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Abstract. We extend the local non-homogeneous Tb theorem of Nazarov, Treil
and Volberg to the setting of singular integrals with operator-valued kernel that act on
vector-valued functions. Here, ‘vector-valued’ means ‘taking values in a function lattice
with the UMD (unconditional martingale differences) property’. A similar extension
(but for general UMD spaces rather than UMD lattices) of Nazarov–Treil–Volberg’s
global non-homogeneous Tb theorem was achieved earlier by the first author, and it
has found applications in the work of Mayboroda and Volberg on square-functions and
rectifiability. Our local version requires several elaborations of the previous techniques,
and raises new questions about the limits of the vector-valued theory.
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1. Introduction.

Background and motivation. This paper is a continuation of [4], where the first
author extended the ‘global’ non-homogeneous Tb theorem of Nazarov, Treil and
Volberg [12] to Lp spaces of vector-valued functions. The goal of the paper at hand
is to obtain a similar extension for the ‘local’ version of Nazarov, Treil and Volberg’s
result [13].

By ‘local’ we understand that the Tb conditions involve a family (an ‘accretive
system’) of testing functions bQ, one for each cube Q, where bQ is only required to
satisfy a non-degeneracy condition on its ‘own’ Q; this contrasts with the ‘global’ Tb
conditions, where a single testing function b should be appropriately non-degenerate
over all positions and length-scales. While the two types of Tb theorems are not strictly
comparable, the verification of the local conditions has turned out more approachable
in a number of applications.

By ‘vector-valued’ we understand functions taking values in a possibly infinite-
dimensional Banach space X . It is well known that the most general class of Banach
spaces in which extensions of deeper results in harmonic analysis can be hoped
for consists of the spaces with the UMD property (unconditionality of martingale
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differences); see [1, 3]. The quest for vector-valued extensions of theorems in classical
analysis has three types of motivation:

First, by revisiting a proof in a more general framework we can often develop new
insight into the original argument; in particular, the tools available in an abstract UMD
space often lead us into discovering new martingale structure behind the classical scene.
In the present case, for example, we are led to study the Lp estimates for martingale
difference expansions adapted to an accretive system of functions, where mainly the
Hilbert space L2 theory for such expansions existed so far. While the Lp theory for
the ‘globally’ adapted martingale differences was developed in [4], the local setting
brings several new complications, most prominently the fact that the expansion is no
longer with respect to a basis of adapted Haar functions but rather with respect to an
overdetermined frame.

Second, new connections between different properties of Banach spaces are
revealed, when looking for the minimal conditions under which we can run a given
classical analysis argument. In particular, for vector-valued functions, there appears
a subtle difference between the square function estimates for the adapted martingale
difference operators and for their adjoints, and we are only able to handle the latter case
under the additional assumption that our Banach space is a function lattice. Whether
this assumption could be eliminated from certain key inequalities raises interesting
questions for further investigation.

Finally, the extended scope of the theorem allows for wider applications. The
applications of vector-valued singular integrals in general are widespread; for the
vector-valued non-homogeneous Tb theorem [4] in particular, we mention the work of
Mayboroda and Volberg [10] on square functions and rectifiability, see [10, p. 1056].

Now, let us turn to a more detailed discussion of the objects of this paper.

Calderón–Zygmund operators. Let μ be a compactly supported Borel measure
on �N which satisfies the upper bound

μ(B(x, r)) ≤ rd, d ∈ (0, N], (1.1)

for any ball B(x, r) of centre x ∈ �N and radius r > 0. A d-dimensional Calderón–
Zygmund kernel is a complex-valued function K(x, y) of variables x, y ∈ �N , x �= y,
such that

|K(x, y)| ≤ 1
|x − y|d (1.2)

and, if 2|x − x′| ≤ |x − y|, then

|K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ |x − x′|α
|x − y|d+α

(1.3)

for some α > 0. An operator T acting on some functions is called a Calderón–Zygmund
operator with kernel K if

Tf (x) =
∫

�N
K(x, y)f (y) dμ(y), x �∈ supp f. (1.4)
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Testing functions. Following [13] we say that a collection {bQ} ⊂ L∞(�N, μ; �)
of functions is an L∞-accretive system (supported on cubes) if for every cube Q in �N

there exists a function bQ from the system such that

supp bQ ⊂ Q, ‖bQ‖L∞(μ) ≤ 1,

∣∣∣∣
∫

Q
bQ dμ

∣∣∣∣ ≥ δ μ(Q). (1.5)

Here the constant δ ∈ (0, 1) is not allowed to depend on Q.
We say that {bQ} is an L∞-accretive system for a Calderón–Zygmund operator T if,

for every cube Q in �N , there is a function bQ from the system such that the conditions
(1.5) hold true and

‖TbQ‖L∞(μ) ≤ B, (1.6)

where B > 0 is a constant that is independent of Q.

Banach spaces. We want to study the action of T as in (1.4) on the Bochner space
Lp(�N, μ; X) of functions with values in the Banach space X . As is well-known, even
for the simplest non-trivial case where T is the Hilbert transform with d = N = 1 and
μ is the Lebesgue measure, a necessary condition for the boundedness on the Bochner
space is that X be a UMD space [1]. For the more complicated operators as described,
we will need to assume some further conditions.

We will make the more restrictive assumption that X is a UMD function lattice,
i.e., X is a UMD space whose elements are represented by functions on some measure
space, and the norm of X is compatible with the pointwise comparison of functions
in that |f | ≤ |g| pointwise implies that ‖f ‖X ≤ ‖g‖X . See [14] for more information
on function lattices with the UMD property. We will make use of this assumption
both directly, via Theorem 4.16, and through the following consequence established
by Hytönen, McIntosh and Portal [7]: such spaces satisfy the so-called RMF property,
also introduced in [7], which means the boundedness of the so-called Rademacher
maximal function from Lp(�N, μ; X) to Lp(�N, μ). A detailed study of this property
can be found in Kemppainen [8]. The RMF property is used to estimate the so-called
paraproducts arising in the proof of the Tb theorem; for the same purpose, RMF
was also assumed in an earlier version of the global non-homogeneous Tb theorem
[4], but it was subsequently circumvented there. In addition, we make explicit use of
the lattice structure at one specific point of the proof to obtain a certain auxiliary
square function estimate. We do not know about the necessity of this assumption,
so it seems interesting to single out the place where we use it for possible further
investigation. Note that many of the concrete UMD spaces appearing in harmonic
analysis, like the Lp and Lorentz spaces, are all lattices; others, like Sobolev spaces,
can still be identified with closed subspaces of such lattices, e.g. for � ⊂ �N , we have
W 1,p(�) � {(f, g) ∈ Lp(�) × Lp(�)N : g = ∇f } ⊂ Lp(�)N+1 � Lp(

⋃N
i=0 �i), where the

�i’s are disjoint copies of �; but some other examples of UMD spaces like the Schatten
ideals Cp fall outside this class of spaces.

We are ready to formulate our main result.

THEOREM 1.7. Suppose that X is a UMD function lattice. Assume that T is a
Calderón–Zygmund operator, and that there exists two L∞-accretive systems of complex–
valued functions, b1 = {b1

Q} for T and b2 = {b2
Q} for T∗. Then, under the qualitative a
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priori assumption that T ∈ L(Lp(�N, μ; X)) for some p ∈ (1,∞), we have the quantitative
bound

‖T‖L(Lp(�N ,μ;X)) ≤ C,

where the constant C = (N, d, α, δ, B, p, X) > 0 is independent of T.

Having stated this, we should admit two things. First, this result remains valid for
general UMD spaces. Second, it follows relatively easily, even in the just mentioned
more general form, from a combination of the results of [4], [13] and [12]. Namely,
Nazarov, Treil and Volberg’s local Tb theorem [13] states that under the mentioned
assumptions we have the scalar valued bound ‖T‖L(L2(�N ,μ)) ≤ C. Then, the converse
direction of Nazarov, Treil and Volberg’s global Tb theorem [12] tells that T satisfies
the global Tb (or even T1 conditions) ‖T1‖BMO(�N ,μ) + ‖T∗1‖BMO(�N ,μ) ≤ C, where
BMO(�N, μ) is an appropriate bounded mean oscillation space adapted to the non-
homogeneous situation. Finally, the vector-valued global Tb theorem of [4] completes
the argument, as we have just checked that its assumptions are satisfied.

What, then, is the point of struggling for a weaker statement, when a stronger one
is available for free? Sure, we can still develop some new insight into the proof technique
of [13], but there is also a more substantial reason on the level of actual results. Namely,
the proof of Theorem 1.7 that we give immediately yields a further generalization to the
case of operator-valued kernels K , i.e., for kernels K(x, y) ∈ L(X). Then the associated
L(X)-valued operator T in (1.4) is genuinely an object of the vector-valued realm, and
the above shortcut via the scalar-valued theory is no longer available.

Rademacher–Calderón–Zygmund operators. Let us consider an operator T given
by the same formula (1.4) as before, but with K(x, y) ∈ L(X). The kernel bounds (1.2)
and (1.3) will have to be replaced by certain operator-theoretic analogues involving
the notion of R-boundedness (see definition in (2.2)), and we refer the reader to
Section 14 for a precise statement. We then say that K is a d-dimensional Rademacher–
Calderón–Zygmund kernel, and that T is an L(X)-valued Rademacher–Calderon–
Zygmund operator. For further details, we refer to Section 14.

The testing functions are now as follows. We say that {b1
Q} is an L∞-accretive

system for an L(X)-valued Rademacher–Calderón–Zygmund operator T if, for every
cube Q in �N , there is a function b1

Q from the system such that the conditions (1.5) hold
true for bQ = b1

Q and Tb1
Q : �N → Y satisfies ||Tb1

Q||L∞(�N ,μ;Y ) ≤ B, where Y ⊂ L(X)
is an UMD function lattice which has cotype 2 (see definition in (2.3)), and whose unit
ball B̄Y is an R-bounded subset of L(X). In a similar manner, we say that {b2

Q} is an
L∞-accretive system is for T∗ if, for every cube Q in �N , there is a function b2

Q from
the system such that the conditions (1.5) hold true for bQ = b2

Q and T∗b2
Q : �N → Z

satisfies ||T∗b2
Q||L∞(�N ,μ;Z) ≤ B, where Z ⊂ L(X∗) is an UMD function lattice which

has cotype 2 and whose unit ball B̄Z is an R-bounded subset of L(X∗).
The following local Tb theorem for operator-valued kernels is obtained by

employing the entire power of the proof of Theorem 1.7, with minor necessary
adjustments. Unlike Theorem 1.7, it cannot be obtained by a shortcut from the scalar-
valued Tb theorem of Nazarov, Treil and Volberg [13]. We do not know if the function
lattice assumption is necessary in the following theorem; we will make some comments
on its usage in the course of the proof.
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THEOREM 1.8. Suppose that X is a UMD function lattice. Assume that T is an
L(X)-valued Rademacher–Calderón–Zygmund operator, and that there exists two L∞-
accretive systems, b1 = {b1

Q} for T and b2 = {b2
Q} for T∗. Then, under the qualitative a

priori assumption that T ∈ L(Lp(�N, μ; X)) for some p ∈ (1,∞), we have the quantitative
bound

‖T‖L(Lp(�N ,μ;X)) ≤ C,

where the constant C = C(N, d, α, δ, B, p, X, Y, Z) > 0 is independent of T.

Concerning the interest and potential applicability of such a result over the simpler
Theorem 1.7, we make the following remarks. First, in applying the global vector-
valued Tb theorem from [4], Mayboroda and Volberg [10, p. 1056] specifically use the
operator-kernel version [4, Tb theorem 4]. Second, in the mentioned application, all
the Banach spaces are function lattices, so that this assumption is not too restrictive
for such purposes. We also recall, although this is not directly connected to the non-
homogeneous issues at hand, that the theory of singular integrals with operator-
kernel has been a necessary strengthening of the vector-valued scalar-kernel theory in
applications like the maximal regularity question for partial differential equations; see
in particular the influential paper [17].

Organization of the paper. In order to keep the notation somewhat lighter, we
will concentrate in the main body of the paper on the proof of Theorem 1.7 about
scalar-valued kernels. Mostly, however, this argument goes through without trouble
for the operator-kernel version of Theorem 1.8 as well, and we only explain a few
necessary modifications in the final Section 14. After collecting some preliminaries in
Section 2, the proof of Theorem 1.7 is presented in Sections 3 through 13:

Sections 3 and 4 present a detailed analysis, and related inequalities, of functions
f ∈ Lp(�N, μ; X) and g ∈ Lq(�N, μ; X∗) in terms of appropriate adapted martingale
difference operators Da

Q. In Section 5, these expansions of functions then give a
representation of the operator T in terms of matrix elements TRQ, where R and Q
range over dyadic cubes, and the rest of the proof is concerned with the estimation of
different parts of this matrix.

Section 6 presents a general martingale decoupling inequality — our best substitute
for orthogonality estimates in L2 —, which will be used several times during the proof.
The parts of the matrix TRQ leading to different types of treatment are as follows: the
separated cubes (handled in Section 7), the deeply nested cubes (Sections 8 through
10, where the last one deals with the paraproduct part of the operator), and the near-
by cubes of comparable size (Sections 11 and 12). Finally, Section 13 collects the
different estimates together, and also takes care of the remaining ‘bad’ cubes which
were excluded from the previous cases.

2. Preparations.

Notation. We denote � = {1, 2, . . .} and �0 = {0, 1, . . .}. All distances in �N

are measured in terms of the supremum norm, defined by |x| = ||x||∞ for x ∈ �N .
Accordingly, we henceforth write B(x, t) for the �∞ ball in �N centered at x with radius
t > 0. (Note that the main assumption (1.1) is still true, possibly after scaling μ by
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a constant.) We assume that K is a d-dimensional Calderón–Zygmund kernel in �N ,
satisfying both (1.2) and (1.3) for some α > 0. In the sequel r > 0 is a (large) integer
which is to be quantified later. We fix a constant γ ,

γ ∈ (0, 1), dγ /(1 − γ ) ≤ α/4, γ ≤ α

2(d + α)
. (2.1)

We denote

θ (j) =
⌈γj + r

1 − γ

⌉
for j = 0, 1, 2, . . . .

A cube Q in �N has sides parallel to the coordinate axes, and its side length is
denoted by �(Q). If Q, R ⊂ �N are cubes, their long distance D(Q, R) is defined by
D(Q, R) = �(Q) + dist(Q, R) + �(R).

UMD and R-boundedness. A Banach space X has the UMD property if there is
a constant C > 0 so that∥∥∥∥ n∑

k=1

εkdk

∥∥∥∥
Lp(μ;X)

≤ C
∥∥∥∥ n∑

k=1

dk

∥∥∥∥
Lp(μ;X)

whenever (dk)n
k=1 is a martingale difference sequence in Lp(μ; X) and εk = ±1. This

property is known to be independent of the parameter p ∈ (1,∞), and its validity for
dyadic martingales with respect to the Lebsgue measure already implies the general
condition, [9]. UMD spaces are reflexive.

Let (εk)k∈� be a sequence of Rademacher functions, i.e., a sequence of independent
random variables attaining values ±1 with an equal probability P(εk = −1) = P(εk =
1) = 1/2. By � we denote the probability space supporting the distribution of (εk)k∈�.
The Khintchine–Kahane inequality says that

∥∥∥∥ n∑
k=1

εkξk

∥∥∥∥
Lp(�;X)

�

∥∥∥∥ n∑
k=1

εkξk

∥∥∥∥
L2(�;X)

for all p ∈ (0,∞). For X = �, this is called just Khintchine’s inequality, and the right
hand side can be written as the quadratic expression

(∑n
k=1 |ξk|2

)1/2
. Because of this,

inequalities for the random series involving the εk are often referred to as ‘square-
function’ estimates even in the vector-valued case, even if no squares explicitly appear.

We recall that an operator family T ⊂ L(X1, X2) is called Rademacher-bounded,
or R-bounded, if there is a constant C such that for all n ∈ �, all ξ1, . . . , ξn ∈ X1 and
all T1, . . . , Tn ∈ T ,

∥∥∥∥ n∑
k=1

εkTkξk

∥∥∥∥
L2(�;X2)

≤ C
∥∥∥∥ n∑

k=1

εkξk

∥∥∥∥
L2(�;X1)

. (2.2)

Denote the smallest admissible C by R(T ).
We will often use the following Stein’s inequality (more precisely, its vector-valued

extension due to Bourgain [2]), which says that an increasing sequence of conditional
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expectations Ek is R-bounded on Lp(�N, μ; X) if X is a UMD space:∥∥∥∥ n∑
k=1

εkEkfk

∥∥∥∥
Lp(�×�N ;X)

≤ C
∥∥∥∥ n∑

k=1

εkfk

∥∥∥∥
Lp(�×�N ;X)

with constant C > 0 independent of the sequence (fk)n
k=1 ⊂ Lp(�N, μ; X).

A different condition arises by requiring the pointwise (in x ∈ �N)R-boundedness
of the sequence of vectors Ekf (x) ∈ X � L(�, X), where the last identification is the
obvious one: ξ ∈ X is identified with the operator λ ∈ � �→ λξ ∈ X . We denote

MRf (x) := R({Ekf (x) : k ∈ �}),
and say that X has the RMF (Rademacher maximal function) property, if MR :
Lp(�N, μ; X) → Lp(�N, μ) boundedly for some (and then all) p ∈ (1,∞). This notion
was introduced in [7]; see [5, 7, 8] for more information.

Cotype of a Banach space. A Banach space X is said to have cotype s ∈ [2,∞),
i.e., there is a constant C > 0 such that for all sequences (ξj)n

j=1 in X we have

( n∑
j=1

|ξj|sX
)1/s

≤ C
∥∥∥∥ n∑

j=1

εjξj

∥∥∥∥
L2(�;X)

. (2.3)

This leads to an improvement of the contraction principle, [4, Proposition 11.4].

