4.30) <

Z En Z l(r,,+1<k<anDk(b f)H . (431)

n=0  k<s L(RN x{0,1}N0, u@P, X)

By (4.20) and martingale convergence,

Z 1(7,,+1<k§(r,,D/c = Z DQ = Z DQ - Z DQ

k<s Q: 0L, 0:0€Up=nLy 0:0€UpnLlm
= (1U£n - EUu) - (1U£n+l - E0n+1) = E<7u+1 - EUn + 1U£n\U£n+l'

Apply this operator identity to b"f € LP(RY, uu; X) and substitute the resulting function
to the right hand side of (4.31). Using the triangle inequality results in three terms; one
of them can be estimated (using that UL, D UL,y and |0 S 1ifr e {0,1,...}) as
follows

o0

H (Z &nlug,\ug,, 0" )f” o S ey wx-

n=0 LRV x{0,1}N0, u®@P, X)

<1

The two remaining terms can be first estimated by using lemmata 4.21 and 4.23, and
then invoking Proposition 4.18. This leads to the upper bound

el zb0y ezl car' ) U @Y sz + ClEgy (o M@y wixy S I @y )

for these two terms.
Combining the estimates above yields LH.S(4.30) < [If | o @, . x)- ]
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5. Decomposition of a Calderon—Zygmund operator. Let T e L(L2(RY, u; X)) be
a Calderon—Zygmund operator as in Theorem 1.7. We establish the following estimate:

(g, T < ligllg I 1, + ’ > (DEe T(DG ), (5.1)

QeD, ReED’

where f € L?(RV, u; X) and g € LY(RY, p, X*).

Estimate (5.1) is uniform over all dyadic systems D = D(B) and D' = D(8’), and it
is based on decomposition of functions, treated in Section 3. In the subsequent sections
various good parts of the series on the right hand side of (5.1) will be estimated. In
Section 13, we finish the proof of Theorem 1.7 by collecting estimates of good parts,
and also performing an estimate for the remaining bad part.

In order to prove (5.1), we recall the basic cubes Qy € D and Ry € D’ satisfying
(2.8). The L*°-accretive systems for 7" and T*, respectively, are denoted by {le}er
and {b%}rep . Let ¢ € (1, 00) be such that p~! + ¢~ =1 and let f € LP(RY, u; X),
g€ LURN, pu; X*).

According to (3.16), and the reasoning therein, we have the decompositions

{fmy = a, al .
= b, (béo”fm =j§o DS =) Dy'f:

QeD

- (5.2)
(&)mM a, a
_p2 SR _ Z Dj,zg: ZDézg’

Ro ;72
N ReD/

which converge in I” and L9, respectively. As a consequence, we see that

w10 =(e (5 2 )) e 1 (0 F2 ) = (5 o o)
QeD ReD’ QeD

" (g RV @l )
+ (703 22—, D% b .
( (i) T+ (e (o)

Recall that b7 is scalar-valued while g is X*-valued. Moreover, we have

(5.3)

T*(by, ® §%) = T*(by,) ® §* =i x > (T* (b J(x))E"

for every £* € X*. Thus, by Holder’s inequality and inequality (1.6) for 7*, we have

(9)Ry (g)Ry 174
P | ([ (A2 Vi)
” (R°<b%g0>w)q | Ro (0% Yo -4
_ lg)wylx-
T*b
|<b§0> ! (%)

(5.4)
(R) / 1)) - [ T* (B3 - 1 (Ro)

1/q
< Bu(Ro)“q( Ig(x)li*du(X)) < Bligll,-

(Ro) Jr,
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In a similar manner, we have

(F)my

by, 57— B e 1l < /1. (5.5

As a consequence of (5.4), (5.5), and (5.2), we have

) “ )y
(T (g, —5—— bz SR ST DS S Bllgllylf — b, g N, S liglglf1lp-
( RO> o (b, )
Computing as above, we also find that
)
g. T(bY, é’f NS gl -

Combining the estimates above gives us (5.1). Within the summation on its right hand
side we can tacitly assume that the summation varies over cubes for which Q C Qy and
R C Ry. Indeed, otherwise D%’g = 0 or D‘élf =0.

6. Decoupling estimates. We begin with the following tangent martingale trick
originating from [11], and formulated in a way convenient for our purposes in [4].
Let (E, M, ) be a o-finite measure space having a refining sequence of partitions as
follows: For each k € Z, let A, be a countable partition of E into sets of finite positive
measure so that o(Ax) C o (Ax_1) C M, and let A = Uz Ay.

For each 4 € A, let v denote the probability measure p(A4)~" - u|4. Let (F, N, v)
be the space [ [ ,. 4 A4 with the product o-algebra and measure. Its points will be denoted
by ¥ = (V4)4e4- By [4, Theorem 6.1], the following norm equivalence holds:

THEOREM 6.1. Suppose that X is a UMD space and p € (1, 00). Then

//Exg > e ZfA(x)

keZ — AcAy
Zsk Z 1A(x)fA(J/A)

/f/;"xExQ keZ Ac A,

As a consequence, we obtain the following extension of [4, Corollary 6.3].

dP(S) dpu(x)

dP(S) dp(x) dv(y).

THEOREM 6.2. Let X be a UMD space and p € (1, 00). For each A € A, let
kqi:Ax A— LX)
be a jointly measurable function for which there is a constant C > 0 such that

R({kA(x,yA) : xeAeA})§C<oo, ifxe Eandy € F. (6.3)
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Suppose also that, for each A € Ay with k € Z we are given a o(Ay_1)-measurable
function 4 : E — X, supported on A. Then

J[ XX 22 [ ks

keZ Ay 1) Ja

scfl 13 ey s

keZ Ae Ay
Proof. Observe that the left hand side of (6.4) can be written as

J1...

By Hoélder’s inequality and Fubini’s theorem, this quantity is bounded by

M)

By the R-boundedness assumption (6.3) and the fact that each Ay, k € Z,is a countable
partition of E, we can further bound (6.4) by

cff[1¥a ¥t
XEX kez

AeAx
The proof is finished by using Theorem 6.1. O

Let Q, and R, u, v € {1,2,...,2"}, denote the son cubes of Q € D and R € D’
in a fixed order. Fix # and v as above, and assume that the elements of a matrix

’ dP(e)d () (6.4)
X

’ dP(e)du(x).
b'e

’ dP(e) du(x).
X

/FZek Z La()k4(x, ya)fa(ya)dv(y)

keZ Ae Ay

Z &k Z La(x)ka(x, ya)fa(ya)

keZ  AeAx

’ dP(e) du(x) dv(p).
X

’ dP(e) du(x)dv(y).
X

{TRQ eC:ReD, Qe DngOOdv 6(Q) < UR)}
satisfy the estimate

Trol  _ €QI LR
WRI(Q,) ~ D(Q. Ry

Recall that D(Q, R) = £(Q) + dist(Q, R) + £(R).

Assume that {f; € L}, (R, u; X)lez and {gx € L} (R, u; X*)}xez are such that
Ei_1fi =fi and Ej_1g = gi for every k e Z. If Q € Dy, we denote fp = 1of; and
gRrR = lek ifRe D;{

(6.5)

LEMMA 6.6. Assume that E,_\fi = fi and Ex_1gx = gk, where fi. and gy, k € Z, are
as above. Assume also that the estimate (6.5) holds. Then

Z Z (gr)r, Tro(f0) 0,

ReD' Q€Dr-good
L(Q)<L(R) (6.7)

o0

> e

k=—00

o0

> e

k=—00

<

~

LI(P@u; X*) L(Pw;X)
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Here and throughout the paper in what follows, we use the following convention
in order not to burden the notation too much: The duality pairing between elements
@ € X* and & € X is written in the simple product notation as ¢&. Thus, above, the
expression (gr)r, Tro(fo)o, 18 the duality action of (gr)r, € X* on Tro{fp)o, € X,
where this latter term is in turn the product of Trp € C and (fp)g, € X. (We keep the
scalar Trp in the middle to anticipate the operator-kernel case in which Trp € L(X),
in which case (gr)r, Tro{f0) 0, is the only logical order of the ‘product’.)

Proof. Consider first the part of the series where the ratio £(R)/£(Q) is a fixed
number 2", n € Ny, and 2 < D(Q, R)/¢(R) < 2*! for a momentarily fixed j € Ny. The
last double inequality will be abbreviated as D(Q, R)/¢(R) ~ 2. If moreover R € D;,
the estimate (6.5) reads as

|TRQ| < 2(k7n)a/22ka/2
WRIW(Qy) ~ 20w )

= 272k, (6.8)

First of all, we have

ID IS <gR>RuTRQ<fQ)Q.v'

keZ ReD}  Qeplecd

k—n

D(Q,R)/U(R)~2

= Z Z Z (gR)R“TRQ(fQ>Q,,‘

keZ QeDy_, ReD;,
Qs R-good
D(Q.R)/U(R~Y

-1/ /Q DD I ©9)

teZ SeDy—y

>3 8Q1Q”(x) > Trolgr)r,dP(e)du(x)

keZ QeDy_n 1(Qv) ReD;,
Qis R-good
D(Q,R)/¢(R)~Y

Tg
da Y > g, (QQ)<gR>Ru
keZ  QeDy_, ReD! Mo

Qs R-good

D(Q.R)/((R)~2

=

Li(P®uu;X*)

> esfs

SeD

L(P®u;X)

Reorganizing the summation, we have

ngfs

SeD

o]

> e

k=—00

L(PRu:X)

L(PRu:X)

and we are left with estimating the quantity

e Y Yo g, MTRQi) (gr)r,

keZ Q€Dy—p ReD;,
Qis R-good
D(Q,R)/«(R~Y

LiPoxt) (6.10)
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In order to estimate this quantity, we first prove that if Q € Dy_, and R € D; are such
that Q is R-good and D(Q, R)/¢(R) ~ 2, then

O C R €D iy whereo()=[ 2] 61
For this purpose we first show the following: for € Ny, we have
r<n+t= either 0 c R” or 0 c RV \ RY. (6.12)

The condition on the left hand side is equivalent to that £(Q) < 27"¢(R"). In order
to prove (6.12) we assume the opposite. Then there are points x € QN R® and y e
0N (RN \ RY). In particular, we find that Q N R # @, so that dist(Q, dR?) = 0.
However, by using Remark 2.6 and that Q is R-good, we have

dist(Q, aR™) > £(Q) (R~ > 0

because £(R") > £(R) > 27'¢(R) and ¢(R"V) > 2"¢(Q). This leads to a contradiction,
and (6.12) follows.
We are now ready to prove (6.11). Assume the opposite, that is,

QO ¢ RUFHIGH), (6.13)

Note that ¢ :=j + 6(j + n) > r, so that r < n + ¢. Hence (6.12) applies, and it implies
that 0 ¢ RV \ R®. Using this relation and Remark 2.6, we find that

oy k=m)y(1=y)k+0) _ g(Q)Vg(R(I))l—V < dist(Q, 8R(’))
= dist(Q, RY) < dist(Q, R) < D(Q, R) < 2*1¢(R) = 2 +!+k,

Simplifying this inequality leads to the estimate

. [ +n)+1
l_y(]"f‘l-i-)/ﬂ):j-f-y(llf)

S

<j4+6(G + n),

which is a contradiction by definition of ¢. It follows that (6.13) fails, so that (6.11)
holds true as desired.
Using (6.11) we can now reorganise the summation over Q in (6.10) so that

2 X =2 > X

0€Dy_, ReD; SED}ivo4n QEPk—n ReD;
Qis R-good ocs Qis R-good
D(Q.R)/U(R)~Y D(Q.R)/(R)~Y

For S, O, R as in the last summation, we denote

Tro  _. yonapry—ja RO _. 5(ripass TRQ.

W(RI(Q) 20nd m(S)’

where |Trol < |trol < 1 by (6.8) and the following estimates: 27%/> < 1 and

L(S) < 2AUAHOGEN) < pd(1+r/ 1=y ) pdletrH(+mer/4.

In the first inequality above we used (1.1), and in the last inequality we used the
assumption dy /(1 — y) < a/4, see (2.1).
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Foreach S € D,

et +6(4n)> define a kernel

Ks(,p)i= Y. Y. 1o (®)irolg,()
Q€D ReD;,

ocs Qs R-good
D(Q,R)/((R)~Y

Then Ky is supported on S x S (notice that RUTU+") = § because both of these cubes
from D;, +j8(n) contain Q) and |Ks(x, y)| < 1 since there is at most one non zero term
in the double sum for any given pair of points (x, y).

The quantity inside the norm in (6.10) is 2~"+)*/4 times

J+O(+n)

) o ¥ 20 [ K somoine. 614

S
ko=0 keZ:k=kg SED}Q+/’+0(/+») M( )
mod j+6(j+n)+1

where the fact that 1z gx = 1g,gr for R € D; was also used. For a fixed ko, the
series over k = ky mod j+ 0(j +n)+ 1 is of the form considered in Theorem 6.2.
Indeed, 15gy is supported on S € Dl/c+j+0(j+n)’ and it is constant on cubes Q' € D; | =
Diotjro(+n)» Where k' =k — (j+6(j +n) + 1). By Theorem 6.2 and the contraction
principle, the LY(P ® p©; X*)-norm of the quantity (6.14), for a fixed ky, is dominated
by a constant multiple of

Dea Y lsg

k=ky  SeD

<

~

L1(P®u; X*)

> e
kezZ

L1(P®u; X*)

,
k-+j+0+n)

The full series over k € Z consists of j+ 6(j +n) < n+j+ 1 subseries like this,
which implies that the quantity in (6.10) is dominated by

D g

keZ

CY D +j+ 1)

LI(PQu:X*)
Since this is summable over n € Ny and j € N, this proves the goal (6.7). U
7. Separated cubes. This section begins the case by case analysis of different

subseries of the series (5.1) to be estimated. We start by dealing with cubes well
separated from each other, and more precisely we prove the following proposition.

PROPOSITION 7.1. Under the assumptions of Theorem 1.7, we have

oY DR TSN S gl (7.2)
ReD’ 0€Dpegood
L(Q)<l(R)Adist(Q,R)

forevery f € IP(RY, u; X) and g € LYRYN, u; X*). Here 1/p+1/g = 1.

For the following lemma, we denote (gr)r, = (1rgk)r, = (gk) &, if R € D). Recall
that the auxiliary functions below are defined in (3.2) and (3.8).
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LEMMA 7.3. The left hand side of (7.2) is bounded (up to a constant) by sum of four
terms of the following form:

2N

2

ij=1

> > (gr)R, (¥R To.i){fo)o|: (7.4)

ReD’ O€DRgood
L(Q)<l(R)Adist(Q,R)

where, for fixed i and j,
& V) (Ex-1D{°g. 9%7) VkeZ AR €D, or
ks VRj) = 2 /
/ (1{bZ'2#bZ'fl}Ekg’ a)aR,j) VkeZ AR € Dk
and
o vor) = (Ek_lDZ'lf, go“Q"li) Vk e Z A Q € Dy or
O (g g B ) Vk € Z A Q € Dy.

In every case, these satisfy Ex_1gr = gr and Ex_1fi. = [

Proof. Using Lemma 3.9 and Lemma 3.3, we get

N

DG'f = (DG — g Eof =) ({05 ovg; — @giEof).
i=1
2N

Di’g = (D*Y'g — wi’Erg = ) (DX 8)r ¢ — 0k Erg).
j=1

(7.5)

Because supp(a)‘éyli) C 0; € 0, we have
.1 1 1
“)anEQf = “)aQ,ilQ(f)Q = “)aQ,iO()Q-

Similarly wﬁE RE = a)ﬁ (g)r. As a consequence, for every Q € D and R € D', we can
write (D% g, T(D‘é’lf)) as

2[\/
> {(Diszgm, (055 Tog (DG o, — () Rl Teg (DG o,
ij=1 (7.6)

— (DRe) k(@53 TOg) (o + (@) R0, ng,‘img}.

Thus, to conclude the proof, it suffices to consider the following computations and
their symmetric counterparts for the function f.
First, if (g. Yr,) = (Ex-1D}’¢. 95 ;). we have
(gr)r, = (1rgk)x, = (Exo1(1rD2g)) R, = (Dg’8),.

Hence, (gr)r Vr) = (D5%’8)r ¢ -
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2
Next we assume that (g, ¥z;) = (1 b ;ebgfl}Ekg’ wx;)- Now

<gR>R,- = <gk>Rj = (l{bz-z;gbz-_z]})Rj (Ekg>R, = (1{bzv3¢bzfl}>Rj (g)r (77)
but also
2 2 2 2
(g gz VR, @R = L (Lo sz 0 7) = Lro” = 0. (7.8)
Combining the identities (7.7) and (7.8) above, we get (gr)r Vr; = (g) Ra)‘,’gi. OJ

To proceed further we need two lemmata.

LEMMA 7.9. Let Q € D, R e D’ satisfy €(Q) < £(R) Adist(Q, R). Assume that
90, ¥r € L'(RY, u; C) are such that supp(pg) C Q, supp(¥r) C R, and

/(de[L =0.

00"
[(¥r, Too)| < W||@Q||L‘(u)|wfR||Ll(u)~

Then

Proof. See [13, Lemma 4.1]. ]

LEMMA 7.10. Suppose that R € D' and Q € Dpr.gooa U Dratr_gooq are cubes such that
£(Q) < L(R) Adist(Q, R). Then

UQ  _ UQPURI

dist(Q, R)d+« ~  D(Q, R)¥+« (7.11)

Proof. See [13, Lemma 4.2]. ]
We are ready for the proof of Proposition 7.1.

Proof of Proposition 7.1 By Lemma 7.3, it suffices to estimate (7.4). To this end, we
fixi,j € {1,2,...,2"}and denote (Y&, po) = (Yr,» ¢0,)). Combining lemmata 7.9 and
7.10 and using the properties of functions ¥ and ¢, that are described in lemmata
3.3 and 3.9, we have

_ UQI PRI

(¥R, Tpo)l S D(O. Ry (R)u( Qi)

if R e D" and Q € Dprgood satisty £(Q) < £(R) A dist(Q, R). Invoking Lemma 6.6 with
a matrix whose elements are defined by

Tro = (Vr: T9o) lo(0)<t(R)rdist(0.R) | 0D yo0» (7.12)
we see that the quantity (7.4) can be dominated by a constant multiple of

o0
> e
k=—00

o0

D ak

k=—00

(7.13)

LI(P@u; X*) L(Pw;X)
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To estimate these quantities, consider first the case f; = 1 (b 7ébZJ]}Ekf . In this case, we
have

fk = _l{bz-#bzfl}(Ekflf - Elcf) + l{bxl#b;‘{fI}Ekflf-

Using the contraction principle, UMD-property of X, and Lemma 4.3 we get the

estimate
o0 o0
3 e <| ¥ e
P Lr(P@u;X) P Lr(P®u;X)
00 o0 (7.14)
o0
+ Z Ekl{bz'l¢szl}Ek71f 5 Hf”p
e —oo Lr(P@u;X)

Next consider the case f; = Ex_1 Dy 'f. Invoking Stein’s inequality and then using
Theorem 4.1, we obtain the estimate

o0

D ae

k=—00

S -

Lr(P@u;X)

in this case. Combining these estimates with analogous estimates for g, we obtain the
upper bound C|igll,|lf ll, for (7.13), and therefore also for (7.4). O

8. Preparations for deeply contained cubes. In the analysis of (5.1), we move on
from the separated cubes to ones contained inside another one. To streamline the
actual analysis, we start with some preparations. We will be summing over cubes of the
following type:

LEMMA 8.1. Let R € D" and Q € Dp_gooa be such that Q C R and £(Q) < 27"L(R).
Then Q C Ry for some child, denoted by R, of R.

Proof. Denote by R; any child of R for which R; N Q # @. It suffices to show that
O C R,. Note that £(R;) = 27'¢(R) and £(R;) > 2"£(0). Because Q is R-good, we can
invoke Remark 2.6 in order to see that

dist(Q, 9R)) > £(Q) ¢(R))'™ > 0.

Because Q N Ry # @, it follows that Q C R;. Il

Let Q and R be such cubes that are considered in Lemma 8.1. The children of R
are denoted by Ry, ..., Rov. However, we choose the indexing such that Q C Ry, see
Lemma 8.1. The indexing of children depends on Q; in particular, R = R;(Q) depends
on Q. We will not indicate this dependence explicitly.

The children of Q are denoted by Qy, ..., O~ in some order.