PROPOSITION 2.4. Let X be a Banach space of cotype s ∈ [2,∞) and suppose that
{ρj : j ∈ �} ⊂ Lt(�̃) for some σ -finite measure space �̃ and t ∈ (s,∞). Then∥∥∥∥ ∞∑

j=1

εjρjξj

∥∥∥∥
Lt(�̃;L2(�;X))

� sup
j

‖ρj‖Lt(�̃) ·
∥∥∥∥ ∞∑

j=1

εjξj

∥∥∥∥
L2(�;X)

if {ξj : j ∈ �} ⊂ X.

Some of the subsequent estimates are based on the fact that every UMD has cotype
s for some s ∈ [2,∞). (See e.g. [14, p. 202] for the stronger property that every UMD
has type t for some t ∈ (1, 2].)

Generic dyadic systems. Let D̂ denote the standard dyadic system, consisting of
all of the cubes of the form 2k(m + [0, 1[N), where k ∈ � and m ∈ �N . We also denote

D̂k = {Q ∈ D̂ : �(Q) = 2k}.
A generic dyadic system, parametrised by β ∈ ({0, 1}N)�, is of the form

D(β) =
⋃
k∈�

Dk(β),

where

Dk(β) = {R̂ + xk(β) : R̂ ∈ D̂k}, xk(β) =
∑
j<k

βj2j.
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Given Q ∈ D(β) and n ∈ �0, then the expression Q(n) denotes the dyadic ancestor of
Q of the n’th generation, i.e., it is the unique cube such that Q ⊂ Q(n) ∈ D(β) and
�(Q(n)) = 2n�(Q).

Random dyadic systems. The generic dyadic systems give rise to random dyadic
systems by assigning the complete product probability measure Pβ on the set ({0, 1}N)�

so that the coordinate functions βj, j ∈ �, are independent and Pβ [βj = η] = 2−N if
η ∈ {0, 1}N .

REMARK 2.5. As many (but not all) papers in the area, we will use two independent
random dyadic systems D = D(β) and D′ = D(β ′) to insert randomization into the
argument. It seems to us that this is a necessary technicality in the present context, see
Remark 12.22 for a critical point in the proof.

Altogether, it seems that the most elaborate versions of T1 and Tb theorems need
two independent systems. For example, consider the non-homogeneous T1 theorem,
even just the scalar version. The original global T1 (actually, Tb) formulation was
proved by Nazarov, Treil and Volberg [12] by using two independent systems. Now
there is a more recent local T1 theorem by Volberg [16], proven by just one random
system, but it appears that this version is not quite as strong as the ‘global T1’. Indeed,
Volberg makes the assumption

‖T1Q‖2
L2(μ) + ‖T∗1Q‖2

L2(μ) ≤ Cμ(Q) ,

where the L2-norms are computed over the whole space and estimated by the measure
of Q, whereas the global ‘T1 ∈ BMO’ conditions of Nazarov, Treil and Volberg can be
easily deduced from the local assumptions

‖1QT1Q‖2
L2(μ) + ‖1QT∗1Q‖2

L2(μ) ≤ Cμ(λQ) , λ > 1 .

Here the L2-norms are local, and estimated by the (possibly much larger) measure of
the expanded cube λQ.

Let n ∈ �. A cube Q ∈ D is called n-bad (w.r.t. D′) if there exists R ∈ D′ such that

�(Q) ≤ 2−(n∨r)�(R), dist(Q, ∂R) ≤ �(Q)γ �(R)1−γ .

If Q is not n-bad (w.r.t. D′) then it is n-good (w.r.t D′). The set of n-good cubes in D is
denoted by

Dn-good = Dn-good(γ,r).

The family of n-bad cubes in D is denoted by Dn-bad = Dn-bad(γ,r). A cube Q ∈ Di is
R-bad, R ∈ D′

j, if Q is (j − i − 1)-bad. A cube Q ∈ D is R-good if it is not R-bad. The
family of R-good cubes in D is denoted by DR-good = DR-good(γ,r). The family of R-bad
cubes in D is denoted by DR-bad = DR-bad(γ,r).

In a symmetric manner we define the n/Q-bad and n/Q-good cubes in D′.

REMARK 2.6. Assume that Q ∈ D is R̄-good, where R̄ ∈ D′. Then

dist(Q, ∂R) > �(Q)γ �(R)1−γ ≥ �(Q)α/2(d+α)�(R)1−α/2(d+α).
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for every R ∈ D′ satisfying �(R) ≥ 2−1�(R̄) ∨ 2r�(Q). The second inequality follows
from the estimate γ ≤ α/2(d + α) in (2.1).

Here is a useful lemma controlling the probability of bad cubes:

LEMMA 2.7. Let n ∈ � and Q ∈ D = D(β) be fixed. Then

Pβ ′ [Q ∈ Dn-bad(γ,r)] ≤ 2N
2−(r∨n)γ

1 − 2−γ
.

Proof. Just follow the proof of [13, Lemma 7.1] with n ∨ r in place of r. �
Various estimates are conducted while keeping the parameters β, β ′ ∈ ({0, 1}N}�,

and hence also the associated dyadic systems, fixed. During these estimates, we will
assume that these fixed dyadic systems satisfy the following condition: there are (fixed)
cubes Q0 ∈ D(β) and R0 ∈ D(β ′) for which

�(Q0) = �(R0) = 2s and supp μ ⊂ Q0 ∩ R0. (2.8)

From the probabilistic point-of-view this assumption is justified by the following
lemma, when applied to the compact set K = supp μ:

LEMMA 2.9. Let K ⊂ �N be a bounded set. Denote by A the set of parameters
σ ∈ ({0, 1}N)� for which K is not contained in any cube R ∈ D(σ ). Then P(A) = 0.

Proof. By using completeness of P, it suffices to show that A is contained in a set
of probability zero. To this end, we use the fact that K is bounded as follows: there are
dyadic cubes Q1, . . . , Q2N ∈ D̂k from the standard dyadic system of sufficiently large
generation k ∈ � such that K ⊂ ∪2N

j=1Qj. Thus, if σ ∈ A and n ∈ �, n ≥ r, there exists
an index j ∈ {1, 2, . . . , 2N} and a cube R ∈ Dk+n(σ ) so that dist(Qj, ∂R) = 0. Hence
Qj ∈ D̂n-bad(γ,r) with respect to D(σ ). We have shown that

A ⊂
⋂
n≥r

2N⋃
j=1

{σ : Qj ∈ D̂n-bad(γ,r) w.r.t. D(σ )}.

Using Lemma 2.7, we see that the probability of the right hand side is zero. �

Layers of cubes. Following [13] we will define certain layers of cubes in a given
dyadic system D. For this purpose, we fix β, β ′ ∈ ({0, 1}�)�, and assume that Q0 ∈ D =
D(β) and R0 ∈ D′ = D(β ′) are cubes such that (2.8) holds true. By s ∈ � we denote a
sufficiently large integer for which Q0 ∈ Ds and R0 ∈ D′

s.
Let L0 = {Q0} be the zeroth layer of cubes. Assume that the layers L0, . . . ,Lj−1 of

cubes have been defined. We then define the j’th layer of cubesLj as follows. IfLj−1 = ∅,
we set Lj = ∅. Otherwise we consider a cube R ∈ Lj−1. We say Q ∈ D is R-maximal, if
it is the maximal cube in D satisfying the conditions Q � R and∣∣∣∣

∫
Q

b1
R dμ

∣∣∣∣ < δ2 μ(Q).

Then we denote Lj = ∪R∈Lj−1{Q ∈ D : Q is R-maximal}. By analogy, we define the
layers L′

j associated with the system D′.
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Assuming that D � Q ⊂ Q0, we denote by Qa the smallest cube in ∪j≥0Lj that
contains Q. Such a cube exists because Q ⊂ Q0 ∈ ∪j≥0Lj, and it is also unique due to
properties of dyadic cubes; hence Qa is well defined. If Q �⊂ Q0 then we denote Qa = Q0

for the sake of convenience. Note that, in any case, we have∣∣∣∣
∫

Q
b1

Qa dμ

∣∣∣∣ ≥ δ2 μ(Q). (2.10)

In an analogous manner, we define Ra ∈ ∪j≥0L′
j for cubes R ∈ D′.

For a fixed j ∈ �, we have the estimate

μ

( ⋃
R∈Lj : R�Q

R
)

≤ (1 − τ )μ(Q) for Q ∈ Lj−1. (2.11)

A proof is in [13, pp. 269–270]. Here τ ∈ (0, 1) is a constant, depending only on δb.
This estimate generalises by simple iteration as follows:

LEMMA 2.12. Let Q ∈ D and Qa ∈ LM for M ∈ �0. Then, for j ≥ 1, we have the
estimate

μ

( ⋃
S∈LM+j :S�Q

S
)

=
∑

S∈LM+j :S�Q

μ(S) ≤ (1 − τ )j−1μ(Q).

REMARK 2.13. Lemma 2.12 yields that μ-a.e. point x ∈ Q0 belongs to at
most finitely many cubes in the family ∪j∈�0Lj. To prove this, let us denote f =∑∞

j=0

∑
Q∈Lj

χQ. The cubes in Lj for j ∈ � are disjoint, and they are all included in
Q0 = Qa

0 ∈ L0. Using Lemma 2.12 with Q = Q0 and M = 0, we get

‖f ‖L1(Q0) ≤
∞∑

j=0

∑
Q∈Lj

μ(Q) ≤ μ(Q0)
(

1 +
∞∑

j=0

(1 − τ )j
)

< ∞. (2.14)

The claim follows.

Carleson embeddings. LetD be a generic dyadic system and let dk ∈ L1(�N, μ; �),
k ∈ �, be a sequence of functions, and denote

‖{dk}k∈�‖Carp(D) = sup
Q∈D

μ(Q)�=0

1
μ(Q)1/p

∥∥∥∥1Q

∑
k : 2k≤�(Q)

εkdk

∥∥∥∥
Lp(�N×�,μ⊗P;�)

.

If dk = Ekdk for all k ∈ �, then the Carleson norms are equivalent for all p ∈ [1,∞).
For a proof, see Proposition 3.1 in [4]. We recall two Carleson embedding theorems;
The following result is Theorem 3.4 in [4].

THEOREM 2.15. Let X be a UMD space and 1 < p < ∞. Let {dk}k∈� ⊂ L1(�N, μ; �)
be a sequence such that dk = Ekdk for every k ∈ �. Then∥∥∥∥∑

k∈�

εkdkEkf
∥∥∥∥

Lp(�N×�,μ⊗P;X)
� ‖{dk}k∈�‖Car1(D)‖f ‖Lp(�N ,μ;X)
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for every f ∈ Lp(�N, μ; X).

The following embedding result for RMF spaces is essentially Theorem 8.2 in [7],
where it is stated for the Lebesgue measure; see also [5] for a general measure μ and an
interesting converse statement.

THEOREM 2.16. Let X be an RMF space, 1 < p < ∞, and η > 0. Assuming that
{dk}k∈� is a sequence in L1(�N, μ; �), then

∥∥∥∥∑
k∈�

εkdkEkf
∥∥∥∥

Lp(�N×�,μ⊗P;X)
� ‖{dk}k∈�‖Carp+η(D)‖f ‖Lp(�N ,μ;X)

for every f ∈ Lp(�N, μ; X).

3. Adapted martingale decompositions. Throughout this section we assume that
X is a Banach space and that b = b1 is an L∞-accretive system. The assumption that
b = b1 is only for notational convenience, and all of the results throughout this section
remain valid if we replace b1 with b2 and the random dyadic system D with D′.

Adapted conditional expectations. LetD =⋃k∈� Dk be a generic system of dyadic
cubes in �N and f ∈ L1

loc(�N ; X). In what follows we will define various operators acting
on this function. First of all, the conditional expectation for k ∈ � is defined by

Ekf :=
∑

Q∈Dk

1Q〈f 〉Q, 〈f 〉Q := 1
μ(Q)

∫
Q

f dμ.

If μ(Q) = 0 for a cube Q, we agree that 〈f 〉Q = 0. If Q ∈ Dk is a cube, then the local
version of this conditional expectation is defined by EQf := 1QEkf . The corresponding
martingale difference is defined by Dkf := Ek−1f − Ekf and its local version is DQf :=
1QDkf . For the L∞-accretive system b = {bQ} and k ∈ �, we define

ba
k :=

∑
Q∈Dk

1QbQa .

The b-adapted conditional expectation and its local version, for k ∈ � and Q ∈ Dk, are
defined by

Ea
kf := ba

k
Ekf
Ekba

k
, Ea

Qf := 1QEa
kf.

The corresponding b-adapted martingale difference and its local version are

Da
kf := Ea

k−1f − Ea
kf, Da

Qf := 1QDa
kf,

where k ∈ � and Q ∈ Dk.
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We agree on the following slightly abusive notation:

{ba
k−1 = ba

k} :=
⋃

Q∈Dk−1

Qa=(Q(1))a

Q,

χk−1 := {ba
k−1 �= ba

k} := �N \ {ba
k−1 = ba

k} =
⋃

Q∈Dk−1
Q=Qa �=Q0

Q,
(3.1)

where k ∈ �.

A representation for Da
Q. Here we compute a useful representation for the adapted

martingale differences of f ∈ L1
loc(�N ; X). For this purpose, we let Q ∈ Dk and denote

by Q1, . . . , Q2N ∈ Dk−1 the subcubes of Q (in some order) so that
⋃2N

i=1 Qi = Q. Then

Da
Qf = 1Q(Ea

k−1f − Ea
kf ) =

2N∑
i=1

bQa
i

〈f 〉Qi

〈bQa
i
〉Qi

1Qi − bQa
〈f 〉Q

〈bQa〉Q
1Q.

Writing 〈f 〉Q = 1
μ(Q)

∑2N

i=1 μ(Qi)〈f 〉Qi , we get

Da
Qf =

2N∑
i=1

〈f 〉Qi

(
bQa

i

〈bQa
i
〉Qi

1Qi − μ(Qi)
μ(Q)

bQa

〈bQa〉Q
1Q

)
.

This computations motivates the following definition: If μ(Qi) �= 0, we define

ϕa
Q,i := bQa

i

〈bQa
i
〉Qi

1Qi − μ(Qi)
μ(Q)

bQa

〈bQa〉Q
1Q. (3.2)

Otherwise we define ϕQ,i ≡ 0.
The following lemma draws conclusions from above, and provides further

properties for the resulting decomposition. The proof is straightforward.

LEMMA 3.3. Let f ∈ L1
loc(�N ; X) and Q ∈ Dk. Let Q1, . . . , Q2N ∈ Dk−1 denote the

subcubes of Q in some order. Then we can write

Da
Qf =

2N∑
i=1

〈f 〉Qiϕ
a
Q,i.

Furthermore, if i ∈ {1, 2, . . . , 2N}, then
a) ‖ϕa

Q,i‖L∞(μ) � 1;
b) ‖ϕa

Q,i‖L1(dμ) � μ(Qi);
c) supp(ϕa

Q,i) ⊂ Q;
d)
∫

�N ϕa
Q,i dμ = 0.

Within these estimates, the implicit constant depends on δ in (1.5).

A representation for (Da
k)∗. We compute the adjoint of the b-adapted martingale

difference operator Da
k for k ∈ �. For this purpose we fix f ∈ Lp(�N ; X) and g ∈
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Lq(�N ; X∗), where 1/p + 1/q = 1. Recall that

Da
kf = Ea

k−1f − Ea
kf = ba

k−1
Ek−1f

Ek−1ba
k−1

− ba
k

Ekf
Ekba

k
. (3.4)

The self-adjointness of the expectation operator Ek yields

〈f, Ea
kg〉 =

〈
ba

k
f

Ekba
k
, Ekg

〉
=
〈
Ek

(
ba

k
f

Ekba
k

)
, g
〉
.

As a consequence, we find that

Akf := (Ea
k)∗f = Ek

(
ba

k
f

Ekba
k

)
= Ek(ba

kf )

Ekba
k

.

Substituting this identity to (3.4), we get the representation

(Da
k)∗f = Aa

k−1f − Aa
kf = Ek−1(ba

k−1f )

Ek−1ba
k−1

− Ek(ba
kf )

Ekba
k

. (3.5)

A representation for (Da
k)2. Assuming that k, l ∈ �,

Ea
kEa

l f = ba
k

Ekba
k

Ek

(
ba

l
Elf
Elba

l

)
=
{ ba

k
Ekba

k
Ekba

l
Elf
Elba

l
, if l ≥ k;

Ea
kf, if l ≤ k.

Here we used twice the identity Ek = EkEl if l ≤ k. As a consequence, we have the
identity

(Da
k)2 = (Ea

k−1 − Ea
k)2 = (Ea

k−1)2 − Ea
k−1Ea

k − Ea
kEa

k−1 + (Ea
k)2

= (Ea
k−1)2 − Ea

k−1Ea
k −Ea

k + Ea
k︸ ︷︷ ︸

=0

= Ea
k−1Da

k.

Using the notation (3.1), we write Da
kf for a function f ∈ L1

loc(�N ; X) as follows:

Da
kf = 1{ba

k−1=ba
k}b

a
k

(
Ek−1f
Ek−1ba

k
− Ekf

Ekba
k

)

+ 1{ba
k−1 �=ba

k}

(
ba

k−1
Ek−1f

Ek−1ba
k−1

− ba
k

Ekf
Ekba

k

)
.
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Using this and the basic properties of the operator Ek−1, we get

Ea
k−1Da

kf = ba
k−1

Ek−1ba
k−1

Ek−1Da
kf

= ba
k−1

Ek−1ba
k−1

1{ba
k−1=ba

k}Ek−1ba
k

(
Ek−1f
Ek−1ba

k
− Ekf

Ekba
k

)

+ ba
k−1

Ek−1ba
k−1

1{ba
k−1 �=ba

k}

(
Ek−1ba

k−1
Ek−1f

Ek−1ba
k−1

− Ek−1ba
k

Ekf
Ekba

k

)

= 1{ba
k−1=ba

k}b
a
k

(
Ek−1f
Ek−1ba

k
− Ekf

Ekba
k

)

+ 1{ba
k−1 �=ba

k}

(
ba

k−1
Ek−1f

Ek−1ba
k−1

− ba
k

Ekf
Ekba

k

)

+ 1{ba
k−1 �=ba

k}Ekf
(

ba
k

Ekba
k

− ba
k−1

Ek−1ba
k−1

Ek−1ba
k

Ekba
k

)
= Da

kf + ωa
kEkf,

where we have denoted

ωa
k := 1{ba

k−1 �=ba
k}

(
ba

k

Ekba
k

− ba
k−1

Ek−1ba
k−1

Ek−1ba
k

Ekba
k

)
.

The following lemma draws conclusions from the computations above.

LEMMA 3.6. Let k ∈ �. Then

(Da
k)2f = Da

kf + ωa
kEkf, if f ∈ L1

loc(�N ; X). (3.7)

Furthermore, the functions ωa
k have the following properties a)–c):

a) ωa
k(x) = 0 if x ∈ �N \ {ba

k−1 �= ba
k},

b) ‖ωa
k‖L∞(μ) � 1,

c) Ek−1ω
a
k = 0.

The implicit constant in b) depends on δ defined in (1.5).

Proof. The identity (3.7) is established above. The property a) is clear; b) follows
from (1.5) and (2.10). For c) we notice that

Ek−1ω
a
k = 1{ba

k−1 �=ba
k}

(
Ek−1ba

k

Ekba
k

− Ek−1ba
k−1

Ek−1ba
k−1

Ek−1ba
k

Ekba
k

)
= 0.

�
We also define the following two local versions of ωa

k. Let Q ∈ Dk and denote by
Q1, . . . , Q2N ∈ Dk−1 the subcubes of Q. Then we define

ωa
Q := 1Qωa

k, ωa
Q,i := 1Qiω

a
Q. (3.8)

The following lemma collects the basic properties of these local versions.

LEMMA 3.9. If Q ∈ D and f ∈ L1
loc(�N ; X), then

(Da
Q)2f = Da

Qf + ωa
QEQf. (3.10)
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Also,

‖ωa
Q‖L1(μ) � μ(Q) and ‖ωa

Q,i‖L1(μ) � μ(Qi) for i = 1, 2, . . . , 2N . (3.11)

Proof. Assume that Q ∈ Dk. Then, by using (3.7), we get

(Da
Q)2f = 1QDa

k(1QDa
kf ) = 1Q(Da

k)2(1Qf ) = Da
Qf + ωa

QEQf.

The estimate (3.11) follows from Lemma 3.6. �

A decomposition of functions. Recall that b is an L∞-accretive system. In the
sequel we assume that b = b1 and consider the cube Q0 ∈ Ds that is defined in (2.8). It
is a large cube such that the support of μ is contained in it.

We will show that

f − bQ0

〈f 〉�N

〈bQ0〉�N
=

∞∑
j=−∞

Da
j f

where the convergence takes place both pointwise μ-almost everywhere and also in
Lp(�N, μ; X)-norm. We begin with the following lemma.

LEMMA 3.12. For μ almost every point x in Q0, we have

ba
−∞(x) := lim

k→−∞
ba

k(x) = lim
k→−∞

Ekba
k(x).

Furthermore, the limit satisfies the estimate |ba
−∞(x)| ≥ δ2, where δ > 0 is defined in

connection with (1.5).

Proof. By Remark 2.13 we may restrict ourselves to those points x ∈ Q0 that
belong to at most finitely many cubes in the family ∪j∈�0Lj. Because the family ∪j∈�Lj

is countable, we can also assume that μ(Qk(x)) �= 0 for every k ∈ � where (Qk(x))k∈�

is the unique sequence of cubes such that x ∈ Qk(x) ∈ Dk for every k ∈ �. Finally, we
can also assume that

lim
k→−∞

〈bQ〉Qk(x) = bQ(x), if Q ∈
⋃
j∈�0

Lj. (3.13)

Indeed, by martingale convergence, the identity (3.13) holds true for almost every
x ∈ Q0 if Q is fixed, and the family ∪j∈�Lj is countable.

Fix a point x as described above and consider the sequence (Qk(x))k∈�. Note that
x ∈ Qk(x) ⊂ (Qk(x))a for every k ≤ s. In particular, there is an index k(x) ≤ s such that
(Qk(x))a = (Qk(x)(x))a if k ≤ k(x). As a consequence, for k ≤ k(x), we can write

ba
k(x) =

∑
Q∈Dk

1Q(x)bQa (x) = b(Qk(x))a (x) = b(Qk(x)(x))a (x).
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It follows that limk→−∞ ba
k(x) = b(Qk(x)(x))a . On the other hand, if k ≤ k(x), we use the

assumption (3.13) for

Ekba
k(x) = 〈ba

k〉Qk(x) = 〈b(Qk(x))a〉Qk(x) = 〈b(Qk(x)(x))a〉Qk(x)

k→−∞−−−−→ b(Qk(x)(x))a (x) = lim
k→−∞

ba
k(x).

(3.14)

This is as required. Finally, since μ(Qk(x)) �= 0 for every k, we can use (2.10) to conclude
that |ba

−∞(x)| = limk→−∞ |〈b(Qk(x))a〉Qk(x)| ≥ δ2. �
With the aid of this lemma, we can establish useful convergence results. For this

purpose, we fix f ∈ L1
loc(�N ; X). By martingale convergence, limk→−∞ Ekf (x) = f (x)

for μ-a.e. x ∈ �N and, as a consequence of Lemma 3.12, we have

Ea
kf (x) = ba

k(x)
Ekf (x)
Ekba

k(x)
k→−∞−−−−→ f (x) (3.15)

for μ-a.e. x ∈ �N . Recall that �(Q0) = 2s and suppμ ⊂ Q0. Hence, for points x in
Q0 = Qa

0, we have

Ea
s f (x) = ba

s (x)
Esf (x)
Esba

s (x)
= bQ0 (x)

〈f 〉Q0

〈bQ0〉Q0

= bQ0 (x)
〈f 〉�N

〈bQ0〉�N
.

Using also (3.15) yields the decomposition

f − bQ0

〈f 〉�N

〈bQ0〉�N
= lim

k→−∞
Ea

kf − Ea
s f

= lim
k→−∞

s∑
j=k+1

(
Ea

j−1f − Ea
j f
)

︸ ︷︷ ︸
=Da

j f

=
∞∑

j=−∞
Da

j f
(3.16)

that is valid μ-almost everywhere in �N . In the last step we used the identity Ea
i f = Ea

s f
if i ≥ s for s defined in (2.8); hence, Da

j f = 0 μ-almost everywhere if j > s.
Let us then consider the convergence in the Lp-norm with 1 < p < ∞. In order to

do this, we fix f ∈ Lp(�N, μ; X). Let j ≤ s. Using (2.10), we see that |Ejba
j | ≥ δ2 almost

everywhere and, by (1.5), we have ‖ba
j ‖L∞(μ) ≤ 1. Hence the following norm-estimates

are valid pointwise μ-almost everywhere

‖Ea
j f ‖X =

∥∥∥∥ba
j

Ejf
Ejba

j

∥∥∥∥
X

≤ δ−2‖Ejf ‖X ≤ δ−2Mf ∈ Lp(�N, μ; �),

where M is Doob’s maximal operator. Hence, by the dominated convergence theorem,
we see that the decomposition (3.16) converges in Lp(�N, μ; X).

4. Norm estimates for adapted martingales. We prove ‘square-function’ estimates
for the adapted martingale differences and their adjoints, see Theorems 4.1 and 4.16.
The first result is true for general UMD spaces, whereas the UMD function lattice
property is needed in proof of the second theorem. This dichotomy between the square-
function estimates for the Da

j and their adjoints, (Da
j )∗, seems somewhat unexpected: In

the original scalar-valued argument of Nazarov, Treil and Volberg [13, Section 3], only
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the estimate for Da
j is proven explicitly, while the dual case is just stated, suggesting

that it should follow in a similar way. To some extent it does, but this similarity seems
to break down in the vector-valued realm, and we will give a careful consideration of
both estimates in this section. We begin with:

THEOREM 4.1. Let X be a UMD space and 1 < p < ∞. Then

∥∥∥∥ ∞∑
j=−∞

εjDa
j f
∥∥∥∥

Lp(�N×�,μ⊗P,X)
� ‖f ‖Lp(�N ,μ;X) (4.2)

for every f ∈ Lp(�N, μ; X).

In what follows we prove Theorem 4.1. For this purpose we first prove various
lemmata; the following is a consequence of Theorem 2.15.

LEMMA 4.3. Let X be a UMD space and 1 < p < ∞. Then

∥∥∥∥ ∞∑
j=−∞

εj1{ba
j−1 �=ba

j }Ej−1f
∥∥∥∥

Lp(�N×�,μ⊗P;X)
� ‖f ‖Lp(�N ,μ;X) (4.4)

for every f ∈ Lp(�N, μ; X).

Proof. If j ∈ �, then χj−1 := 1{ba
j−1 �=ba

j } = Ej−11{ba
j−1 �=ba

j } belongs to L1(�N, μ; �).
Therefore we can invoke the Carleson embedding theorem 2.15. Hence we can bound
the left hand side of (4.4) by a constant multiple of ‖{χj}j∈�‖Car1(D)‖f ‖p. The first factor
is estimated as follows:

‖{χj}j∈�‖Car1(D) ≤ sup
Q∈D

μ(Q)�=0

1
μ(Q)

∑
j : 2j≤�(Q)

‖1Qχj‖L1 .

Fix Q ∈ D with μ(Q) �= 0. Fix r ∈ � such that Qa ∈ Lr. Using the definition (3.1) and
Lemma 2.12, we obtain

∑
j:2j≤�(Q)

‖1Qχj‖1 ≤ μ(Q) +
∞∑

k=1

∑
S∈Lr+k:S�Q

μ(S)

≤ μ(Q) +
∞∑

k=1

(1 − τ )k−1μ(Q) � μ(Q).

Taking the supremum over Q ∈ D as above, we have ‖{χj}j∈�‖Car1(D) � 1. �
Another useful estimate is the following.

LEMMA 4.5. Let X be a UMD space and 1 < p < ∞. Then

∥∥∥∥ ∞∑
j=−∞

εj1{ba
j−1=ba

j }

(
Ej−1f

Ej−1ba
j−1

− Ejf
Ejba

j

)∥∥∥∥
Lp(�N×�,μ⊗P;X)

� ‖f ‖Lp(�N ,μ;X) (4.6)

for every f ∈ Lp(�N, μ; X).
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Proof. Using (2.10) and that

1{ba
j−1=ba

j }Ej−1ba
j−1 = 1{ba

j−1=ba
j }Ej−1ba

j , (4.7)

we see that the following identities hold pointwise μ-almost everywhere in {ba
j−1 = ba

j }:

Ej−1f
Ej−1ba

j−1

− Ejf
Ejba

j
= Ej−1f

Ej−1ba
j

− Ejf
Ejba

j

= Ej−1f
(

1
Ej−1ba

j
− 1

Ejba
j

)
+ (Ej−1f − Ejf )

1
Ejba

j

= Ej−1f
−Djba

j

Ej−1ba
j Ejba

j
+ Djf

1
Ejba

j
.

Hence, the left hand side of (4.6) is dominated by

∥∥∥∥ ∞∑
j=−∞

εj1{ba
j−1=ba

j }
Djba

j

Ej−1ba
j Ejba

j
Ej−1f

∥∥∥∥
Lp

+
∥∥∥∥ ∞∑

j=−∞
εj1{ba

j−1=ba
j }

1
Ejba

j
Djf
∥∥∥∥

Lp

. (4.8)

Observe that by (2.10) we have |Ejba
j | ≥ δ2 for μ-almost every point. Therefore the

contraction principle gives the following estimate for the second term in (4.8):

∥∥∥∥ ∞∑
j=−∞

εj1{ba
j−1=ba

j }
1

Ejba
j

Djf
∥∥∥∥

Lp

�
∥∥∥∥ ∞∑

j=−∞
εjDjf

∥∥∥∥
Lp

.

The UMD-property of X allows us to dominate the right hand side by a constant
multiple of ‖f ‖p.

For the first term in (4.8) we use the Carleson embedding theorem. Using (4.7)
and (2.10) we see that 1{ba

j−1=ba
j }|Ej−1ba

j | and |Ejba
j | are bounded from below by δ2 in

μ-almost every point. Thus, the contraction principle gives the estimate

∥∥∥∥ ∞∑
j=−∞

εj1{ba
j−1=ba

j }
Djba

j

Ej−1ba
j Ejba

j
Ej−1f

∥∥∥∥
Lp

�
∥∥∥∥ ∞∑

j=−∞
εjDjba

j Ej−1f
∥∥∥∥

Lp

. (4.9)

If j ∈ �, then dj−1 := Djba
j ∈ L1(�N, μ; �) and Djba

j = Ej−1Djba
j . Therefore the

Carleson embedding Theorem 2.15 applies, and it gives the estimate

∥∥∥∥ ∞∑
j=−∞

εjDjba
j Ej−1f

∥∥∥∥
Lp

� ‖f ‖Lp sup
Q∈D

μ(Q)�=0

1
μ(Q)

∥∥∥∥1Q

∑
k : 2k≤�(Q)

εkdk

∥∥∥∥
L1(�N×�,μ⊗P;�)

.

In order to estimate the right hand side, we fix a cube Q ∈ D for which μ(Q) �= 0. We
have ∥∥∥∥1Q

∑
k : 2k≤�(Q)

εkdk

∥∥∥∥
L1

≤
∥∥∥∥1Q

∑
k : 2k≤�(Q)

εk−1Dkba
k

∥∥∥∥
L1

+ Cμ(Q).
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The first term on the right hand side is

∥∥∥∥1Q

∑
k : 2k≤�(Q)

εk−1

∑
R∈Dk:R⊂Q

1RDkba
k

∥∥∥∥
L1

=
∥∥∥∥ ∑

k : 2k≤�(Q)

εk−1

∑
R∈Dk:R⊂Q

DRbRa

∥∥∥∥
L1

=
∥∥∥∥ ∑

R∈D:R⊂Q

εRDRbRa

∥∥∥∥
L1

=: �Q.

Assume that Qa ∈ Lu, where u ∈ �. We write �Q in terms of the layers of cubes as
follows

�Q =
∥∥∥∥
( ∑

R⊂Q:Ra=Qa

+
∞∑

j=1

∑
S�Q:S∈Lu+j

∑
R⊂S:Ra=S

)
εRDRbRa

∥∥∥∥
L1

.

The triangle inequality gives

�Q ≤
∥∥∥∥1Q

∑
R⊂Q:Ra=Qa

εRDRbQa

∥∥∥∥
L1

+
∞∑

j=1

∑
S�Q:S∈Lu+j

∥∥∥∥1S

∑
R⊂S:Ra=S

εRDRbS

∥∥∥∥
L1

=: �Q,1 + �Q,2.

(4.10)

Observe that DRbQa = DR(1QbQa ) if R ⊂ Q. Hence, by applying Hölder’s inequality
and (1.5),

�Q,1 ≤ ‖1Q‖L2

∥∥∥∥ ∑
R⊂Q:Ra=Qa

εRDR(1QbQa )

∥∥∥∥
L2

� μ(Q)1/2‖1QbQa‖L2 � μ(Q).

The second term �Q,2 is first estimated in a similar manner. Then we use Lemma 2.12
as follows:

�Q,2 �
∞∑

j=1

∑
S�Q:S∈Lu+j

μ(S) ≤ μ(Q)
∞∑

j=1

(1 − τ )j−1 � μ(Q). (4.11)

We have shown that �Q ≤ �Q,1 + �Q,2 � μ(Q). Collecting the estimates above, we see
that the left hand side of (4.9) is bounded by a constant multiple of ‖f ‖Lp . �

We are now ready for the proof of Theorem 4.1.
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Proof of Theorem 4.1 We decompose Da
j f as follows:

Da
j f = Ea

j−1f − Ea
j f = ba

j−1
Ej−1f

Ej−1ba
j−1

− ba
j

Ejf
Ejba

j

= 1{ba
j−1=ba

j }b
a
j

(
Ej−1f

Ej−1ba
j−1

− Ejf
Ejba

j︸ ︷︷ ︸
:=I(j)

)

+ 1{ba
j−1 �=ba

j }

(
ba

j−1
Ej−1f

Ej−1ba
j−1

− ba
j

Ejf
Ejba

j︸ ︷︷ ︸
:=II(j)

)
.

(4.12)

First, using the contraction principle followed by Lemma 4.5 yields

∥∥∥∥ ∞∑
j=−∞

εj1{ba
j−1=ba

j }b
a
j I(j)
∥∥∥∥

Lp

≤
∥∥∥∥ ∞∑

j=−∞
εj1{ba

j−1=ba
j }I(j)

∥∥∥∥
Lp

� ‖f ‖Lp . (4.13)

In order to estimate the remaining quantity, we fix j ∈ � and use the identity
Ejf = Ej−1f − Djf for

II(j) =
( ba

j−1

Ej−1ba
j−1

− ba
j

Ejba
j

)
Ej−1f + ba

j

Ejba
j

Djf.

This representation leads to the estimate

∥∥∥∥ ∞∑
j=−∞

εj1{ba
j−1 �=ba

j }II(j)
∥∥∥∥

Lp

≤
∥∥∥∥ ∞∑

j=−∞
εj1{ba

j−1 �=ba
j }

( ba
j−1

Ej−1ba
j−1

− ba
j

Ejba
j

)
Ej−1f

∥∥∥∥
Lp

+
∥∥∥∥ ∞∑

j=−∞
εj1{ba

j−1 �=ba
j }

ba
j

Ejba
j

Djf
∥∥∥∥

Lp

.

(4.14)

The last term above is estimated by using first (1.5) and (2.10) with the contraction
principle, and then followed by the UMD-property of X . This results in the required
upper bound c‖f ‖Lp for the term in question.

Applying the contraction principle to the first term in the right hand side of (4.14)
yields the estimate

∥∥∥∥ ∞∑
j=−∞

εj1{ba
j−1 �=ba

j }

( ba
j−1

Ej−1ba
j−1

− ba
j

Ejba
j

)
Ej−1f

∥∥∥∥
Lp

�
∥∥∥∥ ∞∑

j=−∞
εj1{ba

j−1 �=ba
j }Ej−1f

∥∥∥∥
Lp

.