Let u,v € {1,2,...,2")} be fixed. Here we consider a matrix {TZQ} satisfying the
estimate

I Tkol <<£(Q)>a/2.{M(R)1 ifu1, 62)

w(RHIW(Qy) ~ \L(R) wR)™ ifu=1,
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LEMMA 8.3. Let {f; € LL .(RY, w; X)}kez and {gi € LL (R, 1u; X*)}rez be such that
Ei_1fx = fi and Ex_1gx = gi for every k € Z. Then, under the assumption (8.2), we have

Z Z (gR>RUTIuQQ(fQ>Qv‘

ReD"  Q€Drgood
OCR,
UO<2"UR) (8.4)
o0 o0
S| Y e Y e :
a0 Leewxy | e lo@ew)

Proof. Consider first part of the series where the ratio £(Q)/£(R) is a fixed number
27" withn e {r+1,r+2,...}. If R € D}, the estimate (8.2) reads as

Tll -1 .
i g 2—n(x/2 . /L(R) 1 lfu ?é 1s (85)
/-’L(RM)I'L(QU) M(Rl)_ ifu=1.
Adapting (6.9) to the present situation yields the estimate
YT @rIrTaolfo)o,
keZ ReD;  Q€Dy_y,
Qs R-good
OCR,
Tro
<> esfs Ddoew Yo Y, g, (gR)R, :
SeD LD®ewX) N kez  QeDiy  ReD, w@Qv) LIPRu; X*)
Qs R-good
OCRy
Reorganizing the summation, we have
oo
> esfs = D afi
SeD Lr(Pu;X) k=—00 Lr(PRu;X)
so that we are left with estimating the quantity
ICO DD DERFEL T
&k 0y 8RIR, :
keZ  ReD, QeDi, wQv) LIP@u:X7) (8.6)
Qs R-good
OCR,
Foreach R € D;{ and m € {2, ..., 2"}, define kernel
RO
KR(x, ) := 2" (R) 1r(X)1g,(X) ——=————1g, ().
: (E L QIR
Qs R-good =lg,(x)
OCR,
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For S € D, _,, we define

1
Tst

TR B

Ky(x,p):=2"" 3" u(S)1s(x)1g,(x)

0€Dy—y _
Qis SM-good =lo,(¥)
ocs

We have

oN
IKSGe )+ > KRl S 1

m=2

by using (8.5) and the fact that there is at most one non zero term in the sums above for
any given pair of points (x, y). In the sequel we will use one of these kernels, depending
on the value of u. If u # 1, then K% is supported on R x R. If u = 1, then K% = Kl is
supported on S x S.

The quantity inside the Z”-norm in (8.6) is 27"/

2., where

1
no=Y e Y 2 e pIndn). il g9,

kez  rep, M (R) Jr

and

Ls(x) 1 '
Te=) & Y Ks(x, sOgrdpu(y).  ifu=1. 8.8
keZ  SeD;_, M(S) /S ’ &

Here the fact that 15, gr = 1g,gr for R € D; was also used.

Then we do a case study; assume first that u # 1. Then 1zg; is supported on
R e D, and it is constant on cubes R € D;_;. The tangent martingale trick (see
Theorem 6.2) implies that the LY(P ® u; X*)-norm of the quantity (8.7) is dominated
by a constant multiple of

ZSk Z 8R

keZ  ReD;

> e

keZ

(8.9)

Li(P@u;X*) Li(P@u:X*)

Then we assume that u = 1. In this case 15gy is supported on S € D,_,, and it is
constant on cubes R' € D, _,. The tangent martingale trick (Theorem 6.2) implies that
L1(P ® u; X*)-norm of the quantity (8.8) is dominated by a constant multiple of

e Y lsgk

keZ  SeDj_,

<

~

Li(P@u; X*)

> egk (8.10)

keZ

Li(P@u;X*)

Combining the estimates (8.9) and (8.10), we find that the quantity in (8.6) is

dominated by
szna/2 Z Ergk
keZ Li(PRu;X*)
This is summable over n € {r + 1, r + 2, ...}, and therefore we obtain (8.4). O
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9. Deeply contained cubes. During the course of Section 9 and Section 10 we
establish the following estimate for the part of the summation in (5.1) involving deeply
contained cubes.

PROPOSITION 9.1. Under the assumptions of Theorem 1.7, we have

> Y (DFPe TG M| S Il 9.2)
ReD'  Q€Dgogood
OCR

UO)<27"UR)
forevery f e I/(X)andg € LY1(X*). Here1/p+1/qg = 1.

Let R and Q be as in (9.2). Recall from beginning of Section § that Ry, ..., Ry~
are children of R such that Q C R; € R. By the proof of Lemma 8.1, we get

2"=1p(0) < £(Q) U(Ry)' ™Y < dist(Q, dR,), me{l,2,...,2V). 9.3)

This is a useful inequality later on.
v
Writing 1z = an:l 1g, and using that supp(D’I’gzg) C Ryields
2N
(D%’g. T(DG'/) = (1x, D5’ TG 1) + D _(1&,Di’g. T(DG'1)). ©4)

m=2

The point is that Q is contained in Ry, so Q is separated from the children Ry, ..., R,,.
Hence, arguments developed in Section 7 can be applied to these terms. Treating the
main part of the term associated with the child R; requires so called paraproducts;
these are discussed in the following section.

Let us sketch what are the estimates that are performed in the remaining part of
this section. First we will show that

2N
SUY D (gD T(Dg‘f>>'5|wp||g||q. 9.5
m=2" ReED' Q€Dp.good

QOCRy

L(Q)<27"L(R)

Then, in order to treat the remaining (first) term on the right hand side of (9.4), we
write R = RV \ Ry and

(g)r (g)r (g)r (g)r
1 lDaY2 = 1 1 <b a L b c/—> = 1 — 1 c (b @ L — b @ )'
fiER &= TR\ PR (bR R, K bro)r ( w)| P {Ore) R, “brir

In this section we establish the estimate

(g>R| (g>R a,l
1re| bge —bpa , T(DS < . 9.6
S % (b~ e ) Ty S ks 09

ReD" Q€DRrgood
OCRy
LQ)<27"UR)

The remaining term is treated in Section 10 by using paraproducts.
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Proving estimate (9.5). Proceeding as in the proof of Lemma 7.3, we see that the
left hand side of (9.5) is dominated by a series of four terms, each of them being of the
form

2N 2N

2.0

m=2ij=1

) (grrYrim Teofo)ol- ©.7)
ReD’ QEDR-good

OCR,

2Q)<27"U(R)

where we denote (gr)r, = (1rgk)r, = (gk)r, if R € D) (similarly for /), and the four
summands are determined by the following possibilities:

@k Vrjm) € {E-1DP g, 1o, 07 ) (L2 ez By 1R, 053)) 9.8)

and
(frs 00.) € (Ex1 DY £ 051, (Lt ot Erf' 03)- 9.9)

Note that, in any case, E;_1gx = gx and Ey_fr = fx.

LEMMA 9.10. Assume that R € D" and Q € Dr.gooa» @ C Ri and £(Q) < 27"L(R).
Let g jm m > 2, and g ; be any of those functions that are quantified in (9.8) and (9.9),
respectively. Then T‘}QQ = (Yrjm Tooi), i,jell, ..., 2N}, satisfies

Thol  _ (UO\
M(Rf)u(Qf)N<€(R)> HE)™

Proof. Because m > 2, we have QN R, C Ry N R,, = ¥ so that

L(Q) < dist(Q, IR,,) = dist(Q, Ry)

by (9.3) and the assumption that 1 < 2"1=") see (2.1). We also have £(Q) < £(R,,).
Hence, by using lemmata 7.9 and 7.10, the properties of functions ¥z ; , and ¢ ; that
follow from lemmata 3.3 and 3.6, and (1.1), we obtain

_ QIR

(YR jm Too.i)| S D(O. Ry 1R jmll L wyll0.ill L)
£ m

2 2 9.11)
< (“Q)) IR jmlLige0.ill Lt (“Q)) w(R)u(Qi)
~\LUR) £(R) ~ \UR) wR)

This is the desired estimate. O

Combining lemmata 8.3 and 9.10 and then estimating as in the end of Section 7,
we see that the quantity (9.7) can be dominated by a constant multiple of ||f1|,llgll,-
As a consequence, we see that the left hand side of (9.5) is dominated by a constant

multiple of ||fl,1Igll4-
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Proving estimate (9.6). Let R € D). We write

L <bRa @ bR ()r > = LgebRro(sk)r, + 1R;DRChi) Ry + LR DR (UK Ry 5

"{bre) R, (bra)r
where
_1 Ei_18 Eig
= =) E1b{?, - Edb?)
and
Ei_1g Erg
hk =102 a2 —_—, Uy = —1,02 a2, —.
{bk,15ébk }Ek_]bz_zl {b;\»,ﬁﬁb/‘» }Ekblﬂ(,z

By (7.5), we see that the left hand side of (9.6) can be dominated from above by a sum
of six terms, each of them being of the form

2N
U > @RI (YR Teonfolo,|. 9.12)
i=1 ' ReD’ QEDgood

OCRy

L(Q)<27"UR)

where (gr)r, = (1rgk)r = (gk)r, If R € D (similarly for f), and the six terms are
determined by the following choices:

(ks ¥R) € {(sk, 1R;DRe), (hicy 1R5DRe), (e, 1 e DRa)} (9.13)

and
(i 90.) € (B 1D 1, 051, (Lo sy | Eifs o). (9.14)

Note that, in any case, E;_1gx = g and Ey_fx = f.

LEMMA 9.15. Let Y and @g ; be any of those functions that are quantified in (9.13)
and (9.14) for R € D" and Q € Dp_goou satisfying Q C Ry and €(Q) < 27"4(R). Then
T}QQ = (Yr, Tpg,i) satisfies the estimate

I Tkol _ (HQ))W?

(0 ~ \eR)

Proof. Denote by y¢ the midpoint of Q. Let x € R{ and y € 0. By (2.1), (9.3) and
the fact that O C R;, we have

2y — yol < 2071¢(Q) < dist(Q, 3R) = dist(Q, RS) < |x — yol.
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Using the kernel estimate (1.3) and the facts [ ¢ ; = 0 and supp(gp ;) C O, we get
[(¥r, T,

=\ [, ] (K s, = K. o)) 0o

(9.16)
/(/RN = yol”. |00 Mdr(y)du(x) < ||<pQ,i||1/ %d“(x)

|x —yo |x — yold+e R |

Denoting 4; = {x : 2*dist(RS, Q) < |x — yol| < 2F1dist(RS, Q)}, we can estimate the
last integral as follows

E(Q)a E(Q)a
/R‘ T yglre 1) = Z/ rdisuRs, gy Y

< Z UQ)* 1(B(yg, 2" dist(RS, 0)))
(2K dist(RS, Q)i+

9.17)

< _ Loy ZL <(_ Q) '
~ dist(R{, 0)* — 20k~ \ dist(R{, 0)
This can be further estimated by using that y < a(2(d 4+ a))~' < 27!, see (2.1).
Combining this with (9.3) yields the estimate
€O)"2UR)'? < £(QY LR < dist(Q, IRy) = dist(Q, RY).