Using Lemma 4.3, we see that the last term can be dominated by c‖f ‖Lp .
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By collecting the estimates beginning from (4.14), we get

∥∥∥∥ ∞∑
j=−∞

εj1{ba
j−1 �=ba

j }

(
ba

j−1
Ej−1f

Ej−1ba
j−1

− ba
j

Ejf
Ejba

j

)∥∥∥∥
Lp

� ‖f ‖Lp . (4.15)

The required estimate (4.2) follows now by combining the identity (4.12) with the
estimates (4.13) and (4.15). �

Estimate for the adjoints (Da
k)∗. Here we prove a norm estimate under the UMD

function lattice assumption. The need for this assumption was somewhat unexpected to
us, but with our present techniques, we were unable to avoid it. Proving (or disproving)
the dual square-function estimate in the absence of the lattice assumption would be an
interesting question for a deeper understanding of the vector-valued theory.

THEOREM 4.16. Let X be a UMD function lattice and 1 < p < ∞. Then

∥∥∥∥∑
k∈�

εk(Da
k)∗f
∥∥∥∥

Lp(�N×�,μ⊗P,X)
� ‖f ‖Lp(�N ,μ;X) (4.17)

for every f ∈ Lp(�N, μ; X).

In order to prove Theorem 4.16, we first prove the following Carleson embedding
for UMD function lattices.

PROPOSITION 4.18. Let X be a UMD function lattice and 1 < p < ∞. Let

{dk ∈ L1(�N, μ; �)}k∈�, {ck ∈ L∞(�N, μ; �)}k∈�,

be such that dk = Ekdk and ‖ck‖L∞ ≤ 1 for every k ∈ �. Then

∥∥∥∥∑
k∈�

εkdkEk(ckf )

∥∥∥∥
Lp(�N×�,μ⊗P,X)

� ‖{dk}k∈�‖Car1(D)‖f ‖Lp(�N ,μ;X) (4.19)

for every f ∈ Lp(�N, μ; X).

Proof. Since X is a lattice of functions, for ξ ∈ X , we can consider its pointwise
absolute value |ξ | ∈ X , which satisfies ‖ξ‖X = ‖ |ξ | ‖X . Moreover, we have the following
inequalities, which can be seen by the argument on [14, p. 212]:

∫
�

∣∣∣∣∑
k∈�

εkξk

∣∣∣∣p
X

dP(ε) �

∣∣∣∣
(∑

k∈�

|ξk|2
)1/2∣∣∣∣p

X
�

∫
�

∣∣∣∣∑
k∈�

εk|ξk|
∣∣∣∣p
X

dP(ε).
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Since Ekdk = dk, we have Ek|dk| = |dk|. Hence, by the Carleson embedding Theorem
2.15, we can estimate the left hand side of (4.19) as follows

LHS(4.19) �

∥∥∥∥
(∑

k∈�

|dkEk(ckf )|2
)1/2∥∥∥∥

Lp(�N ,μ,X)

�
∥∥∥∥
(∑

k∈�

(|dk|Ek|f |)2)1/2∥∥∥∥
Lp(�N ,μ,X)

�

∥∥∥∥∑
k∈�

εk|dk|Ek|f |
∥∥∥∥

Lp(�N ,μ,X)
� ‖{dk}k∈�‖Car1(D)

∣∣∣∣|f |∣∣∣∣Lp(�N ,μ,X).

The required estimate now follows because
∣∣∣∣|f |∣∣∣∣p = ‖f ‖p. �

We also need the following notation and representation formulae.
If k ∈ �, we write Qk(x) for the unique cube in Dk containing the point x ∈ �N .
For n ∈ �0 and x ∈ �N , we denote by Qn(x) ∈ Ln the cube in the nth layer that

contains the point x (if such a cube exists), see Section 2. We also denote σn(x) =
log2(�(Qn(x)) if x ∈ Qn(x) ∈ Ln and σn(x) = −∞ if there is no cube inLn which contains
the point x.

If x ∈ ∪Q∈Ln Q, we denote bn(x) = bQn(x)(x). Note that, for k ≤ s (recall that Q0 ∈
Ds) and x ∈ Q0,

σn+1(x) < k ≤ σn(x) ⇐⇒ (Qk(x))a = Qn(x) ∈ Ln. (4.20)

In particular, if (4.20) is valid, then ba
k(x) = b(Qk(x))a (x) = bn(x).

We also denote

Eσn =
∑
Q∈Ln

EQ, n ∈ {0, 1, . . .}.

LEMMA 4.21. Let x ∈ �N and p ∈ (1,∞). Then

∫
�

∣∣∣∣ ∞∑
n=0

εnEσn (bnf )(x)

∣∣∣∣pdP(ε)

�
∫

�

∣∣∣∣∑
k∈�

εk1{ba
k−1 �=ba

k}(x)Ek−1(ba
k−1f )(x)

∣∣∣∣pdP(ε) + |EQ0 (bQ0 f )(x)|p

for every f ∈ Lp(�N, μ; X).

Proof. Denote Ak = Dk ∩ (∪∞
n=1Ln). Let ε ∈ � and x ∈ �N . By (3.1),

∑
k∈�

εk1{ba
k−1 �=ba

k}(x)Ek−1(ba
k−1f )(x) =

∑
k∈�

∑
Q∈Ak−1

εkEQ(bQa f )(x)

=
∞∑

n=1

εσn(x)+1

∑
Q∈Ln

EQ(bQa f )(x).
(4.22)
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If x ∈ Q ∈ Ln, then Q = Qa = Qn(x). Hence, 1QbQa f = 1Qbnf , and applying the last
identity to the right hand side of (4.22), we get

LHS(4.22) =
∞∑

n=1

εσn(x)+1

∑
Q∈Ln

EQ(bnf )(x) =
∞∑

n=1

εσn(x)+1Eσn (bnf )(x).

The required identity follows by taking p-absolute values, integrating, and relabeling
the random variables εσn(x)+1. �

LEMMA 4.23. Let x ∈ �N and p ∈ (1,∞). Then

∫
�

∣∣∣∣ ∞∑
n=0

εnEσn+1 (bnf )(x)

∣∣∣∣pdP(ε) =
∫

�

∣∣∣∣∑
k∈�

εk1{bk−1 �=bk}(x)Ek−1(ba
kf )(x)

∣∣∣∣pdP(ε)

for every f ∈ Lp(�N, μ; X).

Proof. Let Ak be as in the previous proof. Let x ∈ �N and ε ∈ �. Then, if x ∈ Q ∈
Ln with n ≥ 1, we have x ∈ (Q(1))a ∈ Ln−1, and therefore

bn−1(x) = bQn−1(x)(x) = b(Q(1))a (x).

Using this identity, we get∑
k∈�

εk1{bk−1 �=bk}(x)Ek−1(ba
kf )(x) =

∑
k∈�

εk

∑
Q∈Ak−1

EQ(b(Q(1))a f )(x)

=
∞∑

n=1

εσn(x)+1

∑
Q∈Ln

EQ(bn−1f )(x) =
∞∑

n=0

εσn+1(x)+1Eσn+1 (bnf )(x).

The required estimate follows by taking p-absolute values, integrating, and relabeling
the random variables σn+1(x) + 1. �

We are ready for the proof of Theorem 4.16.

Proof of Theorem 4.16 By (3.5), we get

(Da
k)∗f = Ek−1(ba

k−1f )

Ek−1ba
k−1

− Ek(ba
kf )

Ekba
k

= Ekba
k − Ek−1ba

k−1

Ekba
kEk−1ba

k−1

Ek−1(ba
k−1f ) + Ek−1(ba

k−1f ) − Ek(ba
kf )

Ekba
k

.

(4.24)

Denote dk = Ekba
k − Ek−1ba

k−1 for k ∈ �. Then |dk| ≤ 2 and Ek−1dk = dk. By (2.10), we
have |Ekba

kEk−1ba
k−1| ≥ δ4 for μ-almost every point in �N . Hence, by the contraction

principle and Proposition 4.18, we obtain∥∥∥∥∑
k∈�

εk
Ekba

k − Ek−1ba
k−1

Ekba
kEk−1ba

k−1

Ek−1(ba
k−1f )

∥∥∥∥
Lp(�N×�,μ⊗P,X)

� ‖{dk}k∈�‖Car1(D)‖f ‖Lp(�N ,μ;X).

(4.25)
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Let us prove that ‖{dk}k∈�‖Car1(D) � 1. Let Q ∈ D be such that μ(Q) �= 0. Then
1{ba

k−1=ba
k}dk = −1{ba

k−1=ba
k}Dkba

k, and therefore∥∥∥∥1Q

∑
2k≤�(Q)

εkdk

∥∥∥∥
L1(�N×�,μ⊗P;�)

�
∥∥∥∥1Q

∑
2k≤�(Q)

εk1{ba
k−1 �=ba

k}dk

∥∥∥∥
1
+
∥∥∥∥∑

P⊂Q

εPDPbPa

∥∥∥∥
1
.

(4.26)

The first term on the right hand side of (4.26) is first estimated by using contraction
principle. Then proceeding as in the proof of Lemma 4.3 gives the upper bound cμ(Q)
for that term.

The second term on the right hand side of (4.26) is estimated as in connection
with (4.10), yielding the same upper bound cμ(Q). Combining the estimates above, we
find that ‖{dk}k∈�‖Car1(D) � 1.

It remains to prove that∥∥∥∥∑
k∈�

εk
Ek−1(ba

k−1f ) − Ek(ba
kf )

Ekba
k

∥∥∥∥
Lp(�N×�,μ⊗P,X)

� ‖f ‖Lp(�N ,μ;X). (4.27)

By (2.10), we have |Ekba
k| ≥ δ2 for μ-almost every point in �N . Using the contraction

principle we eliminate the terms 1/Ekba
k from the left hand side of (4.27). Then we

consider the following decomposition, where k ∈ �,

Ek−1(ba
k−1f ) − Ek(ba

kf ) = Ek−1
(
χk−1(ba

k−1 − ba
k)f
)+ (Ek−1 − Ek)(ba

kf )

= χk−1Ek−1
(
(ba

k−1 − ba
k)f
)+ Dk(ba

kf ),
(4.28)

where we have denoted χk−1 = 1{ba
k−1 �=ba

k}.
Using Proposition 4.18, we obtain the following norm-estimate involving the first

term on the right hand side of (4.28)∥∥∥∥∑
k∈�

εkχk−1Ek−1
(
(ba

k−1 − ba
k)f
)∥∥∥∥

Lp(�N×�,μ⊗P,X)

� ‖{χk}k∈�‖Car1(D)‖f ‖Lp(�N ,μ;X).

(4.29)

On the other hand, the proof of Lemma 4.3 shows that ‖{χk}k∈�‖Car1(D) � 1.
In order to complete the proof of (4.27), we still need to prove the following

estimate involving the second term on the right hand side of (4.28),∥∥∥∥∑
k∈�

εkDk(ba
kf )

∥∥∥∥
Lp(�N×�,μ⊗P,X)

� ‖f ‖Lp(�N ,μ;X). (4.30)

For this purpose, we introduce independent Rademacher variables ε̃ ∈ (�̃, P̃). For
x ∈ Q0 and k ≤ s, we denote ε̃a

k(x) = ε̃n if n is such that σn+1(x) < k ≤ σn(x). By the
fact that μ(�N \ Q0) = 0 and (4.20), we find that the functions ε̃a

k, for k ≤ s, are defined
μ-almost everywhere and they are Dk-measurable.

Then, for every x ∈ Q0 and ε̃ ∈ �̃, we have∫
�

∣∣∣∣∑
k≤s

εkDk(ba
kf )(x)

∣∣∣∣p
X

dP(ε) =
∫

�

∣∣∣∣∑
k≤s

εkDk(ε̃a
kba

kf )(x)

∣∣∣∣p
X

dP(ε).
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Recall that Dkba
k = 0 μ-almost everywhere if k > s and μ(�N \ Q0) = 0. Hence, by

integrating, and using the UMD-property of X and measurability of ε̃a
k, we obtain

LHS(4.30) =
∥∥∥∥∑

k≤s

εkDk(ε̃a
kba

kf )

∥∥∥∥
Lp(�N×�,μ⊗P,X)

�
∥∥∥∥∑

k≤s

Dk(ε̃a
kba

kf )

∥∥∥∥
Lp(�N ,μ;X)

=
∥∥∥∥∑

k≤s

ε̃a
kDk(ba

kf )

∥∥∥∥
Lp(�N ,μ;X)

.

Reindexing the last sum gives

LHS(4.30) �
∥∥∥∥ ∞∑

n=0

∑
k≤s

1σn+1<k≤σn ε̃
a
kDk(ba

kf )

∥∥∥∥
Lp(�N ,μ;X)

.

�
∥∥∥∥ ∞∑

n=0

ε̃n

∑
k≤s

1σn+1<k≤σn Dk(bnf )

∥∥∥∥
Lp(�N ,μ;X)

.

In the last inequality we used the fact that the indicators x �→ 1σn+1(x)<k≤σn(x) are Dk-
measurable by (4.20). Taking the expectation over ε̃ ∈ �̃, we find that

LHS(4.30) �
∥∥∥∥ ∞∑

n=0

ε̃n

∑
k≤s

1σn+1<k≤σn Dk(bnf )

∥∥∥∥
Lp(�N×{0,1}�0 ,μ⊗P̃,X)

. (4.31)

By (4.20) and martingale convergence,∑
k≤s

1σn+1<k≤σn Dk =
∑

Q : Qa∈Ln

DQ =
∑

Q : Qa∈∪m≥nLm

DQ −
∑

Q : Qa∈∪m>nLm

DQ

= (1∪Ln − Eσn ) − (1∪Ln+1 − Eσn+1 ) = Eσn+1 − Eσn + 1∪Ln\∪Ln+1 .

Apply this operator identity to bnf ∈ Lp(�N, μ; X) and substitute the resulting function
to the right hand side of (4.31). Using the triangle inequality results in three terms; one
of them can be estimated (using that ∪Ln ⊃ ∪Ln+1 and ‖bn‖∞ � 1 if n ∈ {0, 1, . . .}) as
follows ∥∥∥∥

( ∞∑
n=0

ε̃n1∪Ln\∪Ln+1 bn

︸ ︷︷ ︸
�1

)
f
∥∥∥∥

Lp(�N×{0,1}�0 ,μ⊗P̃,X)
� ‖f ‖Lp(�N ,μ;X).

The two remaining terms can be first estimated by using lemmata 4.21 and 4.23, and
then invoking Proposition 4.18. This leads to the upper bound

c‖{1{ba
k−1 �=ba

k}}k∈�‖Car1(D)‖f ‖Lp(�N ,μ;X) + c‖EQ0 (bQ0 f )‖Lp(�N ,μ;X) � ‖f ‖Lp(�N ,μ;X).

for these two terms.
Combining the estimates above yields LHS(4.30) � ‖f ‖Lp(�N ,μ;X). �
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5. Decomposition of a Calderón–Zygmund operator. Let T ∈ L(Lp(�N, μ; X)) be
a Calderón–Zygmund operator as in Theorem 1.7. We establish the following estimate:

|〈g, Tf 〉| � ‖g‖q‖f ‖p +
∣∣∣∣ ∑

Q∈D, R∈D′
〈Da,2

R g, T(Da,1
Q f )〉

∣∣∣∣, (5.1)

where f ∈ Lp(�N, μ; X) and g ∈ Lq(�N, μ, X∗).
Estimate (5.1) is uniform over all dyadic systems D = D(β) and D′ = D(β ′), and it

is based on decomposition of functions, treated in Section 3. In the subsequent sections
various good parts of the series on the right hand side of (5.1) will be estimated. In
Section 13, we finish the proof of Theorem 1.7 by collecting estimates of good parts,
and also performing an estimate for the remaining bad part.

In order to prove (5.1), we recall the basic cubes Q0 ∈ D and R0 ∈ D′ satisfying
(2.8). The L∞-accretive systems for T and T∗, respectively, are denoted by {b1

Q}Q∈D
and {b2

R}R∈D′ . Let q ∈ (1,∞) be such that p−1 + q−1 = 1 and let f ∈ Lp(�N, μ; X),
g ∈ Lq(�N, μ; X∗).

According to (3.16), and the reasoning therein, we have the decompositions

f − b1
Q0

〈f 〉�N

〈b1
Q0

〉�N
=

∞∑
j=−∞

Da,1
j f =

∑
Q∈D

Da,1
Q f ;

g − b2
R0

〈g〉�N

〈b2
R0

〉�N
=

∞∑
j=−∞

Da,2
j g =

∑
R∈D′

Da,2
R g,

(5.2)

which converge in Lp and Lq, respectively. As a consequence, we see that

〈g, Tf 〉 =
〈

g, T

⎛
⎝∑

Q∈D
Da,1

Q f

⎞
⎠〉+

〈
g, T

(
b1

Q0

〈f 〉�N

〈b1
Q0

〉�N

)〉
=
〈∑

R∈D′
Da,2

R g, T

⎛
⎝∑

Q∈D
Da,1

Q f

⎞
⎠〉

+
〈

T∗
(

b2
R0

〈g〉�N

〈b2
R0

〉�N

)
,
∑
Q∈D

Da,1
Q f

〉
+
〈

g, T

(
b1

Q0

〈f 〉�N

〈b1
Q0

〉�N

)〉
.

(5.3)

Recall that b2
R0

is scalar-valued while g is X∗-valued. Moreover, we have

T∗(b2
R0

⊗ ξ ∗) = T∗(b2
R0

) ⊗ ξ ∗ =: x �→ (T∗(b2
R0

)(x))ξ ∗

for every ξ ∗ ∈ X∗. Thus, by Hölder’s inequality and inequality (1.6) for T∗, we have∥∥∥∥T∗(b2
R0

〈g〉�N

〈b2
R0

〉�N
)

∥∥∥∥
q

=
(∫

�N
‖T∗
(

b2
R0

〈g〉�N

〈b2
R0

〉�N

)
‖q

X∗ dμ

)1/q

= |〈g〉�N |X∗

|〈b2
R0

〉�N | ‖T∗(b2
R0

)‖q

� 1
μ(R0)

∫
R0

|g(x)|X∗dμ(x) · ‖T∗(b2
R0

)‖∞ · μ(R0)1/q

� Bμ(R0)1/q
(

1
μ(R0)

∫
R0

|g(x)|qX∗dμ(x)
)1/q

� B‖g‖q.