Substituting this into (9.16), we find that

U (o) \*"?
KR, Too)l S (dlst(R", Q)) lpo.illl < (Z(R1)> llpo,ill
This is as required because ||pg ;1 < 1(Q;) and €(R;) = 27 1¢(R). O

Combining lemmata 9.15 and 8.3 we find that each of the six terms of the form
(9.12) are bounded (up to a constant) by

(o]

> e

k=—00

oo

2. el

k=—00

L1(P®u:X*) Lr(Peu:X)

At the end of Section 7 we verified that the second factor above can be dominated by
If1l,- Hence, it remains to verify the following estimate,

oo

> e

=

S lgllg- (9.18)
Li(PQu; X*)

The cases g € {h, ux} have been cleared in connection with the separated cubes: (9.18)
follows from the contraction principle and (7.14) if we recall that IEka’2| > 82 u-almost
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everywhere. The remaining case

Gm =1 2( Ec1g Ekg)
Bin =) Ek—le’_zl Eka'z

is treated by Lemma 4.5.
This concludes the proof of estimate (9.6).

10. Paraproducts. In order to finish the proof of Proposition 9.1, we still need to
establish the following estimate

DS <bR7 Bk, (8 T(Dglf)>‘§|m|,,||gn,,.

ReD" QDp.good (bRT R (bredr

OCR
LQ)<27"UR)

10.1)

We will draw inspiration from the work of Hytonen and Martikainen [6], and the
following standing assumptions in Theorem 1.7 are crucial while proving (10.1):

e X*is an RMF-space;
o || T*b% |l 1~®y 0y < 1if Ris a cube in RY.

For Q € D and R € D', we denote

1, if Qis R-good, Q C R, and £(Q) < 27"¢(R);
XO.R = .
0, otherwise.

Suppose that xp g = 1. Then we write

(&) R,

GQyR = belf

for a quantity that depends on Q and R, as R; stands for the child of R for which
QO C R. Using the notation above, we can rewrite the left hand side of (10.1) as follows

> (GQ,R’T(Dzlf»‘ =‘Z< 3 GQ,R,T(Dg‘f)>‘. (10.2)

ReD’ QeD QeD ' ReD’
XQ<R:1 XQ.R=1

It is straightforward to verify that, if xo g = 1, then xo grm =1 for every m € Ny. It
follows that, if Q € D and the inner sum on the right hand side is nonempty, there
exists a unique cube S = S(Q) € D’ containing Q such that yp r =1 if, and only
if, S C Re D' If the inner sum in question is empty, we let S = S(Q)=0. As a
consequence, if S(Q) # 9,

Z Gor = Z Go.r = bs: (g)s — bg, (&) my

e ot (bsa)s (Dro)m¥
XQ4R:1 SQR
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Substituting this identity to the right hand side of (10.2), we get

Z< > GQR,T(Dalf)> <|l'[gf|+‘ Z <T* (&R D21f>

QeD ' ReD' <bRO> (10.3)
xo.r=1 S(Q)#J
where the paraproduct operator g — Tlg is defined by
. a,1 % a,1 %
ng= Y b ) Do PG Tbs) = 3 37 G (DG (T he). (104)
QeD ReD' QeD
S(Q)#£0 S(Q)=R

Throughout the rest of this section, we will prove the following estimates:

PROPOSITION 10.5. Under the standing assumptions, the paraproduct just defined
satisfies

K. NS I 1pllgly: (10.6)

and we also have the estimate

> (e,

S(Q)sﬁ(/)

- D 1f>‘ S pllglly- (10.7)

Observe that these estimates imply (10.1) which in turn, combined with estimates
in Section 9, implies Proposition 9.1.

Proving estimate (10.6). Here we will concentrate on paraproducts, and begin
with the following lemma.

LEMMA 10.8. Suppose that t > q Vs, where X* has cotype s. Assume that a sequence
{dj}ez of functions RN — LY(Q; C) satisfies d; € L'(RN; L'(Q; C)), then

Y ediEg

jez

S HdiOl@:o ezl cary - gl a@y:x+).-
L@ xRN L(Q: X))

Proof. This will be a special case of Theorem 3.5 in [4], which says that

Y ediEg

jeZ

S MO, Yezllcary - 1181l sy xy),
L1(Q*xRN; X3)

whenever X7, X», X3 are three Banach spaces with X having the RMF property, and
X, € L(X1, X3) embedded in such a way that the unit-ball By, is R-bounded.

Denote X7 = X*, X; = L'(Q;C), and X3 = L'(Q; X*). Then X is an RMF space
by assumption. By the result of [4] just stated, it suffices to verify that the closed unit
ball of X; is a Rademacher-bounded subspace of £(X}, X3) when the action of p € X,
is defined by

Xioaxe p(x):=pQ®x:pQx(e) = p(e)x.
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To this end, let {p; : j € N} be a sequence in By, and {x; : j € N} be a sequence in X*.
By Fubini’s theorem and Proposition 2.4,

1/t 00
(e zs o] ) =|Temes
=1 LH(QL1(Q4X))
o0
Ze X; < (Ey Zsj‘ij
LI(Q*:X*) =1

LI(Q:X*)

t o\ 1/t
X*)

< SUP lojll o) -

\—,_/ j=1
<1
By Kahane—Khinchine inequality, this is as required. U

We need further preparations for establishing (10.6).
Recall that D' = (D')? — wf;' Eg by (3.10). Denote

Xo = 1QXk71 = lQl{bZ;ll#bz.l}, lfQ € Dy. (10.9)

By Lemma 3.6, we have w‘él = XQw‘él. Furthermore, xoEof = Er—1(xoEof) if O €
Dr. Hence, we can write

1-[, = s *T*ba,Da’l
(Mg, f) QXZ; a5 (D) (T7bs). D)
S(Q)#0
(8)s | alnw
-2 (g T*bse, Eiog,e0)-1(x0Eof))
o (bs)s
S(Q)#J
:/< Dtl 1)*(T*bSu) ZgQ, >dP(8)
QeD 0eD
S(Q)#9
/< Z Q Elogz(e(Q)) l(wQ T*bsa), ZSQ/XQ/EQf>dP(5)
Q'eD
S(Q)#“

Taking the absolute values, and using Holder’s inequality, we get

D eo

|<ng,f>|sH S o5 (Dl (T )

Q/
0eD (bS“)S 7" geD
S=S(Q)4#
(&)s 1
H 0 e Eiog,e(0)-1(@g T"bse) Z EQXQ
0eD S8 0'eD
S=S(Q)4#

Using (2.10) and contraction principle, followed by Theorem 4.1 and Lemma 4.3, we
see that |(I1g, /)| is bounded by a sum of two terms, both of them being (a constant
multiple) of the general form

Z Z €070 R (E)R

ReD QeD
S(Q)=R

, Wl (10.10)
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Here the two terms are determined by the following choices:
. € (DG (T bre), Euogyeiop-1(@g T*bro)}. (10.11)
Observe that, if R and Q are as in (10.10), then
To,re = 1R Re. (10.12)

In order to estimate quantities of the form (10.10), we will use the following lemma.

LEMMA 10.13. Assume that U € D" and t € (1, 00). Then

Z Z EQTQ, U«

ReD":RCcU Q€D
Ri=U1 S(Q):R

< w1, (10.14)
L'(RN xQ;C)

Proof. Denote h = T*by. and first consider the case mp y« = (D‘él)*(h). Because
0 c S(Q)if S(Q) # ¥, we see that the left hand side of (10.14) is

Yo D oD uh)

ReD':RCU Q€D
R'=U"" S(Q)=R

=
t

> eo(DG) (1uh)

QeD !

Using Theorem 4.16 with X = C, followed by (1.6), we find that the last quantity is
bounded by a constant multiple of

okl L@y ey < Il sy ol Lol ey = w(O)Y 17| @y ey < Bu(U)Y.

This is the required estimate in the present case.
Then consider the case

QU = E]ng(g(g))_l (w[élh)

Recall that the expectation is taken with respect to Diog,(¢(0)—1- By the contraction
principle and the facts that Q € S(Q)if S(Q) # #and w§;' = xpw' . see (10.9), we get

Z Z EQT,Ua

ReD:RCU Q€D
R'=U"" S(Q)=R

1
< Z &‘QXQElogz(l(Q))*l(wZZ Luh)

t QeD t

S k-1 Y 1oEri(@g' 1uh)

t

kez QeDy
3
S ZstkflEk—l(wZ lyh)| .
keZ t
. 1
Here yi_1 = l{bz;lﬁébz.l} satisfies xi—1 = Ex—1xk—1. Also, supycz llwg iz~ <1 by

Lemma 3.6. Hence, by Proposition 4.18 with X = C,

> et Eeoi(oof  1yh)
keZ

S Hxidkezllcar oy - IT0hll LY )
!
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Using (1.6) and reasoning as in the proof of Lemma 4.4, we conclude that the right
hand side above is bounded by a constant multiple of u(U)!/". ]

We finish the proof of (10.6).

Recall that it suffices to estimate (10.10). Fix a real number ¢ > g Vs, where
s € [2, 00) is such that X* has cotype s. Let us also introduce Rademacher variables
g’ = {exlrep € Q' that are independent of {ep}pep. By (10.12)

Z Z €070 Re (&) R

ReD' QeD LI(RY x 2;X*)
S(Q)=R
=X 8%( 3 SQ”Q,RH)IR(g)R (10.15)
ReD’ 0eD L1( xRN x Q; X*)
S(Q)=R
By Holder’s inequality (10.15) is bounded by

> eidiEg <| D ¢dEg , (10.16)
jez LI(2* xRN x Q;X*) jez La(2* xRV LI(Q:X*))

where e* = {¢} : j € Z} € Q* are Rademacher random variables and

di:RY - L'(Q):x+— (e > Z Z 8Q7TQ’R!1(X)).

ReD; Q€D
S(Q)=R

Concluding from above and using Lemma 10.8, we see that left hand side of (10.15) is
bounded by (a constant multiple of)

1
sup —— - | 1p ) 14O @o) gl
(P20 uiP) JY=UP) L'®" x2%R) (10.17)

=3(P)

To estimate the Carleson norm, we fix P € D’ for which u(P) # 0. By (10.12),

/
D ek

Z anQ,R“
ReD’ QeD

RCP S(0)=R

2(P) =

L(Q:0) | /RN x/;0)

By Khinchine and Kahane—Khinchine inequalities,

2 1/2
z(ﬂg”(Z > eomore ) (10.18)
ReD’ QED LZ(Q;C) L‘(RN;C)
RCP S(Q=R

https://doi.org/10.1017/5S0017089514000123 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089514000123

62 TUOMAS P. HYTONEN AND ANTTI V. VAHAKANGAS
Since L*(2; C) has cotype 2, see (2.3), we obtain

Ze}( Z EQTQ, Re

ReD’ QeD
RCP  S(Q)=R

5P < H

LA L2(2:C)) | L{(RY;C)

=2 % coron 1T X comor]
ReD' Q€D LX(Q;C) | L'(RN;0) ReD' QeD LY(RN xQ;C)
RCP §(Q)=R RCP S(Q)=R

Suppose that M € Ny is such that P* € £),. Because cubes in a fixed layer L],
m > M, are disjoint, we can estimate as follows

SPS| DD D eomop
ReD':RCP QeD LIRY>20)
R'=PT S(Q)=R
~ , 11 (10.19)
Y (2] Z Zeomed )
m=M+1 > Uec, " ReD:RCU QeD LRV 2C)
uge R'=U S(Q)=R

Using Lemma 10.13 and Lemma 2.12, we can estimate the right hand side of (10.19)
as follows

00 1/t
SP S uP) + Y ( ) M(U)>

m=M+1 N UeL,:UCP

oo
Su@ Yy (=) TIPS (),
m=M+1

The proof of (10.6) finishes by substituting the estimate above in (10.17).

Proving estimate (10.7). Randomizing and using Holder’s inequality as in
connection with the paraproduct operator, we get

(g)rV a1
T*br, ————, D%,
‘ Z < Fo (bro)ry @ f>‘

QeD
S(0)#9
S HQwvl - 1l - {H > eo(DG) (T br,)| + ‘ > " &0 Eiogyuoy-1(@} T*br,) }
QeD q Q€D q

Observe that [(g)gv| < w(RY)~4|gll,. Hence, it suffices to show that the quantity
inside the parentheses is bounded by a constant multiple of u(RY)!/4.
To this end, we first use Theorem 4.16 with X = C and (1.6), we get

|
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On the other hand, since the family {E}}rez of operators in LY(RY, 1) is R-bounded
by Stein’s inequality [15], we find that

1
H > e0Eogoy-1(@5 T*br,)

QeD q
1 1
= | > eE1(of T*br)| S IT brylloo|| Y ek
keZ q keZ q

By (1.6), we have || T*bg,|lcc < 1. Because |a)Z'1| S Lype 26y -almost everywhere, see

Lemma 3.6, we can use Lemma 4.3 with / = 1 for

E eka’l

keZ

Sy S w®RY)YVe,
q

This conclude the proof of estimate (10.7).

11. Preparations for comparable cubes. During the course of the present and
following section, we prove Proposition 11.2. It controls a part of the summation in
(5.1), involving cubes that are close to each other in their position and size.

We write Q ~ Rfor Qe Dand R € D' if

27(R) < £(0) < ¢(R) and dist(Q, R) < £(0) = £(Q) A {(R). (11.1)

Note that if Q ~ R, then £(Q) < £(R) < D(Q, R) < (2 + 2")¢(Q), so that all of these
quantities are comparable.

A few words about implicit constants: In the previous sections we have performed
estimates where the implicit constants can depend on the parameter r, introduced
in Section 2. At this stage we introduce two new auxiliary parameters n € (0, 1) and
v € (0, 1). In the sequel we need to keep track of the dependence of estimates on the
parameters r, v and n explicitly.

For the following proposition, we recall that all UMD spaces have a finite cotype.

PROPOSITION 11.2. Under the assumptions of Theorem 1.7, we have

Y. ) (DRe T(DG)

RED' Q€D gooa (11.3)
O~R

< (CGrm, v) + (Ca o + CEOMYNT N eeruxn ) gl Lagex 1 e x)

ED ED/

foreveryf € I’(X)andg € LY(X*). Here 1 /p+ 1/qg = 1landt > (s Vv q) V p, where both
X and X* have cotype s € [2, 00).

The strategy of the proof of this proposition is as follows: at the end of this section
we consider a separated part of the summation in (11.3), where expectations over dyadic
systems are not required. In the following section a (more complicated) intersecting
part of the sum in (11.3) is treated, and the expectations are crucial therein.

Here are preparations for the proof of Proposition 11.2: given R € 7', there are
at most C = C(r, N) cubes Q € D satisfying (11.1). Hence, without essential loss of
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generality, it suffices consider a finite number of subseries of the general form

EpEp

Y (DFe. T(DG' 1), (11.4)

ReD’

where O = O(R) € Drgood inside the summation satisfies O ~ R. At this stage we
fix one series like this, and the convention that Q is implicitly a function of R will
be maintained without further notice. Furthermore, without loss of generality, it is
possible to act as if the map R +— Q(R) was invertible, so that (11.4) could also be
written in terms of the summation variable Q € D.

Proceeding as in Section 9, we find that (11.4) can be dominated from above by a
sum of nine terms, each of them being of the general form

2N
Z EpEp

bj=1

> (gr)r (1r ¥R T(Lo, @) f0)ol- (11.5)

ReD'

where (gr)r, = (1rgk)r, = (k)& if R € D) (similarly for /’s), and the summands are
determined by the following choices:

(8ks Vry) € {(Sks bre), (hic, bre), (i, bre)} (11.6)
and
(fi» 90.1) € {(k, boe), (hic, boy), (Hik, boe)}. (11.7)

Here

S =142 z( Ei-18 — Ekg) Sk =1 1< Ek_]f‘ — Ekf )
Bin =) E by, Eb? ’ s =he Ec by Eb! ’

Ei18 Ef
hk—l a.2 a2y — %, hk—l a1 a1y ——————
b ﬁéb }E—lbzzl b ﬁéb }E bal
and
— Eg o _ Evf
Up = — buzﬁéba }Ebaz’ U = — ball#bul Eb“l

Observe that, in any case, Ex_1gx = g« and Ex_fi = fk.
Fixije{l,2,...,N}.
For each cube Q in RY, define the boundary region

8o :=U+mo\(1-n0,

where the parameter n > 0 is to be chosen later. If R € D’ and Q = Q(R), we write

Qs :=0iN 52 ;0 Oisep = (0i\ Qi) \(QiN Ry, Ag, == (QiNR)\ Ois;
Riy:=RiN8p; Risep =R\ R\ (QiNR);  Ag :=(QiNR)\ Ry
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Observe that the following unions are disjoint:
0i=Ag,UQiscpUQiy, Rj=Ap URjspUR;y.
Hence, we can write the matrix coefficient in (11.5) as
(ArVr)» T(lo.wo.)) = (1R, ¥rj» T(1o.00.)) + (1, ¥r)» T(10,90.i)
+ (Lag ¥rj» T(1ag 90.0)

+ (Lag ¥rj» T(1g,,90.)) + (lag ¥r)» T(lg,,90.0)
= Ml(R) + Mz(R) + M3(R) + M4(R) + Ms(R)

(11.8)

Using these preparations, it suffices to estimate the following quantity:

EpEp| Y (gr)r (Mi(R) + My(R) + M3(R) + My(R) + M5(R)){fg)g,|.  (11.9)

ReD'

wherei, j e {1,2,...,2"}and Q = Q(R) € Dr-good satisfies the condition Q ~ Rinside
the summation.

The separated part. Recall that our aim now is to prove Proposition 11.2. We
have reduced this to a problem of estimating the sum (11.9) involving, among others,
terms of the form

Mi(R) + Ms(R) = (1g,,¥r,» T(10,90.)) + (lag Vrj» T(1g,,90.0)):

where O = Q(R) € Drgood satisfies O ~ R. In both cases, M; and Ms, the two
indicators are associated with sets separated from each other. Hence, a decoupling
estimate can be used to establish the following lemma.

LEMMA 11.10. Suppose that f € L?(RY, u; X) and g € LY(RY, u; X*). Then

3 (gr) g (Mi(R) + Ms(R))<fQ>Q,‘ < € mliglglf -

ReD’

Proof. We focus on summation over the terms M (R). The treatment of summation
over the terms Ms(R) is analogous. If R € D" and Q € Dp.good satisfies £(Q) < £(R),
we write Tro = lo=gr)({1Rr;., ¥rj» T(19,%0.1))- It suffices to estimate the series

Y= Z Z (gr) R TrO(f0) 0:-

ReD’ QEDR-good
UD=UR)

Assume that Trg # 0 inside the summation. Then Q = Q(R), so that Q ~ R and, by
(1.4) and (1.2),

ool =| [ [ K o (Mo

_ MRisep)(Q) R (i) UOIPUR)? '

= G5 Ry, O C(n) (R =~ Co(R)(Q:) DO, Ryt
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Using Lemma 6.6 and then estimating as in the end of Section 9, we find that

)
3 s
k=—00

o]

2 e
k=—00 U(P®M;X)

IZ] < C(rm) S Clrmlighgllf -

Li(P®uw; X*)

g

12. Intersecting part of comparable cubes. In this section we deal with the
remaining part of the comparable cubes, finishing the proof of Proposition 11.2. This
will be the most technical part of the entire proof: It still involves various further
decompositions and case-by-case analysis, until all different pieces are finally estimated.

Recalling the preparations in Section 11, we observe that it remains to estimate a
summation like (11.9) but involving only terms of the form M3(R) + M3(R) + M4(R).
Part of this summation involves boundary terms that are handled by probabilistic
methods, e.g. by taking expectations over the random dyadic systems D and D', but
we will also introduce a third random dyadic system D*. The assumption that there is
an L*-accretive system for 7* is used to handle the non-boundary terms.

We aim to prove the following lemma.