(5.4)
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In a similar manner, we have

‖b1
Q0

〈f 〉�N

〈b1
Q0

〉�N
‖p � ‖f ‖p. (5.5)

As a consequence of (5.4), (5.5), and (5.2), we have

|〈T∗(b2
R0

〈g〉�N

〈b2
R0

〉�N
),
∑
Q∈D

Da,1
Q f 〉| � B‖g‖q‖f − b1

Q0

〈f 〉�N

〈b1
Q0

〉�N
‖p � ‖g‖q‖f ‖p.

Computing as above, we also find that

|〈g, T(b1
Q0

〈f 〉�N

〈b1
Q0

〉�N
)〉| � ‖g‖q‖f ‖p.

Combining the estimates above gives us (5.1). Within the summation on its right hand
side we can tacitly assume that the summation varies over cubes for which Q ⊂ Q0 and
R ⊂ R0. Indeed, otherwise Da,2

R g = 0 or Da,1
Q f = 0.

6. Decoupling estimates. We begin with the following tangent martingale trick
originating from [11], and formulated in a way convenient for our purposes in [4].
Let (E,M, μ) be a σ -finite measure space having a refining sequence of partitions as
follows: For each k ∈ �, let Ak be a countable partition of E into sets of finite positive
measure so that σ (Ak) ⊂ σ (Ak−1) ⊂ M, and let A = ∪k∈�Ak.

For each A ∈ A, let νA denote the probability measure μ(A)−1 · μ|A. Let (F,N , ν)
be the space

∏
A∈A A with the product σ -algebra and measure. Its points will be denoted

by y = (yA)A∈A. By [4, Theorem 6.1], the following norm equivalence holds:

THEOREM 6.1. Suppose that X is a UMD space and p ∈ (1,∞). Then

∫∫
E×�

∣∣∣∣∑
k∈�

εk

∑
A∈Ak

fA(x)

∣∣∣∣p
X

dP(ε) dμ(x)

�

∫∫∫
F×E×�

∣∣∣∣∑
k∈�

εk

∑
A∈Ak

1A(x)fA(yA)

∣∣∣∣p
X

dP(ε) dμ(x) dν(y).

As a consequence, we obtain the following extension of [4, Corollary 6.3].

THEOREM 6.2. Let X be a UMD space and p ∈ (1,∞). For each A ∈ A, let

kA : A × A → L(X)

be a jointly measurable function for which there is a constant C > 0 such that

R
({kA(x, yA) : x ∈ A ∈ A}) ≤ C < ∞, if x ∈ E and y ∈ F. (6.3)
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Suppose also that, for each A ∈ Ak with k ∈ � we are given a σ (Ak−1)-measurable
function fA : E → X, supported on A. Then∫∫

E×�

∣∣∣∣∑
k∈�

εk

∑
A∈Ak

1A(x)
μ(A)

∫
A

kA(x, z)fA(z)dμ(z)

∣∣∣∣p
X

dP(ε)dμ(x) (6.4)

� C
∫∫

E×�

∣∣∣∣∑
k∈�

εk

∑
A∈Ak

fA(x)

∣∣∣∣p
X

dP(ε)dμ(x).

Proof. Observe that the left hand side of (6.4) can be written as∫∫
E×�

∣∣∣∣
∫

F

∑
k∈�

εk

∑
A∈Ak

1A(x)kA(x, yA)fA(yA)dν(y)

∣∣∣∣p
X

dP(ε) dμ(x).

By Hölder’s inequality and Fubini’s theorem, this quantity is bounded by∫∫∫
F×E×�

∣∣∣∣∑
k∈�

εk

∑
A∈Ak

1A(x)kA(x, yA)fA(yA)

∣∣∣∣p
X

dP(ε) dμ(x) dν(y).

By theR-boundedness assumption (6.3) and the fact that eachAk, k ∈ �, is a countable
partition of E, we can further bound (6.4) by

C
∫∫∫

F×E×�

∣∣∣∣∑
k∈�

εk

∑
A∈Ak

1A(x)fA(yA)

∣∣∣∣p
X

dP(ε) dμ(x) dν(y).

The proof is finished by using Theorem 6.1. �
Let Qv and Ru, u, v ∈ {1, 2, . . . , 2N}, denote the son cubes of Q ∈ D and R ∈ D′

in a fixed order. Fix u and v as above, and assume that the elements of a matrix

{TRQ ∈ � : R ∈ D′, Q ∈ DR−good, �(Q) ≤ �(R)}
satisfy the estimate

|TRQ|
μ(Ru)μ(Qv)

� �(Q)α/2�(R)α/2

D(Q, R)d+α
. (6.5)

Recall that D(Q, R) = �(Q) + dist(Q, R) + �(R).
Assume that {fk ∈ L1

loc(�N, μ; X)}k∈� and {gk ∈ L1
loc(�

N, μ; X∗)}k∈� are such that
Ek−1fk = fk and Ek−1gk = gk for every k ∈ �. If Q ∈ Dk, we denote fQ = 1Qfk and
gR = 1Rgk if R ∈ D′

k.

LEMMA 6.6. Assume that Ek−1fk = fk and Ek−1gk = gk, where fk and gk, k ∈ �, are
as above. Assume also that the estimate (6.5) holds. Then∣∣∣∣ ∑

R∈D′

∑
Q∈DR-good
�(Q)≤�(R)

〈gR〉Ru TRQ〈fQ〉Qv

∣∣∣∣
�
∥∥∥∥ ∞∑

k=−∞
εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

∥∥∥∥ ∞∑
k=−∞

εkfk

∥∥∥∥
Lp(P⊗μ;X)

.

(6.7)
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Here and throughout the paper in what follows, we use the following convention
in order not to burden the notation too much: The duality pairing between elements
ϕ ∈ X∗ and ξ ∈ X is written in the simple product notation as ϕξ . Thus, above, the
expression 〈gR〉Ru TRQ〈fQ〉Qv

is the duality action of 〈gR〉Ru ∈ X∗ on TRQ〈fQ〉Qv
∈ X ,

where this latter term is in turn the product of TRQ ∈ � and 〈fQ〉Qv
∈ X . (We keep the

scalar TRQ in the middle to anticipate the operator-kernel case in which TRQ ∈ L(X),
in which case 〈gR〉Ru TRQ〈fQ〉Qv

is the only logical order of the ‘product’.)

Proof. Consider first the part of the series where the ratio �(R)/�(Q) is a fixed
number 2n, n ∈ �0, and 2j < D(Q, R)/�(R) ≤ 2j+1 for a momentarily fixed j ∈ �0. The
last double inequality will be abbreviated as D(Q, R)/�(R) ∼ 2j. If moreover R ∈ D′

k,
the estimate (6.5) reads as

|TRQ|
μ(Ru)μ(Qv)

� 2(k−n)α/22kα/2

2(k+j)(d+α)
= 2−nα/22−jα2−(k+j)d . (6.8)

First of all, we have∣∣∣∣∑
k∈�

∑
R∈D′

k

∑
Q∈DR-good

k−n
D(Q,R)/�(R)∼2j

〈gR〉Ru TRQ〈fQ〉Qv

∣∣∣∣

=
∣∣∣∣∑

k∈�

∑
Q∈Dk−n

∑
R∈D′

k
Q is R-good

D(Q,R)/�(R)∼2j

〈gR〉Ru TRQ〈fQ〉Qv

∣∣∣∣

=
∣∣∣∣
∫∫

�×�N

∑
�∈�

∑
S∈D�−n

εSfS(x)

·
∑
k∈�

∑
Q∈Dk−n

εQ
1Qv

(x)
μ(Qv)

∑
R∈D′

k
Q is R-good

D(Q,R)/�(R)∼2j

TRQ〈gR〉Ru dP(ε)dμ(x)

∣∣∣∣

≤
∥∥∥∥∑

S∈D
εSfS

∥∥∥∥
Lp(P⊗μ;X)

∥∥∥∥∑
k∈�

εk

∑
Q∈Dk−n

∑
R∈D′

k
Q is R-good

D(Q,R)/�(R)∼2j

1Qv

TRQ

μ(Qv)
〈gR〉Ru

∥∥∥∥
Lq(P⊗μ;X∗)

.

(6.9)

Reorganizing the summation, we have

∥∥∥∥∑
S∈D

εSfS

∥∥∥∥
Lp(P⊗μ;X)

=
∥∥∥∥ ∞∑

k=−∞
εkfk

∥∥∥∥
Lp(P⊗μ;X)

and we are left with estimating the quantity∥∥∥∥∑
k∈�

εk

∑
Q∈Dk−n

∑
R∈D′

k
Q is R-good

D(Q,R)/�(R)∼2j

1Qv

TRQ

μ(Qv)
〈gR〉Ru

∥∥∥∥
Lq(P⊗μ;X∗)

.
(6.10)
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In order to estimate this quantity, we first prove that if Q ∈ Dk−n and R ∈ D′
k are such

that Q is R-good and D(Q, R)/�(R) ∼ 2j, then

Q ⊂ R(j+θ(j+n)) ∈ D′
k+j+θ(j+n), where θ (j) =

⌈γj + r
1 − γ

⌉
. (6.11)

For this purpose we first show the following: for t ∈ �0, we have

r ≤ n + t ⇒ either Q ⊂ R(t) or Q ⊂ �N \ R(t). (6.12)

The condition on the left hand side is equivalent to that �(Q) ≤ 2−r�(R(t)). In order
to prove (6.12) we assume the opposite. Then there are points x ∈ Q ∩ R(t) and y ∈
Q ∩ (�N \ R(t)). In particular, we find that Q ∩ ∂R(t) �= ∅, so that dist(Q, ∂R(t)) = 0.
However, by using Remark 2.6 and that Q is R-good, we have

dist(Q, ∂R(t)) > �(Q)γ �(R(t))1−γ > 0

because �(R(t)) ≥ �(R) > 2−1�(R) and �(R(t)) ≥ 2r�(Q). This leads to a contradiction,
and (6.12) follows.

We are now ready to prove (6.11). Assume the opposite, that is,

Q �⊂ R(j+θ(j+n)). (6.13)

Note that t := j + θ (j + n) ≥ r, so that r ≤ n + t. Hence (6.12) applies, and it implies
that Q ⊂ �N \ R(t). Using this relation and Remark 2.6, we find that

2γ (k−n)2(1−γ )(k+t) = �(Q)γ �(R(t))1−γ < dist(Q, ∂R(t))

= dist(Q, R(t)) ≤ dist(Q, R) ≤ D(Q, R) ≤ 2j+1�(R) = 2j+1+k.

Simplifying this inequality leads to the estimate

t ≤ 1
1 − γ

(j + 1 + γ n) = j + γ (j + n) + 1
1 − γ

< j + θ (j + n),

which is a contradiction by definition of t. It follows that (6.13) fails, so that (6.11)
holds true as desired.

Using (6.11) we can now reorganise the summation over Q in (6.10) so that∑
Q∈Dk−n

∑
R∈D′

k
Q is R-good

D(Q,R)/�(R)∼2j

=
∑

S∈D′
k+j+θ (j+n)

∑
Q∈Dk−n

Q⊂S

∑
R∈D′

k
Q is R-good

D(Q,R)/�(R)∼2j

For S, Q, R as in the last summation, we denote

TRQ

μ(Ru)μ(Qv)
=: 2−nα/22−jα tRQ

2(k+j)d
=: 2−(n+j)α/4 t̃RQ

μ(S)
,

where |t̃RQ| � |tRQ| � 1 by (6.8) and the following estimates: 2−jα/2 ≤ 1 and

μ(S) ≤ 2d(k+j+θ(j+n)) ≤ 2d(1+r/(1−γ ))2d(k+j)+(j+n)α/4.

In the first inequality above we used (1.1), and in the last inequality we used the
assumption dγ /(1 − γ ) ≤ α/4, see (2.1).
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For each S ∈ D′
k+j+θ(j+n), define a kernel

KS(x, y) :=
∑

Q∈Dk−n
Q⊂S

∑
R∈D′

k
Q is R-good

D(Q,R)/�(R)∼2j

1Qv
(x)t̃RQ1Ru (y).

Then KS is supported on S × S (notice that R(j+θ(j+n)) = S because both of these cubes
from D′

k+j+θ(j+n) contain Q) and |KS(x, y)| � 1 since there is at most one non zero term
in the double sum for any given pair of points (x, y).

The quantity inside the norm in (6.10) is 2−(n+j)α/4 times

j+θ(j+n)∑
k0=0

∑
k∈�;k≡k0

mod j+θ(j+n)+1

εk

∑
S∈D′

k+j+θ (j+n)

1S(x)
μ(S)

∫
S

KS(x, y)1S(y)gk(y)dμ(y), (6.14)

where the fact that 1Ru gk = 1Ru gR for R ∈ D′
k was also used. For a fixed k0, the

series over k ≡ k0 mod j + θ (j + n) + 1 is of the form considered in Theorem 6.2.
Indeed, 1Sgk is supported on S ∈ D′

k+j+θ(j+n), and it is constant on cubes Q′ ∈ D′
k−1 =

Dk′+j+θ(j+n), where k′ = k − (j + θ (j + n) + 1). By Theorem 6.2 and the contraction
principle, the Lq(P ⊗ μ; X∗)-norm of the quantity (6.14), for a fixed k0, is dominated
by a constant multiple of∥∥∥∥∑

k≡k0

εk

∑
S∈D′

k+j+θ (j+n)

1Sgk

∥∥∥∥
Lq(P⊗μ;X∗)

�
∥∥∥∥∑

k∈�

εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

.

The full series over k ∈ � consists of j + θ (j + n) � n + j + 1 subseries like this,
which implies that the quantity in (6.10) is dominated by

C2−(n+j)α/4(n + j + 1)

∥∥∥∥∑
k∈�

εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

Since this is summable over n ∈ �0 and j ∈ �, this proves the goal (6.7). �

7. Separated cubes. This section begins the case by case analysis of different
subseries of the series (5.1) to be estimated. We start by dealing with cubes well
separated from each other, and more precisely we prove the following proposition.

PROPOSITION 7.1. Under the assumptions of Theorem 1.7, we have∣∣∣∣ ∑
R∈D′

∑
Q∈DR-good

�(Q)≤�(R)∧dist(Q,R)

〈Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣ � ‖g‖q‖f ‖p (7.2)

for every f ∈ Lp(�N, μ; X) and g ∈ Lq(�N, μ; X∗). Here 1/p + 1/q = 1.

For the following lemma, we denote 〈gR〉Rj = 〈1Rgk〉Rj = 〈gk〉Rj if R ∈ D′
k. Recall

that the auxiliary functions below are defined in (3.2) and (3.8).
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LEMMA 7.3. The left hand side of (7.2) is bounded (up to a constant) by sum of four
terms of the following form:

2N∑
i,j=1

∣∣∣∣ ∑
R∈D′

∑
Q∈DR-good

�(Q)≤�(R)∧dist(Q,R)

〈gR〉Rj 〈ψR,j, TϕQ,i〉〈fQ〉Qi

∣∣∣∣, (7.4)

where, for fixed i and j,

(gk, ψR,j) =
{

(Ek−1Da,2
k g, ϕ

a,2
R,j ) ∀k ∈ � ∧ R ∈ D′

k or
(1{ba,2

k �=ba,2
k−1}Ekg, ω

a,2
R,j) ∀k ∈ � ∧ R ∈ D′

k

and

(fk, ϕQ,i) =
{

(Ek−1Da,1
k f, ϕa,1

Q,i) ∀k ∈ � ∧ Q ∈ Dk or
(1{ba,1

k �=ba,1
k−1}Ekf, ωa,1

Q,i) ∀k ∈ � ∧ Q ∈ Dk.

In every case, these satisfy Ek−1gk = gk and Ek−1fk = fk.

Proof. Using Lemma 3.9 and Lemma 3.3, we get

Da,1
Q f = (Da,1

Q )2f − ω
a,1
Q EQf =

2N∑
i=1

(〈Da,1
Q f 〉Qiϕ

a,1
Q,i − ω

a,1
Q,iEQf

)
,

Da,2
R g = (Da,2

R )2g − ω
a,2
R ERg =

2N∑
j=1

(〈Da,2
R g〉Rj ϕ

a,2
R,j − ω

a,2
R,jERg

)
.

(7.5)

Because supp(ωa,1
Q,i) ⊂ Qi � Q, we have

ω
a,1
Q,iEQf = ω

a,1
Q,i1Q〈f 〉Q = ω

a,1
Q,i〈f 〉Q.

Similarly ω
a,2
R,jERg = ω

a,2
R,j〈g〉R. As a consequence, for every Q ∈ D and R ∈ D′, we can

write 〈Da,2
R g, T(Da,1

Q f )〉 as

2N∑
i,j=1

{
〈Da,2

R g〉Rj 〈ϕa,2
R,j , Tϕ

a,1
Q,i〉〈Da,1

Q f 〉Qi − 〈g〉R〈ωa,2
R,j, Tϕ

a,1
Q,i〉〈Da,1

Q f 〉Qi

− 〈Da,2
R g〉Rj 〈ϕa,2

R,j , Tω
a,1
Q,i〉〈f 〉Q + 〈g〉R〈ωa,2

R,j, Tω
a,1
Q,i〉〈f 〉Q

}
.

(7.6)

Thus, to conclude the proof, it suffices to consider the following computations and
their symmetric counterparts for the function f .

First, if (gk, ψR,j) = (Ek−1Da,2
k g, ϕ

a,2
R,j ), we have

〈gR〉Rj = 〈1Rgk〉Rj = 〈Ek−1(1RDa,2
k g)〉Rj = 〈Da,2

R g〉Rj .