LEMMA 12.1. We have

EpEp| Y (gr)r, (Ma(R) + M3(R) + My(R)) (fo)o,

ReD’'
< (€, v) 4+ (C v+ COMY T N ey ) g Lou ) U 1 e -

The proof of this lemma is a consequence of various lemmata, namely: 12.13,
12.15, and 12.18. Let us briefly indicate the structure of the proof. Since M>(R) and
M 4(R) are so called n-boundary terms, the main difficulties lie in estimating summation
involving the term

M3(R) = (lag ¥rj» T(1ag,90.)) = a1(R) + a2(R) + a3(R),
where the last decomposition depends on a new random dyadic system D*, see (12.3).
The terms a>(R) and a3(R) are also n-boundary terms.
The term «(R) will further be expanded in (12.4) and Lemma 12.5 as
a1(R) = A1(R) + A>(R) + A3(R) + (A3(R) — A5(R)),
where 4(R), A>(R), and A5(R) are so called v-boundary terms. Hence, the main

obstacle is to estimate A3(R) — A5(R); the assumption that there is an L*°-accretive
systems for 7* will be exploited here.

Decomposition of M3(R). In order to decompose M3(R), we first introduce a
random dyadic system

D" =D(B")
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that is independent of both D and D'. Fix j(n) € Z such that /64 < 270 < 5/32. Then,
for every R € D', we define a family

G = G(R) := Diog,(y)
of cubes with side length
s =206Q) = 27 - (UQ) A UR)). (122

where Q = Q(R) € D. More precisely, G is a subfamily of D* that depends on R,

0 = 0(R), and .

Let A Ag C QiN R; be the following adaptations of Ag, and Ag to G. If
necessary, we enlargen the latter sets so that, if G € G, either at least one of the two
intersections G N AY and G N Ag is empty, or we have G N Ag =GN A,% =G and
5G C OiNR,. Moreover this is done in such a way that we can wrlte

A, = Ag UA]

g _ K]
0 ARj_ARjUARj

both as disjoint unions, so that AZ’QI_ C Qis N R;and A%i C R;3 N Q;. Observe that
M3(R) = (lag Vrj» T(1ag,90.0))
= (lA‘;;j Vrj» T(155 90.1)) = Tag V&g T x5 00.)) = (lag ¥ry» T(1py 000 (12.3)
=: a1(R) + a2(R) + a3(R).

The terms in this decomposition depend on D*.
In order to define v-boundary terms, we let R € D’ and write

G, =GR = ] 84 8¢=010+v)G\(1-v)G.
GeG(R)

We also write G = G\ G, if G € G = G(R). Define
Ay, =A NGy,  Ag =A}\G,
and similarly for A%/. Then we have the disjoint unions
A%, = Ay UAy, A% = Np UAg.
Hence, we can write
a1(R) = <1Agj YR T(IAZ[SDQ,[))
= (lA’Rj YR, T(IA%i(pQ,i» + <IAR]. Vrj» T(ay, 90.4)) + (IARI Ve T(1x,000)) (12.4)
=: A1(R) + A2(R) + A3(R).

Estimate for a non-boundary part. We need to extract the non-boundary terms.
This is done in the following lemma which gives us a decomposition of 43(R); therein
A3(R) — A5(R) is a non-boundary term. The proof of the lemma uses the fact that
there is an L°°—accret1ve system for 7*.
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LEMMA 12.5. Let R € D'. Then A3(R) can be written as A5(R) + (A3(R) — A;(R)),
where

|43(R) — A3(R)| < C(r, n, v)u(Qi N R;)

and there are functions bg ;- RN — C, satisfying |br.c 1~ S 1if R€ D and G €
G(R), such that

AR = > (lgbray Tl o e90.0))-

GeG(R)
C g g
GCAGNAG,

Here G =G\ G, for every G € G(R).

Proof. We expand A3(R) into a double series, where a typical summand is of the
form

<IGIAR/¢RJ’ T(IHIAQ,QQJ»’ G, H e g (126)

Let us begin with estimating these quantities, and there are two cases to be treated.
First, if G # H, then

Q) < C(n, v)dist(G N Ag,, HN Ag).
Hence, by (1.4) and (1.2),
(61a, Vo Tl s, 00,0
| . o, PRI g0 ) 127

w(Qi N RYu(Qi N R))
Q)

Here we also used the facts that AR/. U AQ,. C OiNRjand u(Q) < 2(0)°.
Then we consider the case G = H. By construction,

S C(n,v)

< C(n, v)u(Q; N Ry).

(613, Vrj» T(I613,,90.1)

(1g¥rj T(lgepn),  ifG=GNAS =GNAY: (12.8)
0 otherwise.

In what follows, we assume that G = G N Ajgzj =GN A%f
Consider the decomposition

(Ig¥rjs T(g9o.0)) = (1g¥rs T(®0.)) — (1g¥rj, T(1gv s¢90.i))

(12.9)
— (Ig¥rjs T(Lsgnq40)iy®0.0)) — (Lg¥rjs T4 a90.0)-

The fourth term in the right hand side will only contribute to 45(R). The first and third
terms in the right hand side are estimated as follows.
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Using both (11.6) and (11 7) together with (1.5) and (1.6), we obtain the estimate
1T (o)l L) + I1Vrjllz~@w) S 1. In particular,

[(1g¥R,» T S (G) < (Qi N Ry).

Then we consider the third term in the right hand side of (12.9). Recall that we are in
thecase G =GN A% =GN AQ hence, by construction, 5G C 5G C Q; N R;. For this
reason we can repeat the argument (12.7) which, in turn, gives

(1Y, T(lsé\(1+u)é)‘ﬂQ,i)>| S Cn, v)n(Qi N Ry).

It remains to consider the second term in the right hand side of (12.9). Part of it
will contribute to 43(R)’. We begin with certain preparations, and first denote

T 1= T(lgv\s90.0)-

Using (1.3), reasoning as in (9.17) with R; replaced by 5@, and observing the fact that
leg.illzogy S 1, we see that

lt(x) =t <1, x,yed. (12.10)

We use the fact that there exists an L*-accretive system for T*. Let by be a function
which is supported on G, whose average over G is one, and

161 L2y + 1T (b Ly < 1-
Let us denote B¢ = (b(;//L(G), 7). By properties of b and (12.10),
lT(x) — Bl = 1be/u(G), t(x) — 1) < 1, x €. (12.11)
After these preparations, we write
(Lg¥rjs T(gy\sg90.)) = (1g¥rj T — Bg) + (1gVr,, Bg)-

By (12.11) and (11.6), we have the estimate [(15Yr;, T — Bg)l S w(G) < w(0in R)).
To treat the term (1z¥r;, Bg) = Be(lg¥r,, 1), we write

[ b\ _ [ b b
ﬂG_<M(G)7r> <M(G) ((le)> <,u(G) (150\(1+U)G¢Qz)>

b,
B <M(G) Tlaramave ’)> < we) | ave ’)>
Observe that the first and second term on the right hand side of (12.12) are bounded
in absolute value by a constant C S C(n, v). This follows from the properties of b
and the fact | T(¢g,)|l 2~ S 1 for the first term and, by reasoning as in (12.7), for the
second term.

For the last term in the right hand side of (12.12), we use || T*(bg) |z S 1 for

(12.12)

by ) )
Ku(é)’T( G‘”Q’)>' = [{T"(bg), Lowo /MO S 1.
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Regrouping the terms shows that (15¥r;, T(1gvs¢P0,1)) can be expressed as a
sum of two terms, the first one being bounded in absolute value by a constant C <
C(n, v)u(Q; N R;), and the second one being

— (b Ty yinaeo))(1gWr s 1/(G)).

As said in the beginning of the proof, we expand A3(R) by using the cubes in G as

follows:
A3(R) = (13, Yrjs T3, 90.)
= > (ala, ¥y T(ulz, 000 + Y (1613, Ve TG4, 90.).
GG,I;?JQ GeG

In both of the series above, the finite number of summands depends on N and 5. Hence,
using the estimates above for a typical summand (12.6), we get

A3(R) = A3(R) + (43(R) — A5(R)),
where [43(R) — A5(R)| S C(n, v)u(Q; N R;) and 45(R) is the following quantity:
> [6 T aneare) g¥rs 1/im@) = Ugr T 66900 |
Geg

CeAS AAG
GCA@mA&

It is straightforward to verify that 4%(R) is of the required form. ]

The summation involving the non-boundary terms A3(R) — A5(R), given by
Lemma 12.5, is controlled by the following result. It gives a uniform estimate for
the sum with respect to all systems of dyadic cubes D*; in particular, no expectations
over D* are needed.

LEMMA 12.13. Let f € L”(RN, u; X) and g € LY(RY, u; X*). Then estimate

> (gr)r (A3(R) — A5(R) (fo)o,| S C(r.m. v)liglgllf 1

ReD'
is valid for every dyadic system D*.
Proof. Let us denote A4(R) := A3(R) — A5(R). By randomizing and using Holder’s

inequality,

> <gR>R,.A4(R)<fQ>Q,.‘
ReD’

// Zssls(X) gs)s Z erlg(X)————F~ A4dR) (fo) 0, dP(e)du(x) (12.14)

QxRN ReD’ /-’L(Ql mR)
A4(R)
esls;(gs)s, erlg,—————(fo)o, .
SEZD/ LQ(RN,P(@M;X*) ReD' Q I’L(Ql m Rj) Q Q L‘”(RN,P®M;X)
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Note that

Is,(gs)s, = 1s;(gk)s; = 15, Ex18k = 15,8k, S € Dy.
Hence, by using also the contraction principle, we have

> eslsgs)s

SeD’

(o]

Z k&
f=—

<

~

S gl zo@y, s x+)-

LI(RN ,P@1;X*) LI(RN , P@1;X*)
In the last step we reasoned as in the end of Section 9.

Rewrite the second summation in the last line of (12.14) in terms of D. Then
using the contraction principle and the fact that [44(R)| S C(r, n, v)u(Q; N R;), given
by Lemma 12.5, results in estimates

T exlg R A4(R) folo,

ReD! wQi N R; ) RN, POu;X)
oo
< Clrnv) nglg,o@g” <Cenv| 3 asi |
QeD Lr (RN, PRu;X) e —00 L’(RN P®u;X)
Reasoning as in the end of Section 9 finishes the proof. O

Estimate for v-boundary terms. The following lemma controls a summation
involving the v-boundary terms

A1(R) + A>(R) + A5(R).

Taking the expectations over the dyadic system D* is invaluable here and, on the other
hand, this is the only place where these expectations are required. Elsewhere we obtain
uniform estimates over these systems.

LEMMA 12.15. Suppose that s € [2, 00) is such that both X and X* have cotype s.
Lett > (sV q) V p be a positive real number. Then

Ep-

D (gr)R(A1(R) + A2(R) + A5(R))(fo) o
ReD'

< Co MU I TN e 18 Loguxs U 1 s
for every f € LP(RN, u; X) and g € LYRY, ju; X*).

Proof. First we focus on the sum involving the terms A; these are defined in (12.4).
Randomise and use Holder’s inequality for the estimate

Z <gR)Rj<1A’Rj YR T(IAZI_QDQJ)) VQ)Q,‘

ReD'
/<ZSSIA’ Vs,j(gs)s;. (Z erl g 9o.i(f0)o )}dP(s) (12.16)
ReD’
> eslag Vsj(gs)s T( > erlag 0.i{fo)o H .
SeD’ Li(PQu;X*) ReD' ! L(PRu;X)
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First extract the operator norm from the second factor and index the summation in
terms of D. Then, by using the contraction principle and estimate

|1A2i§0Q,i| = 1Q[

which is valid p-almost everywhere, we see that the second factor in the last line of
(12.16) is bounded (up to a constant multiple) by

[ee]

Z exfi

k=—o00

ST eezr eV N or e x)-
Lr(PRw;X)

TN cczr(u:xy

In order to estimate the first factor in the last line of (12.16) we let S € D;, where
k € Z.Due to (11.1) and (12.2), we have

Jm)+k—1
AgcG®=Jsc | J 84 =:6"(k).
Geg m=j(n)+k—r—1 GeD;,

As a consequence, we have |15, ¥sj| < lsvls, pointwise p-almost everywhere. Using
“J N
also the contraction principle and the assumption that ¢ > ¢, we get

Ep. ZESlAngWS,j(gSB}
SeD’ ! Li(PRu;X*)
S Ep- Zeklsv(k) Z Ls,(gs)s;
keZ SeD; Li(P®u;X*)
4 q/t 1/q
= ( / , [ED* Zeklwk)(X) Z Ls,(x)(gs)s; } du(x)) .
RY kez SeD, Li(P;X*)

If x € R", the last integrand evaluated at x is of the form as in Proposition 2.4 with

Go= ) ls(x)(gs)s € X*.

SeD,
The random variables
Pk = lsv(x)

as functions of g* € Q*, where Q* is the probability space supporting the distribution
of the random dyadic system D*, belong to L/(€2*), and they satisfy

sup || 15040 ()l 2@y = sup Pg- (150 0(x) = D" < Clr, pv'/".
keZ keZ

Hence, by Proposition 2.4

Ep. Z eslay Vs(gs)s
SeD’ ' Li(P@u; X*)
S Clrmu''| D esls (gs)s, < €' lgll Loguex)-
SeD’ Li(P®u; X*)
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Combining the estimates above, we obtain the required estimate for summation
involving terms A4 (R).

Estimate for the sum involving terms A4,(R), see (12.4), is similar to the estimate
above, involving terms A;(R). We omit the details.

It remains to estimate the following sum involving terms A%(R), see Lemma 12.5,

Z Z ,(160R.Gj0 T(L(10)inGP0.0)) (fo)o

ReD'  GeG(R)
- g
GCAQOA@

Observe that the inner summation involves only finitely many terms for every fixed R —
in fact, the number of terms is bounded by a constant depending on n and N. Hence,
by reindexing these cubes and using the triangle-inequality, we are left with estimating
quantities of the form

E :=Ep.| > (gr)r,(1gbr.G.1 T(L140)e0590.0) f0)o,

ReD'

’

where G = G(R) € G(R) inside the summation satisfies G C Ag N Ag
At this stage we randomise, apply Holder’s inequality, and extract the operator
norm in order to obtain the estimate

E< ||T||£(U’(M;X))ED’{

Z eslgbr.cj(gs)s,

SeD’

pbou (12.17)

Z €R1(1+U)G\G¢Q,i<fQ>Qi H }
ReD/ Lr (P X)

By lemma 12.5,
|16(S)bR,G,j| 5 IG(S) = IA% = IS,

pointwise p-almost everywhere. Also, (1 4+ v)G(R) \ G(R) C 5G(R) C Q; and
(1+v)G(R)\ G(R) C Gu(R) C 8°(k). Q= O(R) € Dx.
It follows that |1,z g90.l S lsvwle, n-almost everywhere if O € Dy. Hence, by

indexing the second summation in the right hand side of (12.17) in terms of D, the
argument proceeds as above. We omit the details. ]

Estimate for n-boundary terms. Here we focus on a summation involving the
n-boundary terms

M>(R) + M4(R) + a2(R) + a3(R),
see (11.8) and (12.3). Observe that although both «;(R) and «3(R) depend on the

random dyadic system D*, the estimate below are uniform over all such systems.
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LEMMA 12.18. Suppose that s € [2, 00) is such that both X and X* have cotype s.
Lett > (sV q) V p be a positive real number. Then

EpEp | ) (gr)r (Ma(R) + Ma(R) + ea(R) + a3(R){fo) o,
ReD'

< COM I TN er g Lo x - W | rgex)

forevery f € IP(RY, u; X) and g € LYRN, pu; X*).
Proof. By (11.8) and (12.3),

Mo(R) + oa(R) = (1, Vv T(10i900.0)) = (1ag YRy T(1ag 00.0):
My(R) + a3(R) = (1ay ¥rj» T(10,,90.0)) = (Lag Vrj» T(1a3 90.0))-

Observe that

R, VRl + Mas YRS 1Rys  1lopoil + a0 00l S 10
I @ (12.19)
ag ¥rjl S 1ry o0l + |1A3Ql_(pQ,i| <o,

pointwise p-almost everywhere. By triangle inequality, it suffices to estimate the
following sums: one involving terms m(R) € {M>(R), a2(R)}, and the other involving
terms in {M4(R), a3(R)}. We focus on the first sum; the second one is estimated in an
analogous manner.

Randomizing, using Holder’s inequality, extracting the operator norm of 7', and
finally applying the contraction principle with (12.19) results in the estimate

Ep| Y~ (gR>R,m(R)<fQ)Q,-' SEp| Y esls,,(gs)s,
, , LI(PQu;X*)
ReD SeD’ " (12.20)
NT N ewrqxy| Y erloifoo, H :
ReD’ Lr(P®u;X)

Indexing the summation in terms of D and using the contraction principle, we see
that the last factor is bounded ||f'|| »(..x). For the first factor in the right hand side of
(12.20), we write

k-1
=1 U s
m=k—r—1 QeD,,

By (11.1), we have
15/13 < 15/.152)[ < IS/lén(k), lfQ = Q(S), Se ,D1/<

Fix x € RY. The random variables pj := 15 (x) as functions of 8 € ({0, 1}¥)2, D =
D(B), belong to L(({0, 1}V)?) and they satisfy

sup [ 15160 () | Lero.13vy2) = sup Pg(Lsny (x) = D1 S Crym*'”.
keZ keZ
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Hence, proceeding as in the proof of Lemma 12.15, we find that

Ep < Crm'!

LI(PQu; X*)

> erlr (gr)r,

ReD’

> sl (gs)s, (12.21)

SeD’

Li(P®u;X*)

Noticing that the last term is bounded by a constant multiple of C(r)n'/"|Ig|l Lo(u.x+)
finishes the proof. O

REMARK 12.22. It seems to us that using two independent dyadic systems D and
D’ is necessary for the step (12.21).

13. Synthesis. The proof of Theorem 1.7 will be completed. This involves
choosing appropriate values for the auxiliary parameters r, , v. Hence, any dependence
on these numbers will be indicated explicitly.

Proof of Theorem 1.7 Let us fix f € [P(u; X)and g € LI(u; X*) such that
1T N eeruxy < 21g, T, Il, =1=lgly

Taking expectations over estimate (5.1) gives us

g, TN < liglylf1l, + EpEp| >~ (Di%e, T(DG ).

QeD, ReD'

Because X is a UMD function lattice, its dual X* is also a UMD function lattice.
Hence, by symmetry, it suffices to consider the summation over dyadic cubes Q and R
for which £(Q) < £(R).

We decompose this series further as follows:

oY =D 4> > (13.1)

ReD'  QeD ReD' Q€Drgood  RED' Q€Drobad
UQ=UR) UQ)<L(R) HUOI=L(R)

Observe that this decomposition to good and bad parts depends on D’ = D(B’).

Let us first focus on the good summation in the right hand side of (13.1). We
denote Q ~ R if these cubes satisfy (11.1), that is, if they are close to each other both
in position and size. Then we have the decomposition

20 =2t )
ReD’ QEDR-good ReD’ QEDR-good ReD’ QEDR-good

HQ)=U(R) O~R OCR
©O)<27"UR)

DD DR DD
ReD'  Q€DRegood ReD’ 0€DR-good

OZR 27UR)=U(Q)=L(R)
€Q)<27"U(R) HQ)=dist(Q,R)

(13.2)

Let us consider the third double series on the right hand side further. Assume that
R € D' and Q € Dp.gooq satisfies O ¢ R and £(Q) < 27"¢(R). Remark 2.6 implies that
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dist(Q, R) = dist(Q, dR) > £(Q)"£(R)'~” > £(Q). As a consequence, we can write

)DEDIEE DI

ReD’ QEDR-good ReD’ QEDR-good
OFR UQ)<27"L(R)
UQ)<27"L(R) HQ)=dist(Q.R)

Hence, by combining 3rd and 4th term on the right hand side of (13.2), we obtain the
identity

IEDIEED MDD D IEE DI
ReD’ QEDR-good ReD’ QEDR-good ReD’ QEDR-good ReD’ QEDR-good
LQ)=UR) O~R OCR UQ)=UR)Adist(Q.R)
HO)<2"UR)
Invoking Propositions 7.1, 9.1, and 11.2 we are able to estimate all of the summands
above, and we reach the estimate

Yoy ye T(Dglf»‘

ReD’ QEDR-good
UOD=UR)

< C(r,n,v) + (Cr, MUY + COMYNT || 227 -

EpEp

Then we concentrate on the remaining bad summation in the right hand side of
(13.1). By randomizing, using Holder’s inequality, and using Theorem 4.1 with the
identity ||g|l sx+) = 1, we get

ExEp| Y D (D% T(D‘élf»‘
ReD’ Q€Dpbad
Z(Q)<Z(R)
= EpEp ZZ Y Y (DRe T(%V’))‘

k=0 jeZ ReD/ DV (j—k)—1)-bad

Z / YD oeE Y. > (DEe TG dP(e)\

JjeZ ieZ ReD; Oc Dk 1)-bad

(5o 5 )|

i€l geplrbd

(13.3)
= EDED/

o0
S Z EpEp
k=0

L(PQu;X)

In order to estimate this series, we fix £ > 0. Extracting the operator norm, we see that
the £’th summand is bounded by

1
Z Mbaa Dif

ieZ

1T zcercxy - EpEp

3

L(PRu:X)

where we have denoted

Maai = Y. loe LRV, ;R).