Hence, 〈gR〉Rj ψR,j = 〈Da,2
R g〉Rj ϕ

a,2
R,j .
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Next we assume that (gk, ψR,j) = (1{ba,2
k �=ba,2

k−1}Ekg, ω
a,2
R,j). Now

〈gR〉Rj = 〈gk〉Rj = 〈1{ba,2
k �=ba,2

k−1}〉Rj 〈Ekg〉Rj = 〈1{ba,2
k �=ba,2

k−1}〉Rj 〈g〉R (7.7)

but also

〈1{ba,2
k �=ba,2

k−1}〉Rj ω
a,2
R,j = 1Rj (1{ba,2

k �=ba,2
k−1}ω

a,2
k ) = 1Rj ω

a,2
k = ω

a,2
R,j. (7.8)

Combining the identities (7.7) and (7.8) above, we get 〈gR〉Rj ψR,j = 〈g〉Rω
a,2
R,j. �

To proceed further we need two lemmata.

LEMMA 7.9. Let Q ∈ D, R ∈ D′ satisfy �(Q) ≤ �(R) ∧ dist(Q, R). Assume that
ϕQ, ψR ∈ L1(�N, μ; �) are such that supp(ϕQ) ⊂ Q, supp(ψR) ⊂ R, and∫

ϕQ dμ = 0.

Then

|〈ψR, TϕQ〉| ≤ �(Q)α

dist(Q, R)d+α
‖ϕQ‖L1(μ)‖ψR‖L1(μ).

Proof. See [13, Lemma 4.1]. �
LEMMA 7.10. Suppose that R ∈ D′ and Q ∈ DR-good ∪ DR(1)-good are cubes such that

�(Q) ≤ �(R) ∧ dist(Q, R). Then

�(Q)α

dist(Q, R)d+α
� �(Q)α/2�(R)α/2

D(Q, R)d+α
. (7.11)

Proof. See [13, Lemma 4.2]. �
We are ready for the proof of Proposition 7.1.

Proof of Proposition 7.1 By Lemma 7.3, it suffices to estimate (7.4). To this end, we
fix i, j ∈ {1, 2, . . . , 2N} and denote (ψR, ϕQ) = (ψR,j, ϕQ,i). Combining lemmata 7.9 and
7.10 and using the properties of functions ψR and ϕQ that are described in lemmata
3.3 and 3.9, we have

|〈ψR, TϕQ〉| � �(Q)α/2�(R)α/2

D(Q, R)d+α
μ(Rj)μ(Qi)

if R ∈ D′ and Q ∈ DR-good satisfy �(Q) ≤ �(R) ∧ dist(Q, R). Invoking Lemma 6.6 with
a matrix whose elements are defined by

TRQ = 〈ψR, TϕQ〉1�(Q)≤�(R)∧dist(Q,R)1Q∈DR-good , (7.12)

we see that the quantity (7.4) can be dominated by a constant multiple of∥∥∥∥ ∞∑
k=−∞

εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

∥∥∥∥ ∞∑
k=−∞

εkfk

∥∥∥∥
Lp(P⊗μ;X)

. (7.13)
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To estimate these quantities, consider first the case fk = 1{ba,1
k �=ba,1

k−1}Ekf . In this case, we
have

fk = −1{ba,1
k �=ba,1

k−1}(Ek−1f − Ekf ) + 1{ba,1
k �=ba,1

k−1}Ek−1f.

Using the contraction principle, UMD-property of X , and Lemma 4.3 we get the
estimate ∥∥∥∥ ∞∑

k=−∞
εkfk

∥∥∥∥
Lp(P⊗μ;X)

≤
∥∥∥∥ ∞∑

k=−∞
εkDkf

∥∥∥∥
Lp(P⊗μ;X)

+
∥∥∥∥ ∞∑

k=−∞
εk1{ba,1

k �=ba,1
k−1}Ek−1f

∥∥∥∥
Lp(P⊗μ;X)

� ‖f ‖p.

(7.14)

Next consider the case fk = Ek−1Da,1
k f . Invoking Stein’s inequality and then using

Theorem 4.1, we obtain the estimate∥∥∥∥ ∞∑
k=−∞

εkfk

∥∥∥∥
Lp(P⊗μ;X)

� ‖f ‖p.

in this case. Combining these estimates with analogous estimates for g, we obtain the
upper bound C‖g‖q‖f ‖p for (7.13), and therefore also for (7.4). �

8. Preparations for deeply contained cubes. In the analysis of (5.1), we move on
from the separated cubes to ones contained inside another one. To streamline the
actual analysis, we start with some preparations. We will be summing over cubes of the
following type:

LEMMA 8.1. Let R ∈ D′ and Q ∈ DR-good be such that Q ⊂ R and �(Q) < 2−r�(R).
Then Q ⊂ R1 for some child, denoted by R1, of R.

Proof. Denote by R1 any child of R for which R1 ∩ Q �= ∅. It suffices to show that
Q ⊂ R1. Note that �(R1) = 2−1�(R) and �(R1) ≥ 2r�(Q). Because Q is R-good, we can
invoke Remark 2.6 in order to see that

dist(Q, ∂R1) > �(Q)γ �(R1)1−γ > 0.

Because Q ∩ R1 �= ∅, it follows that Q ⊂ R1. �
Let Q and R be such cubes that are considered in Lemma 8.1. The children of R

are denoted by R1, . . . , R2N . However, we choose the indexing such that Q ⊂ R1, see
Lemma 8.1. The indexing of children depends on Q; in particular, R1 = R1(Q) depends
on Q. We will not indicate this dependence explicitly.

The children of Q are denoted by Q1, . . . , Q2N in some order.
Let u, v ∈ {1, 2, . . . , 2N} be fixed. Here we consider a matrix {Tu

RQ} satisfying the
estimate

|Tu
RQ|

μ(Ru)μ(Qv)
�
(

�(Q)
�(R)

)α/2

·
{

μ(R)−1 if u �= 1,

μ(R1)−1 if u = 1,
(8.2)
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LEMMA 8.3. Let {fk ∈ L1
loc(�N, μ; X)}k∈� and {gk ∈ L1

loc(�N, μ; X∗)}k∈� be such that
Ek−1fk = fk and Ek−1gk = gk for every k ∈ �. Then, under the assumption (8.2), we have

∣∣∣∣ ∑
R∈D′

∑
Q∈DR-good

Q⊂R1
�(Q)<2−r�(R)

〈gR〉Ru Tu
RQ〈fQ〉Qv

∣∣∣∣

�
∥∥∥∥ ∞∑

k=−∞
εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

·
∥∥∥∥ ∞∑

k=−∞
εkfk

∥∥∥∥
Lp(P⊗μ;X)

.

(8.4)

Proof. Consider first part of the series where the ratio �(Q)/�(R) is a fixed number
2−n with n ∈ {r + 1, r + 2, . . .}. If R ∈ D′

k, the estimate (8.2) reads as

|Tu
RQ|

μ(Ru)μ(Qv)
� 2−nα/2 ·

{
μ(R)−1 if u �= 1,

μ(R1)−1 if u = 1.
(8.5)

Adapting (6.9) to the present situation yields the estimate

∣∣∣∣∑
k∈�

∑
R∈D′

k

∑
Q∈Dk−n

Q is R-good
Q⊂R1

〈gR〉Ru Tu
RQ〈fQ〉Qv

∣∣∣∣

≤
∥∥∥∥∑

S∈D
εSfS

∥∥∥∥
Lp(P⊗μ;X)

∥∥∥∥∑
k∈�

εk

∑
Q∈Dk−n

∑
R∈D′

k
Q is R-good

Q⊂R1

1Qv

Tu
RQ

μ(Qv)
〈gR〉Ru

∥∥∥∥
Lq(P⊗μ;X∗)

.

Reorganizing the summation, we have

∥∥∥∥∑
S∈D

εSfS

∥∥∥∥
Lp(P⊗μ;X)

=
∥∥∥∥ ∞∑

k=−∞
εkfk

∥∥∥∥
Lp(P⊗μ;X)

so that we are left with estimating the quantity

∥∥∥∥∑
k∈�

εk

∑
R∈D′

k

∑
Q∈Dk−n

Q is R-good
Q⊂R1

1Qv

Tu
RQ

μ(Qv)
〈gR〉Ru

∥∥∥∥
Lq(P⊗μ;X∗)

.
(8.6)

For each R ∈ D′
k and m ∈ {2, . . . , 2N}, define kernel

Km
R (x, y) := 2nα/2

∑
Q∈Dk−n

Q is R-good
Q⊂R1

μ(R) 1R(x)1Qv
(x)︸ ︷︷ ︸

=1Qv (x)

Tm
RQ

μ(Qv)μ(Rm)
1Rm (y).
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For S ∈ D′
k−1, we define

K1
S(x, y) := 2nα/2

∑
Q∈Dk−n

Q is S(1)-good
Q⊂S

μ(S) 1S(x)1Qv
(x)︸ ︷︷ ︸

=1Qv (x)

T1
S(1)Q

μ(Qv)μ(S)
1S(y).

We have

|K1
S(x, y)| +

2N∑
m=2

|Km
R (x, y)| � 1

by using (8.5) and the fact that there is at most one non zero term in the sums above for
any given pair of points (x, y). In the sequel we will use one of these kernels, depending
on the value of u. If u �= 1, then Ku

R is supported on R × R. If u = 1, then Ku
S = K1

S is
supported on S × S.

The quantity inside the Lp-norm in (8.6) is 2−nα/2�u, where

�u :=
∑
k∈�

εk

∑
R∈D′

k

1R(x)
μ(R)

∫
R

Ku
R(x, y)1R(y)gk(y)dμ(y), if u �= 1; (8.7)

and

�u :=
∑
k∈�

εk

∑
S∈D′

k−1

1S(x)
μ(S)

∫
S

K1
S(x, y)1S(y)gk(y)dμ(y), if u = 1. (8.8)

Here the fact that 1Ru gk = 1Ru gR for R ∈ D′
k was also used.

Then we do a case study; assume first that u �= 1. Then 1Rgk is supported on
R ∈ D′

k, and it is constant on cubes R′ ∈ Dk−1. The tangent martingale trick (see
Theorem 6.2) implies that the Lq(P ⊗ μ; X∗)-norm of the quantity (8.7) is dominated
by a constant multiple of∥∥∥∥∑

k∈�

εk

∑
R∈D′

k

gR

∥∥∥∥
Lq(P⊗μ;X∗)

=
∥∥∥∥∑

k∈�

εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

. (8.9)

Then we assume that u = 1. In this case 1Sgk is supported on S ∈ D′
k−1, and it is

constant on cubes R′ ∈ D′
k−2. The tangent martingale trick (Theorem 6.2) implies that

Lq(P ⊗ μ; X∗)-norm of the quantity (8.8) is dominated by a constant multiple of∥∥∥∥∑
k∈�

εk

∑
S∈D′

k−1

1Sgk

∥∥∥∥
Lq(P⊗μ;X∗)

�
∥∥∥∥∑

k∈�

εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

. (8.10)

Combining the estimates (8.9) and (8.10), we find that the quantity in (8.6) is
dominated by

C2−nα/2

∥∥∥∥∑
k∈�

εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

This is summable over n ∈ {r + 1, r + 2, . . .}, and therefore we obtain (8.4). �
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9. Deeply contained cubes. During the course of Section 9 and Section 10 we
establish the following estimate for the part of the summation in (5.1) involving deeply
contained cubes.

PROPOSITION 9.1. Under the assumptions of Theorem 1.7, we have∣∣∣∣ ∑
R∈D′

∑
Q∈DR-good

Q⊂R
�(Q)<2−r�(R)

〈Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣ � ‖f ‖p‖g‖q (9.2)

for every f ∈ Lp(X) and g ∈ Lq(X∗). Here 1/p + 1/q = 1.

Let R and Q be as in (9.2). Recall from beginning of Section 8 that R1, . . . , R2N

are children of R such that Q ⊂ R1 � R. By the proof of Lemma 8.1, we get

2r(1−γ )�(Q) ≤ �(Q)γ �(Rm)1−γ < dist(Q, ∂Rm), m ∈ {1, 2, . . . , 2N}. (9.3)

This is a useful inequality later on.
Writing 1R =∑2N

m=1 1Rm and using that supp(Da,2
R g) ⊂ R yields

〈Da,2
R g, T(Da,1

Q f )〉 = 〈1R1 Da,2
R g, T(Da,1

Q f )〉 +
2N∑

m=2

〈1Rm Da,2
R g, T(Da,1

Q f )〉. (9.4)

The point is that Q is contained in R1, so Q is separated from the children R2, . . . , Rm.
Hence, arguments developed in Section 7 can be applied to these terms. Treating the
main part of the term associated with the child R1 requires so called paraproducts;
these are discussed in the following section.

Let us sketch what are the estimates that are performed in the remaining part of
this section. First we will show that

2N∑
m=2

∣∣∣∣ ∑
R∈D′

∑
Q∈DR-good

Q⊂R1
�(Q)<2−r�(R)

〈1Rm Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣ � ‖f ‖p‖g‖q. (9.5)

Then, in order to treat the remaining (first) term on the right hand side of (9.4), we
write Rc

1 = �N \ R1 and

1R1 Da,2
R g = 1R1

(
bRa

1

〈g〉R1

〈bRa
1
〉R1

− bRa
〈g〉R

〈bRa〉R

)
= (1 − 1Rc

1
)
(

bRa
1

〈g〉R1

〈bRa
1
〉R1

− bRa
〈g〉R

〈bRa〉R

)
.

In this section we establish the estimate∣∣∣∣ ∑
R∈D′

∑
Q∈DR-good

Q⊂R1
�(Q)<2−r�(R)

〈
1Rc

1

(
bRa

1

〈g〉R1

〈bRa
1
〉R1

− bRa
〈g〉R

〈bRa〉R

)
, T(Da,1

Q f )
〉∣∣∣∣ � ‖f ‖p‖g‖q. (9.6)

The remaining term is treated in Section 10 by using paraproducts.
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Proving estimate (9.5). Proceeding as in the proof of Lemma 7.3, we see that the
left hand side of (9.5) is dominated by a series of four terms, each of them being of the
form

2N∑
m=2

2N∑
i,j=1

∣∣∣∣ ∑
R∈D′

∑
Q∈DR-good

Q⊂R1
�(Q)<2−r�(R)

〈gR〉Rj 〈ψR,j,m, TϕQ,i〉〈fQ〉Qi

∣∣∣∣, (9.7)

where we denote 〈gR〉Rj = 〈1Rgk〉Rj = 〈gk〉Rj if R ∈ D′
k (similarly for f ), and the four

summands are determined by the following possibilities:

(gk, ψR,j,m) ∈ {(Ek−1Da,2
k g, 1Rmϕ

a,2
R,j ), (1{ba,2

k �=ba,2
k−1}Ekg, 1Rmω

a,2
R,j)} (9.8)

and

(fk, ϕQ,i) ∈ {(Ek−1Da,1
k f, ϕa,1

Q,i), (1{ba,1
k �=ba,1

k−1}Ekf, ωa,1
Q,i)}. (9.9)

Note that, in any case, Ek−1gk = gk and Ek−1fk = fk.

LEMMA 9.10. Assume that R ∈ D′ and Q ∈ DR-good, Q ⊂ R1 and �(Q) < 2−r�(R).
Let ψR,j,m, m ≥ 2, and ϕQ,i be any of those functions that are quantified in (9.8) and (9.9),
respectively. Then Tj

RQ := 〈ψR,j,m, TϕQ,i〉, i, j ∈ {1, . . . , 2N}, satisfies

|Tj
RQ|

μ(Rj)μ(Qi)
�
(

�(Q)
�(R)

)α/2

μ(R)−1.

Proof. Because m ≥ 2, we have Q ∩ Rm ⊂ R1 ∩ Rm = ∅ so that

�(Q) < dist(Q, ∂Rm) = dist(Q, Rm)

by (9.3) and the assumption that 1 ≤ 2r(1−γ ), see (2.1). We also have �(Q) ≤ �(Rm).
Hence, by using lemmata 7.9 and 7.10, the properties of functions ψR,j,m and ϕQ,i that
follow from lemmata 3.3 and 3.6, and (1.1), we obtain

|〈ψR,j,m, TϕQ,i〉| � �(Q)α/2�(Rm)α/2

D(Q, Rm)d+α
‖ψR,j,m‖L1(μ)‖ϕQ,i‖L1(μ)

�
(

�(Q)
�(R)

)α/2 ‖ψR,j,m‖L1(μ)‖ϕQ,i‖L1(μ)

�(R)d
�
(

�(Q)
�(R)

)α/2
μ(Rj)μ(Qi)

μ(R)
.

(9.11)

This is the desired estimate. �

Combining lemmata 8.3 and 9.10 and then estimating as in the end of Section 7,
we see that the quantity (9.7) can be dominated by a constant multiple of ‖f ‖p‖g‖q.
As a consequence, we see that the left hand side of (9.5) is dominated by a constant
multiple of ‖f ‖p‖g‖q.
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Proving estimate (9.6). Let R ∈ D′
k. We write

1Rc
1

(
bRa

1

〈g〉R1

〈bRa
1
〉R1

− bRa
〈g〉R

〈bRa〉R

)
= 1Rc

1
bRa〈sk〉R1 + 1Rc

1
bRa

1
〈hk〉R1 + 1Rc

1
bRa〈uk〉R1 ,

where

sk = 1{ba,2
k−1=ba,2

k }

(
Ek−1g

Ek−1ba,2
k−1

− Ekg

Ekba,2
k

)
,

and

hk = 1{ba,2
k−1 �=ba,2

k }
Ek−1g

Ek−1ba,2
k−1

, uk = −1{ba,2
k−1 �=ba,2

k }
Ekg

Ekba,2
k

.

By (7.5), we see that the left hand side of (9.6) can be dominated from above by a sum
of six terms, each of them being of the form

2N∑
i=1

∣∣∣∣ ∑
R∈D′

∑
Q∈Dgood

Q⊂R1
�(Q)<2−r�(R)

〈gR〉R1〈ψR, TϕQ,i〉〈fQ〉Qi

∣∣∣∣, (9.12)

where 〈gR〉Rj = 〈1Rgk〉Rj = 〈gk〉Rj if R ∈ D′
k (similarly for f ), and the six terms are

determined by the following choices:

(gk, ψR) ∈ {(sk, 1Rc
1
bRa ), (hk, 1Rc

1
bRa

1
), (uk, 1Rc

1
bRa )} (9.13)

and

(fk, ϕQ,i) ∈ {(Ek−1Da,1
k f, ϕa,1

Q,i), (1{ba,1
k �=ba,1

k−1}Ekf, ωa,1
Q,i)}. (9.14)

Note that, in any case, Ek−1gk = gk and Ek−1fk = fk.

LEMMA 9.15. Let ψR and ϕQ,i be any of those functions that are quantified in (9.13)
and (9.14) for R ∈ D′ and Q ∈ DR-good satisfying Q ⊂ R1 and �(Q) < 2−r�(R). Then
T1

RQ := 〈ψR, TϕQ,i〉 satisfies the estimate

|T1
RQ|

μ(Qi)
�
(

�(Q)
�(R)

)α/2

.

Proof. Denote by yQ the midpoint of Q. Let x ∈ Rc
1 and y ∈ Q. By (2.1), (9.3) and

the fact that Q ⊂ R1, we have

2|y − yQ| ≤ 2r(1−γ )�(Q) < dist(Q, ∂R1) = dist(Q, Rc
1) ≤ |x − yQ|.
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Using the kernel estimate (1.3) and the facts
∫

ϕQ,i = 0 and supp(ϕQ,i) ⊂ Q, we get

|〈ψR, TϕQ,i〉|

=
∣∣∣∣
∫

�N

∫
�N

ψR(x)1Rc
1
(x)
(
K(x, y) − K(x, yQ)

)
ϕQ,i(y)dμ(y)dμ(x)

∣∣∣∣
�
∫

Rc
1

∫
�N

|y − yQ|α
|x − yQ|d+α

|ϕQ,i(y)|dμ(y)dμ(x) � ‖ϕQ,i‖1

∫
Rc

1

�(Q)α

|x − yQ|d+α
dμ(x).

(9.16)

Denoting Ak = {x : 2kdist(Rc
1, Q) ≤ |x − yQ| < 2k+1dist(Rc

1, Q)}, we can estimate the
last integral as follows

∫
Rc

1

�(Q)α

|x − yQ|d+α
dμ(x) ≤

∞∑
k=0

∫
Ak

�(Q)α

(2kdist(Rc
1, Q))d+α

dμ(x)

≤
∞∑

k=0

�(Q)αμ(B(yQ, 2k+1dist(Rc
1, Q)))

(2kdist(Rc
1, Q))d+α

� �(Q)α

dist(Rc
1, Q)α

∞∑
k=0

1
2αk

�
(

�(Q)
dist(Rc

1, Q)

)α

.

(9.17)

This can be further estimated by using that γ ≤ α(2(d + α))−1 < 2−1, see (2.1).
Combining this with (9.3) yields the estimate

�(Q)1/2�(R1)1/2 ≤ �(Q)γ �(R1)(1−γ ) ≤ dist(Q, ∂R1) = dist(Q, Rc
1).

Substituting this into (9.16), we find that

|〈ψR, TϕQ,i〉| �
(

�(Q)
dist(Rc

1, Q)

)α

‖ϕQ,i‖1 �
(

�(Q)
�(R1)

)α/2

‖ϕQ,i‖1.

This is as required because ‖ϕQ,i‖1 � μ(Qi) and �(R1) = 2−1�(R). �

Combining lemmata 9.15 and 8.3 we find that each of the six terms of the form
(9.12) are bounded (up to a constant) by

∥∥∥∥ ∞∑
k=−∞

εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

·
∥∥∥∥ ∞∑

k=−∞
εkfk

∥∥∥∥
Lp(P⊗μ;X)

.

At the end of Section 7 we verified that the second factor above can be dominated by
‖f ‖p. Hence, it remains to verify the following estimate,

∥∥∥∥ ∞∑
k=−∞

εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

� ‖g‖q. (9.18)

The cases gk ∈ {hk, uk} have been cleared in connection with the separated cubes: (9.18)
follows from the contraction principle and (7.14) if we recall that |Ekba,2

k | ≥ δ2 μ-almost
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everywhere. The remaining case

gk = sk = 1{ba,2
k−1=ba,2

k }

(
Ek−1g

Ek−1ba,2
k−1

− Ekg

Ekba,2
k

)
.

is treated by Lemma 4.5.
This concludes the proof of estimate (9.6).

10. Paraproducts. In order to finish the proof of Proposition 9.1, we still need to
establish the following estimate∣∣∣∣ ∑

R∈D′

∑
Q∈DR-good

Q⊂R
�(Q)<2−r�(R)

〈
bRa

1

〈g〉R1

〈bRa
1
〉R1

− bRa
〈g〉R

〈bRa〉R
, T(Da,1

Q f )
〉∣∣∣∣ � ‖f ‖p‖g‖q.

(10.1)

We will draw inspiration from the work of Hytönen and Martikainen [6], and the
following standing assumptions in Theorem 1.7 are crucial while proving (10.1):

• X∗ is an RMF-space;
• ‖T∗b2

R‖L∞(�N ,μ;�) ≤ 1 if R is a cube in �N .

For Q ∈ D and R ∈ D′, we denote

χQ,R =
{

1, if Q is R-good, Q ⊂ R, and �(Q) < 2−r�(R);

0, otherwise.

Suppose that χQ,R = 1. Then we write

GQ,R := bRa
1

〈g〉R1

〈bRa
1
〉R1

− bRa
〈g〉R

〈bRa〉R

for a quantity that depends on Q and R, as R1 stands for the child of R for which
Q ⊂ R. Using the notation above, we can rewrite the left hand side of (10.1) as follows∣∣∣∣ ∑

R∈D′

∑
Q∈D

χQ,R=1

〈
GQ,R, T(Da,1

Q f )
〉∣∣∣∣ =

∣∣∣∣∑
Q∈D

〈 ∑
R∈D′

χQ,R=1

GQ,R, T(Da,1
Q f )
〉∣∣∣∣. (10.2)

It is straightforward to verify that, if χQ,R = 1, then χQ,R(m) = 1 for every m ∈ �0. It
follows that, if Q ∈ D and the inner sum on the right hand side is nonempty, there
exists a unique cube S = S(Q) ∈ D′ containing Q such that χQ,R = 1 if, and only
if, S � R ∈ D′. If the inner sum in question is empty, we let S = S(Q) = ∅. As a
consequence, if S(Q) �= ∅,

∑
R∈D′

χQ,R=1

GQ,R =
∑
R∈D′
S�R

GQ,R = bSa
〈g〉S

〈bSa〉S
− bR0

〈g〉�N

〈bR0〉�N
.
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Substituting this identity to the right hand side of (10.2), we get∣∣∣∣∑
Q∈D

〈 ∑
R∈D′

χQ,R=1

GQ,R, T(Da,1
Q f )
〉∣∣∣∣ ≤ |〈�g, f 〉| +

∣∣∣∣ ∑
Q∈D

S(Q)�=∅

〈
T∗bR0

〈g〉�N

〈bR0〉�N
, Da,1

Q f
〉∣∣∣∣, (10.3)

where the paraproduct operator g �→ �g is defined by

�g :=
∑
Q∈D

S(Q)�=∅

〈g〉S

〈bSa〉S
(Da,1

Q )∗(T∗bSa ) =
∑
R∈D′

∑
Q∈D

S(Q)=R

〈g〉R

〈bRa〉R
(Da,1

Q )∗(T∗bRa ). (10.4)

Throughout the rest of this section, we will prove the following estimates:

PROPOSITION 10.5. Under the standing assumptions, the paraproduct just defined
satisfies

|〈�g, f 〉| � ‖f ‖p‖g‖q, (10.6)

and we also have the estimate∣∣∣∣ ∑
Q∈D

S(Q)�=∅

〈
T∗bR0

〈g〉�N

〈bR0〉�N
, Da,1

Q f
〉∣∣∣∣ � ‖f ‖p‖g‖q. (10.7)

Observe that these estimates imply (10.1) which in turn, combined with estimates
in Section 9, implies Proposition 9.1.

Proving estimate (10.6). Here we will concentrate on paraproducts, and begin
with the following lemma.

LEMMA 10.8. Suppose that t > q ∨ s, where X∗ has cotype s. Assume that a sequence
{dj}j∈� of functions �N → Lt(�; �) satisfies dj ∈ L1(�N ; Lt(�; �)), then∥∥∥∥∑

j∈�

ε�
j djEjg

∥∥∥∥
Lq(��×�N ;Lt(�;X∗))

� ‖{|dj(·)|Lt(�;�)}j∈�‖Cart(D′) · ‖g‖Lq(�N ;X∗).

Proof. This will be a special case of Theorem 3.5 in [4], which says that∥∥∥∥∑
j∈�

ε�
j djEjg

∥∥∥∥
Lq(��×�N ;X3)

� ‖{|dj(·)|X2}j∈�‖Cart(D′) · ‖g‖Lq(�N ;X1),

whenever X1, X2, X3 are three Banach spaces with X1 having the RMF property, and
X2 ⊆ L(X1, X3) embedded in such a way that the unit-ball B̄X2 is R-bounded.

Denote X1 = X∗, X2 = Lt(�; �), and X3 = Lt(�; X∗). Then X1 is an RMF space
by assumption. By the result of [4] just stated, it suffices to verify that the closed unit
ball of X2 is a Rademacher-bounded subspace of L(X1, X3) when the action of ρ ∈ X2

is defined by

X1 � x �→ ρ(x) := ρ ⊗ x : ρ ⊗ x(ε) = ρ(ε)x.
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To this end, let {ρj : j ∈ �} be a sequence in B̄X2 and {xj : j ∈ �} be a sequence in X∗.
By Fubini’s theorem and Proposition 2.4,(

Eε�

∥∥∥∥ ∞∑
j=1

ε�
j ρj ⊗ xj

∥∥∥∥t

Lt(�;X∗)

)1/t

=
∥∥∥∥ ∞∑

j=1

ε�
j ρj ⊗ xj

∥∥∥∥
Lt(�;Lt(��;X∗))

� sup
j∈�

‖ρj‖Lt(�)︸ ︷︷ ︸
≤1

·
∥∥∥∥ ∞∑

j=1

ε�
j xj

∥∥∥∥
Lt(��;X∗)

≤
(

Eε�

∥∥∥∥ ∞∑
j=1

ε�
j xj

∥∥∥∥t

X∗

)1/t

.

By Kahane–Khinchine inequality, this is as required. �
We need further preparations for establishing (10.6).
Recall that Da,1

Q = (Da,1
Q )2 − ω

a,1
Q EQ by (3.10). Denote

χQ := 1Qχk−1 := 1Q1{ba,1
k−1 �=ba,1

k }, if Q ∈ Dk. (10.9)

By Lemma 3.6, we have ω
a,1
Q = χQω

a,1
Q . Furthermore, χQEQf = Ek−1(χQEQf ) if Q ∈

Dk. Hence, we can write

〈�g, f 〉 =
∑
Q∈D

S(Q)�=∅

〈g〉S

〈bSa〉S
〈(Da,1

Q )∗(T∗bSa ), Da,1
Q f 〉

−
∑
Q∈D

S(Q)�=∅

〈g〉S

〈bSa〉S
〈ωa,1

Q T∗bSa , Elog2(�(Q))−1(χQEQf )〉

=
∫

�

〈 ∑
Q∈D

S(Q)�=∅

εQ
〈g〉S

〈bSa〉S
(Da,1

Q )∗(T∗bSa ),
∑
Q′∈D

εQ′Da,1
Q′ f
〉
dP(ε)

−
∫

�

〈 ∑
Q∈D

S(Q)�=∅

εQ
〈g〉S

〈bSa〉S
Elog2(�(Q))−1(ωa,1

Q T∗bSa ),
∑
Q′∈D

εQ′χQ′EQ′ f
〉
dP(ε).

Taking the absolute values, and using Hölder’s inequality, we get

|〈�g, f 〉| ≤
∥∥∥∥ ∑

Q∈D
S=S(Q)�=∅

εQ
〈g〉S

〈bSa〉S
(Da,1

Q )∗(T∗bSa )

∥∥∥∥
q

∥∥∥∥ ∑
Q′∈D

εQ′Da,1
Q′ f
∥∥∥∥

p

+
∥∥∥∥ ∑

Q∈D
S=S(Q)�=∅

εQ
〈g〉S

〈bSa〉S
Elog2(�(Q))−1(ωa,1

Q T∗bSa )

∥∥∥∥
q

∥∥∥∥ ∑
Q′∈D

εQ′χQ′EQ′ f
∥∥∥∥

p
.

Using (2.10) and contraction principle, followed by Theorem 4.1 and Lemma 4.3, we
see that |〈�g, f 〉| is bounded by a sum of two terms, both of them being (a constant
multiple) of the general form∥∥∥∥ ∑

R∈D′

∑
Q∈D

S(Q)=R

εQπQ,Ra〈g〉R

∥∥∥∥
q
· ‖f ‖p. (10.10)
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Here the two terms are determined by the following choices:

πQ,Ra ∈ {(Da,1
Q )∗(T∗bRa ), Elog2(�(Q))−1(ωa,1

Q T∗bRa )}. (10.11)

Observe that, if R and Q are as in (10.10), then

πQ,Ra = 1RπQ,Ra . (10.12)

In order to estimate quantities of the form (10.10), we will use the following lemma.

LEMMA 10.13. Assume that U ∈ D′ and t ∈ (1,∞). Then∥∥∥∥ ∑
R∈D′:R⊂U

Ra=Ua

∑
Q∈D

S(Q)=R

εQπQ,Ua

∥∥∥∥
Lt(�N×�;�)

� μ(U)1/t. (10.14)

Proof. Denote h = T∗bUa and first consider the case πQ,Ua = (Da,1
Q )∗(h). Because

Q ⊂ S(Q) if S(Q) �= ∅, we see that the left hand side of (10.14) is∥∥∥∥ ∑
R∈D′:R⊂U

Ra=Ua

∑
Q∈D

S(Q)=R

εQ(Da,1
Q )∗(1U h)

∥∥∥∥
t
≤
∥∥∥∥∑

Q∈D
εQ(Da,1

Q )∗(1U h)

∥∥∥∥
t
.

Using Theorem 4.16 with X = �, followed by (1.6), we find that the last quantity is
bounded by a constant multiple of

‖1U h‖Lt(�N ,μ;�) ≤ ‖h‖L∞(�N ,μ;�)‖1U‖Lt(�N ,μ;�) = μ(U)1/t‖h‖L∞(�N ,μ;�) ≤ Bμ(U)1/t.

This is the required estimate in the present case.
Then consider the case

πQ,Ua = Elog2(�(Q))−1(ωa,1
Q h).

Recall that the expectation is taken with respect to Dlog2(�(Q))−1. By the contraction
principle and the facts that Q ⊂ S(Q) if S(Q) �= ∅ and ω

a,1
Q = χQω

a,1
Q , see (10.9), we get∥∥∥∥ ∑

R∈D′:R⊂U
Ra=Ua

∑
Q∈D

S(Q)=R

εQπQ,Ua

∥∥∥∥
t
�
∥∥∥∥∑

Q∈D
εQχQElog2(�(Q))−1(ωa,1

Q 1U h)

∥∥∥∥
t

�
∥∥∥∥∑

k∈�

εkχk−1

∑
Q∈Dk

1QEk−1(ωa,1
Q 1U h)

∥∥∥∥
t

�
∥∥∥∥∑

k∈�

εkχk−1Ek−1(ωa,1
k 1U h)

∥∥∥∥
t
.

Here χk−1 = 1{ba,1
k−1 �=ba,1

k } satisfies χk−1 = Ek−1χk−1. Also, supk∈� ‖ωa,1
k ‖L∞(μ) � 1 by

Lemma 3.6. Hence, by Proposition 4.18 with X = �,∥∥∥∥∑
k∈�

εkχk−1Ek−1(ωa,1
k 1U h)

∥∥∥∥
t
� ‖{χk}k∈�‖Car1(D) · ‖1U h‖Lt(�N ,μ;�).
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Using (1.6) and reasoning as in the proof of Lemma 4.4, we conclude that the right
hand side above is bounded by a constant multiple of μ(U)1/t. �

We finish the proof of (10.6).
Recall that it suffices to estimate (10.10). Fix a real number t > q ∨ s, where

s ∈ [2,∞) is such that X∗ has cotype s. Let us also introduce Rademacher variables
ε′ = {ε′

R}R∈D′ ∈ �′ that are independent of {εQ}Q∈D. By (10.12)

∥∥∥∥ ∑
R∈D′

∑
Q∈D

S(Q)=R

εQπQ,Ra〈g〉R

∥∥∥∥
Lq(�N×�;X∗)

=
∥∥∥∥ ∑

R∈D′
ε′

R

( ∑
Q∈D

S(Q)=R

εQπQ,Ra

)
1R〈g〉R

∥∥∥∥
Lq(�′×�N×�;X∗)

. (10.15)

By Hölder’s inequality (10.15) is bounded by

∥∥∥∥∑
j∈�

ε�
j djEjg

∥∥∥∥
Lq(��×�N×�;X∗)

≤
∥∥∥∥∑

j∈�

ε�
j djEjg

∥∥∥∥
Lq(��×�N ;Lt(�;X∗))

, (10.16)

where ε� = {ε�
j : j ∈ �} ∈ �� are Rademacher random variables and

dj : �N → Lt(�) : x �→
(

ε �→
∑
R∈D′

j

∑
Q∈D

S(Q)=R

εQπQ,Ra (x)
)

.

Concluding from above and using Lemma 10.8, we see that left hand side of (10.15) is
bounded by (a constant multiple of)

sup
P∈D′

μ(P)�=0

1
μ(P)1/t

·
∥∥∥∥1P

∑
j:2j≤�(P)

ε�
j ‖dj(·)‖Lt(�;�)

∥∥∥∥
Lt(�N×��;�)︸ ︷︷ ︸

=:�(P)

·‖g‖q.
(10.17)

To estimate the Carleson norm, we fix P ∈ D′ for which μ(P) �= 0. By (10.12),

�(P) =
∥∥∥∥ ∑

R∈D′
R⊂P

ε′
R

∥∥∥∥ ∑
Q∈D

S(Q)=R

εQπQ,Ra

∥∥∥∥
Lt(�;�)

∥∥∥∥
Lt(�N×�′;�)

.