(k—1)-bad
(OS2
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Fix t > (s vV p) V q, where s is such that both X and X* have cotype s € [2, o0).
Using Proposition 2.4, we get the estimate

E’D ED/

k a,1
Z &ihpad i Di_ 1

ieZ

<eo( [ [e0
RY

k
< Sup [[Apuq () ey m)
ix

‘U(P‘X)M,X)

t plt 1/p
] du(X))

L2(P;X)

Y ekt (DS (x)
ieZ

Z EiD?’_lkf

ieZ

(PR X)

Note that, by using Theorem 4.1, we have the estimate

Z D ?lef

ieZ

<1

‘U(P@u;X)
On the other hand, if x € RV, then by Lemma 2.7 we have

k
SUP [ Apa /() 1Py )
1

= sup {Pg[x € O € Dt and Qs (k — 1)-bad(y, r)]"/*} S 27V&=Dr/t,
All in all, we have established the following estimate

EpEp

o0
,2 1 —(rv(k—
Yo Dy T(Dan))‘f,||T||£(U’(M;X))Zz (rvle—Dy /1
ReD’ QEDR—bz\d k=0
L(Q)=<L(R)
S 27N Tl erusxy = SN T cerusxy-

Here 6(r) — O asr — oo.
Collecting the estimates above, we find that

1Tl cruexy < C(rm, v) + (C8(r) + Crm'" + Cr M TNl caruxy.  (13.4)

Next we choose r so large hat CS8(r) < 1/4. Then we choose n > 0 so small that
C(r)n'/" < 1/4. Lastly we choose v > 0 so small that C(r, n)v'/! < 1/4. This results in
the desired estimate

3
TN cruxy < C(r,n, v) + ZIITllz(U(M;X)).

Indeed, it follows that || Tl czr(u:x) < 4C(r, 0, v). ]

14. Operator-valued kernels. In this section we explain the proof of Theorem 1.8.
This proof is a straightforward modification of the proof of Theorem 1.7.
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We define a d-dimensional Rademacher—Calderon—Zygmund kernel as a function
K(x, y) of variables x, y € RN with x # y and taking values in £(X), which satisfies

R({lx — yI’K(x,y) : x,y e RV, x ;é y}) <1

|x_y|d+a |d+ot
R({—[K(x,y) Ky, T e K00 = KO, ) (14.1)

[x — x'|*
x,x’,yeRN,0<|x—x'|§|x—y|/2}) <1

for some o > 0. Recall that R(7") designates the Rademacher-bound of an operator
family 7 C L(X), as defined after (2.2).

Let T :f + Tf be a linear operator acting on some functions f : RY — X or
f:RY — C, producing new functions 7f : RY — X in the former case and 7f : RV —
L(X) in the latter. If ¢ € X and F: RY — C or F : RN — £(X), define the function
F ® &by (F ® &)(x) := F(x)&, where the last expression is the product of a scalar and a
vector, or the action of an operator on a vector, respectively. With this notation, suppose
that T(p @ £) = (T9) ® £ for ¢ : RY — C and £ € X. The adjoint T* is defined via
duality (g,f) = [pv(g(x). f(x)) du(x) between functions f/: RY — X and g: RY —
X*:forp, ¥ :RY — C,£ € X and £* € X*,

(V. T)g) = (Y @&, T(9 @) :=(T" (¥ ®E"), 9 @) =1 ((T"Y, p)§7) (&),

and hence (T*y, ) = ((¢, To))* € L(X*) for scalar-valued functions ¢, V.
Such a T is called an L(X)-valued Rademacher—Calderon—Zygmund operator with
kernel K if

110 = [ K/ 0)dn)

for points x € RY outside the support of f.

We are ready to explain the modifications in the proof of Theorem 1.7. These
occur in sections 5-13 and, roughly speaking, they are as follows: one repeats the
proof, and the assumed R-boundedness conditions ensure that whenever one “pulled
out” bounded scalar coefficients from the randomised series, which persist throughout
the arguments, the same can be done with the operator coefficients by the very definition
(2.2) of R-boundedness. Some technicalities arise when treating the paraproducts in
Section 10. Our goal is to provide a comprehensive treatment and, at the same time,
avoid repeating arguments. To accomplish this task, we have chosen to explain the
modifications in sections 6, 7 and 10.

Operator-valued decoupling estimates. Let us begin with Section 6. Instead of
scalars satisfying (6.5), we now consider the following R-bounded families of operators:
R({hroTro € L(X) : R€ D', O € Dr_gooa, Q) < U(R)}) S 1., (14.2)

where Trp € £(X) and the scalar coefficients are

N . D(0, R)d+a
RO UROMQ)UQ) 2 U(R)
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These R-bounded families occur in the following counterpart of Lemma 6.6.

LEMMA 14.3. Assume that Ex_1fi = fi and Ey_ g = gk, where fi. and gy, k € Z, are
as in Lemma 6.6. Assume also that the estimate (14.2) holds. Then

Z Z (gR)R, TRQ(fQ)Qv'

ReD" QeDr.good
€(O)=U(R) (14.4)

oo

Z Ek8k

[ La(Pu:X")

oo

Y ek

k=—o00

<

~

L(PQu;X)

The proof of this lemma proceeds as the proof of Lemma 6.6 with appropriate
modifications. The key fact is that the operators

Tro = 2" u(S) € L(X),

RO
(R)(Qv)
where the parameters are clear from the context, belong to an R-bounded family. This
follows from the normalizations and the condition (14.2).

Then we can proceed to Section 7, where the goal is to prove a counterpart of

Proposition 7.1 under the assumptions of Theorem 1.8. For this purpose, we need the
following counterpart of Lemma 7.9.

LEMMA 14.5. Suppose that for every pair of cubes Q € D and R € D', satisfying
Q) < L(R) Adist(Q, R), we are given functions ¢o, YR € L' (RN, u;C) such that
supp(¢g) C Q, supp(¥r) C R, and

/ podu =0.

R(1oro(¥r. Too) € LX) : £(Q) < €(R) Adist(Q. R)}) < 1,

Then

where the normalizing factors are given by

dist(Q, R)*
o = .
R U0 ool i ¥Rl L

Proof. Suppose that Q € D and R € D’ satisty £(Q) < £(R) A dist(Q, R). Let yo be
the center of the cube Q. Denoting

|y —yol®

F(x,y) = X gl Po(MVr(X)oR0,

we obtain

/ /,|F(X,J/)|du(y)du(x)§1,
RN JR¥N
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Hence, by denoting

_ {l _y|d+oz

T y|a[ (x, ) = K(x, )] : ), x e RY, Iy—y’lslx—y|/2},

we obtain
oro(Vr Teo) = / / K(x, »)po)¥r(x)ore diu(y) du(x)
- /[I;{N / [K(x, y) — K(x, yo)lpo(W)¥r(x)org du(y) dp(x)

d+a
/ / X —yol™ ————[K(x, y) = K(x, yo) F(x, ) du(y) dpu(x)
R'v R’\/ |y y |

€ absconv (7).

Here the closure is taken in the strong operator topology and the absolute convex hull,
denoted by abs conv (7)), is the set of all vectors of the form Z;‘:l Ajx; with Z_;‘:l Al <1
andx; € T forj=1,2,..., k. Since,

R(absconv (7)) = R(7),

it remains to use the second R-boundedness estimate in (14.1) O

Proceeding as in the proof of Proposition 7.1, and using Lemma 14.5 instead of
Lemma 7.9, we find that the R-boundedness estimate (14.2) holds for the family of
operators in £(X) defined by the equation (7.12). Hence, after applying Lemma 14.3
instead of Lemma 6.6, the proof of Proposition 7.1 continues as before.

Operator-valued paraproducts. We proceed to Section 10. Let us first indicate the
modifications in the proof of the estimate (10.6), the boundedness of the paraproduct.
The first one comes in the proof of Lemma 10.13: Theorem 4.16 and Proposition 4.18
are used with UMD function lattice Z instead of C.

The step from (10.16) to (10.17) is now established by the following lemma and
assumption R(By) < 1.

LEMMA 14.6. Suppose that t > q Vv s, where X* has cotype s. Then
>_cidiEg
Jjez

S R(Bz) - Wi ez ezl car @) - 1€l Loy :xs)s

La(Q* xRN xQ;X*) (14.7)

where e* = {¢} : j € Z} € Q* are Rademacher random variables and

d;: RY - L% 2) i x — (8 > Z Z SQJTQ,Ra(x))

ReD; QcD
" S(0=R

Sor functions wg ra : RN — Z that are determined by (10.11).
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Proof. Note first that LHS(14.7) can be written as

(I

Using Fubini’s theorem and the fact that the closed unit ball of Z is R-bounded, we
see that LHS(14.7) can be bounded by a constant multiple of

R,

Recall that ¢ > ¢. Using Fubini’s theorem, followed by the Hoélder’s inequality, we find
that LHS(14.7) is bounded by a constant multiple of
> el (x)|zE,g(x)

(..
xR ez

> erldi()NzEg

jez

1/q
dP(e) du(x) dP(s*)) .

q
Z & | )|Z|di(x’ e)lzEjg(x)

X*

q 1/q
dP(e*) du(x) dP(s)) .
X*

> efldi(x, &)l 2 Eg(x)
jez

1/q
du(x) dP(e*))

LI(Q:X*)

= R(Bz)

LU xRV ;LI X%))

Let us denote di(x, &) := |d;(x, €)|z. Then, for a fixed x € R,

1/t
i ()l L:0) = </ Id;(x, 8)|th(8)> = |di(X) | L(0:2)-
Q

Hence, by using Lemma 10.8, we can conclude that the estimate (14.7) holds. ]

In order to estimate the right hand side of (10.18), we use the fact that L*(Q, Z)
has cotype 2 since Z has it. The described modifications suffice for obtaining estimate
(10.6) in the context of Theorem 1.8. Finally, in the proof of estimate (10.7) we use
Theorem 4.16, with UMD function lattice Z, and the fact that the family {Ey}xcz of
operators in Li(u; Z) is R-bounded by the UMD-valued Stein’s inequality [2].

This concludes the description of modifications in Section 10.
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