By Khinchine and Kahane–Khinchine inequalities,

�(P) �
∥∥∥∥
( ∑

R∈D′
R⊂P

∥∥∥∥ ∑
Q∈D

S(Q)=R

εQπQ,Ra

∥∥∥∥2

L2(�;�)

)1/2∥∥∥∥
Lt(�N ;�)

. (10.18)
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Since L2(�; �) has cotype 2, see (2.3), we obtain

�(P) �
∥∥∥∥
∥∥∥∥ ∑

R∈D′
R⊂P

ε′
R

∑
Q∈D

S(Q)=R

εQπQ,Ra

∥∥∥∥
L2(�′;L2(�;�))

∥∥∥∥
Lt(�N ;�)

=
∥∥∥∥
∥∥∥∥ ∑

R∈D′
R⊂P

∑
Q∈D

S(Q)=R

εQπQ,Ra

∥∥∥∥
L2(�;�)

∥∥∥∥
Lt(�N ;�)

�
∥∥∥∥ ∑

R∈D′
R⊂P

∑
Q∈D

S(Q)=R

εQπQ,Ra

∥∥∥∥
Lt(�N×�;�)

.

Suppose that M ∈ �0 is such that Pa ∈ L′
M . Because cubes in a fixed layer L′

m,
m > M, are disjoint, we can estimate as follows

�(P) �
∥∥∥∥ ∑

R∈D′:R⊂P
Ra=Pa

∑
Q∈D

S(Q)=R

εQπQ,Pa

∥∥∥∥
Lt(�N×�;�)

+
∞∑

m=M+1

( ∑
U∈L′

m
U�P

∥∥∥∥ ∑
R∈D′:R⊂U

Ra=U

∑
Q∈D

S(Q)=R

εQπQ,U

∥∥∥∥t

Lt(�N×�;�)

)1/t

.

(10.19)

Using Lemma 10.13 and Lemma 2.12, we can estimate the right hand side of (10.19)
as follows

�(P) � μ(P)1/t +
∞∑

m=M+1

( ∑
U∈L′

m:U�P

μ(U)
)1/t

� μ(P)1/t +
∞∑

m=M+1

(1 − τ )((m−M)−1)/tμ(P)1/t � μ(P)1/t.

The proof of (10.6) finishes by substituting the estimate above in (10.17).

Proving estimate (10.7). Randomizing and using Hölder’s inequality as in
connection with the paraproduct operator, we get∣∣∣∣ ∑

Q∈D
S(Q)�=∅

〈
T∗bR0

〈g〉�N

〈bR0〉�N
, Da,1

Q f
〉∣∣∣∣

� |〈g〉�N | · ‖f ‖p ·
{∥∥∥∥∑

Q∈D
εQ(Da,1

Q )∗(T∗bR0 )

∥∥∥∥
q
+
∥∥∥∥∑

Q∈D
εQElog2(�(Q))−1(ωa,1

Q T∗bR0 )

∥∥∥∥
q

}
.

Observe that |〈g〉�N | � μ(�N)−1/q‖g‖q. Hence, it suffices to show that the quantity
inside the parentheses is bounded by a constant multiple of μ(�N)1/q.

To this end, we first use Theorem 4.16 with X = � and (1.6), we get∥∥∥∥∑
Q∈D

εQ(Da,1
Q )∗(T∗bR0 )

∥∥∥∥
q

� ‖T∗bR0‖q � μ(�N)1/q.
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On the other hand, since the family {Ek}k∈� of operators in Lq(�N, μ) is R-bounded
by Stein’s inequality [15], we find that∥∥∥∥∑

Q∈D
εQElog2(�(Q))−1(ωa,1

Q T∗bR0 )

∥∥∥∥
q

=
∥∥∥∥∑

k∈�

εkEk−1(ωa,1
k T∗bR0 )

∥∥∥∥
q

� ‖T∗bR0‖∞

∥∥∥∥∑
k∈�

εkω
a,1
k

∥∥∥∥
q
.

By (1.6), we have ‖T∗bR0‖∞ � 1. Because |ωa,1
k | � 1{ba

k−1 �=ba
k} μ-almost everywhere, see

Lemma 3.6, we can use Lemma 4.3 with f ≡ 1 for∥∥∥∥∑
k∈�

εkω
a,1
k

∥∥∥∥
q

� ‖1‖q � μ(�N)1/q.

This conclude the proof of estimate (10.7).

11. Preparations for comparable cubes. During the course of the present and
following section, we prove Proposition 11.2. It controls a part of the summation in
(5.1), involving cubes that are close to each other in their position and size.

We write Q ∼ R for Q ∈ D and R ∈ D′ if

2−r�(R) ≤ �(Q) ≤ �(R) and dist(Q, R) < �(Q) = �(Q) ∧ �(R). (11.1)

Note that if Q ∼ R, then �(Q) ≤ �(R) ≤ D(Q, R) ≤ (2 + 2r)�(Q), so that all of these
quantities are comparable.

A few words about implicit constants: In the previous sections we have performed
estimates where the implicit constants can depend on the parameter r, introduced
in Section 2. At this stage we introduce two new auxiliary parameters η ∈ (0, 1) and
υ ∈ (0, 1). In the sequel we need to keep track of the dependence of estimates on the
parameters r, υ and η explicitly.

For the following proposition, we recall that all UMD spaces have a finite cotype.

PROPOSITION 11.2. Under the assumptions of Theorem 1.7, we have

EDED′

∣∣∣∣ ∑
R∈D′

∑
Q∈DR-good

Q∼R

〈Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣

�
(
C(r, η, υ) + (C(r, η)υ1/t + C(r)η1/t)‖T‖L(Lp(μ;X))

)‖g‖Lq(μ;X∗)‖f ‖Lp(μ;X)

(11.3)

for every f ∈ Lp(X) and g ∈ Lq(X∗). Here 1/p + 1/q = 1 and t > (s ∨ q) ∨ p, where both
X and X∗ have cotype s ∈ [2,∞).

The strategy of the proof of this proposition is as follows: at the end of this section
we consider a separated part of the summation in (11.3), where expectations over dyadic
systems are not required. In the following section a (more complicated) intersecting
part of the sum in (11.3) is treated, and the expectations are crucial therein.

Here are preparations for the proof of Proposition 11.2: given R ∈ D′, there are
at most C = C(r, N) cubes Q ∈ D satisfying (11.1). Hence, without essential loss of
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generality, it suffices consider a finite number of subseries of the general form

EDED′

∣∣∣∣ ∑
R∈D′

〈Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣, (11.4)

where Q = Q(R) ∈ DR-good inside the summation satisfies Q ∼ R. At this stage we
fix one series like this, and the convention that Q is implicitly a function of R will
be maintained without further notice. Furthermore, without loss of generality, it is
possible to act as if the map R �→ Q(R) was invertible, so that (11.4) could also be
written in terms of the summation variable Q ∈ D.

Proceeding as in Section 9, we find that (11.4) can be dominated from above by a
sum of nine terms, each of them being of the general form

2N∑
i,j=1

EDED′

∣∣∣∣ ∑
R∈D′

〈gR〉Rj 〈1Rj ψR,j, T(1QiϕQ,i)〉〈fQ〉Qi

∣∣∣∣, (11.5)

where 〈gR〉Rj = 〈1Rgk〉Rj = 〈gk〉Rj if R ∈ D′
k (similarly for f ’s), and the summands are

determined by the following choices:

(gk, ψR,j) ∈ {(sk, bRa ), (hk, bRa
j
), (uk, bRa )} (11.6)

and

(fk, ϕQ,i) ∈ {(s̄k, bQa ), (h̄k, bQa
i
), (ūk, bQa )}. (11.7)

Here

sk = 1{ba,2
k−1=ba,2

k }

(
Ek−1g

Ek−1ba,2
k−1

− Ekg

Ekba,2
k

)
, s̄k = 1{ba,1

k−1=ba,1
k }

(
Ek−1f

Ek−1ba,1
k−1

− Ekf

Ekba,1
k

)
;

hk = 1{ba,2
k−1 �=ba,2

k }
Ek−1g

Ek−1ba,2
k−1

, h̄k = 1{ba,1
k−1 �=ba,1

k }
Ek−1f

Ek−1ba,1
k−1

;

and

uk = −1{ba,2
k−1 �=ba,2

k }
Ekg

Ekba,2
k

, ūk = −1{ba,1
k−1 �=ba,1

k }
Ekf

Ekba,1
k

.

Observe that, in any case, Ek−1gk = gk and Ek−1fk = fk.
Fix i, j ∈ {1, 2, . . . , N}.
For each cube Q in �N , define the boundary region

δ
η

Q := (1 + η)Q \ (1 − η)Q,

where the parameter η > 0 is to be chosen later. If R ∈ D′ and Q = Q(R), we write

Qi,∂ := Qi ∩ δ
η
Rj

; Qi,sep := (Qi \ Qi,∂ ) \ (Qi ∩ Rj); �Qi := (Qi ∩ Rj) \ Qi,∂ ;

Rj,∂ := Rj ∩ δ
η

Qi
; Rj,sep := (Rj \ Rj,∂ ) \ (Qi ∩ Rj); �Rj := (Qi ∩ Rj) \ Rj,∂ .

https://doi.org/10.1017/S0017089514000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000123


THE LOCAL NON-HOMOGENEOUS Tb THEOREM 65

Observe that the following unions are disjoint:

Qi = �Qi ∪ Qi,sep ∪ Qi,∂ , Rj = �Rj ∪ Rj,sep ∪ Rj,∂ .

Hence, we can write the matrix coefficient in (11.5) as

〈1Rj ψR,j, T(1QiϕQ,i)〉 = 〈1Rj,sepψR,j, T(1QiϕQ,i)〉 + 〈1Rj,∂ ψR,j, T(1QiϕQ,i)〉
+ 〈1�Rj

ψR,j, T(1�Qi
ϕQ,i)〉

+ 〈1�Rj
ψR,j, T(1Qi,∂ ϕQ,i)〉 + 〈1�Rj

ψR,j, T(1Qi,sepϕQ,i)〉
=: M1(R) + M2(R) + M3(R) + M4(R) + M5(R).

(11.8)

Using these preparations, it suffices to estimate the following quantity:

EDED′

∣∣∣∣ ∑
R∈D′

〈gR〉Rj (M1(R) + M2(R) + M3(R) + M4(R) + M5(R))〈fQ〉Qi

∣∣∣∣, (11.9)

where i, j ∈ {1, 2, . . . , 2N} and Q = Q(R) ∈ DR-good satisfies the condition Q ∼ R inside
the summation.

The separated part. Recall that our aim now is to prove Proposition 11.2. We
have reduced this to a problem of estimating the sum (11.9) involving, among others,
terms of the form

M1(R) + M5(R) = 〈1Rj,sepψRj , T(1QiϕQ,i)〉 + 〈1�Rj
ψR,j, T(1Qi,sepϕQ,i)〉,

where Q = Q(R) ∈ DR-good satisfies Q ∼ R. In both cases, M1 and M5, the two
indicators are associated with sets separated from each other. Hence, a decoupling
estimate can be used to establish the following lemma.

LEMMA 11.10. Suppose that f ∈ Lp(�N, μ; X) and g ∈ Lq(�N, μ; X∗). Then∣∣∣∣ ∑
R∈D′

〈gR〉Rj (M1(R) + M5(R))〈fQ〉Qi

∣∣∣∣ � C(r, η)‖g‖q‖f ‖p.

Proof. We focus on summation over the terms M1(R). The treatment of summation
over the terms M5(R) is analogous. If R ∈ D′ and Q ∈ DR-good satisfies �(Q) ≤ �(R),
we write TRQ := 1Q=Q(R)〈1Rj,sepψR,j, T(1QiϕQ,i)〉. It suffices to estimate the series

� :=
∑
R∈D′

∑
Q∈DR-good
�(Q)≤�(R)

〈gR〉Rj TRQ〈fQ〉Qi .

Assume that TRQ �= 0 inside the summation. Then Q = Q(R), so that Q ∼ R and, by
(1.4) and (1.2),

|TRQ| =
∣∣∣∣
∫

Rj,sep

∫
Qi

ψR,j(x)K(x, y)ϕQ,i(y)dμ(y)dμ(x)

∣∣∣∣
≤ μ(Rj,sep)μ(Qi)

dist(Rj,sep, Qi)d
� C(η)

μ(Rj)μ(Qi)
�(Rj)d

� C(η)μ(Rj)μ(Qi)
�(Q)α/2�(R)α/2

D(Q, R)d+α
.
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Using Lemma 6.6 and then estimating as in the end of Section 9, we find that

|�| � C(r, η)

∥∥∥∥ ∞∑
k=−∞

εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

∥∥∥∥ ∞∑
k=−∞

εkfk

∥∥∥∥
Lp(P⊗μ;X)

� C(r, η)‖g‖q‖f ‖p.

�

12. Intersecting part of comparable cubes. In this section we deal with the
remaining part of the comparable cubes, finishing the proof of Proposition 11.2. This
will be the most technical part of the entire proof: It still involves various further
decompositions and case-by-case analysis, until all different pieces are finally estimated.

Recalling the preparations in Section 11, we observe that it remains to estimate a
summation like (11.9) but involving only terms of the form M2(R) + M3(R) + M4(R).
Part of this summation involves boundary terms that are handled by probabilistic
methods, e.g. by taking expectations over the random dyadic systems D and D′, but
we will also introduce a third random dyadic system D�. The assumption that there is
an L∞-accretive system for T∗ is used to handle the non-boundary terms.

We aim to prove the following lemma.

LEMMA 12.1. We have

EDED′

∣∣∣∣ ∑
R∈D′

〈gR〉Rj

(
M2(R) + M3(R) + M4(R)

)〈fQ〉Qi

∣∣∣∣
�
(
C(r, η, υ) + (C(r, η)υ1/t + C(r)η1/t)‖T‖L(Lp(μ;X))

)‖g‖Lq(μ;X∗)‖f ‖Lp(μ;X).

The proof of this lemma is a consequence of various lemmata, namely: 12.13,
12.15, and 12.18. Let us briefly indicate the structure of the proof. Since M2(R) and
M4(R) are so called η-boundary terms, the main difficulties lie in estimating summation
involving the term

M3(R) = 〈1�Rj
ψR,j, T(1�Qi

ϕQ,i)〉 = α1(R) + α2(R) + α3(R),

where the last decomposition depends on a new random dyadic system D�, see (12.3).
The terms α2(R) and α3(R) are also η-boundary terms.

The term α1(R) will further be expanded in (12.4) and Lemma 12.5 as

α1(R) = A1(R) + A2(R) + A3(R)′ + (A3(R) − A′
3(R)),

where A1(R), A2(R), and A′
3(R) are so called υ-boundary terms. Hence, the main

obstacle is to estimate A3(R) − A′
3(R); the assumption that there is an L∞-accretive

systems for T∗ will be exploited here.

Decomposition of M3(R). In order to decompose M3(R), we first introduce a
random dyadic system

D� = D(β�)
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that is independent of bothD andD′. Fix j(η) ∈ � such that η/64 ≤ 2j(η) < η/32. Then,
for every R ∈ D′, we define a family

G = G(R) := D�
log2(s)

of cubes with side length

s = 2j(η)�(Qi) = 2j(η) · (�(Qi) ∧ �(Rj)), (12.2)

where Q = Q(R) ∈ D. More precisely, G is a subfamily of D� that depends on R,
Q = Q(R), and η.

Let �G
Qi

,�G
Rj

⊂ Qi ∩ Rj be the following adaptations of �Qi and �Rj to G. If
necessary, we enlargen the latter sets so that, if G ∈ G, either at least one of the two
intersections G ∩ �G

Qi
and G ∩ �G

Rj
is empty, or we have G ∩ �G

Qi
= G ∩ �G

Rj
= G and

5G ⊂ Qi ∩ Rj. Moreover, this is done in such a way that we can write

�G
Qi

= �Qi ∪ �∂
Qi

, �G
Rj

= �Rj ∪ �∂
Rj

both as disjoint unions, so that �∂
Qi

⊂ Qi,∂ ∩ Rj and �∂
Rj

⊂ Rj,∂ ∩ Qi. Observe that

M3(R) = 〈1�Rj
ψR,j, T(1�Qi

ϕQ,i)〉
= 〈1�G

Rj
ψR,j, T(1�G

Qi
ϕQ,i)〉 − 〈1�∂

Rj
ψR,j, T(1�G

Qi
ϕQ,i)〉 − 〈1�Rj

ψR,j, T(1�∂
Qi

ϕQ,i)〉
=: α1(R) + α2(R) + α3(R).

(12.3)

The terms in this decomposition depend on D�.
In order to define υ-boundary terms, we let R ∈ D′ and write

Gυ = Gυ(R) =
⋃

G∈G(R)

δυ
G, δυ

G = (1 + υ)G \ (1 − υ)G.

We also write G̃ = G \ Gυ if G ∈ G = G(R). Define

�′
Qi

= �G
Qi

∩ Gυ, �̃Qi = �G
Qi

\ Gυ

and similarly for �G
Rj

. Then we have the disjoint unions

�G
Qi

= �′
Qi

∪ �̃Qi , �G
Rj

= �′
Rj

∪ �̃Rj .

Hence, we can write

α1(R) = 〈1�G
Rj
ψR,j, T(1�G

Qi
ϕQ,i)〉

= 〈1�′
Rj
ψR,j, T(1�G

Qi
ϕQ,i)〉 + 〈1�̃Rj

ψR,j, T(1�′
Qi

ϕQ,i)〉 + 〈1�̃Rj
ψR,j, T(1�̃Qi

ϕQ,i)〉
=: A1(R) + A2(R) + A3(R).

(12.4)

Estimate for a non-boundary part. We need to extract the non-boundary terms.
This is done in the following lemma which gives us a decomposition of A3(R); therein
A3(R) − A′

3(R) is a non-boundary term. The proof of the lemma uses the fact that
there is an L∞-accretive system for T∗.
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LEMMA 12.5. Let R ∈ D′. Then A3(R) can be written as A′
3(R) + (A3(R) − A′

3(R)
)
,

where

|A3(R) − A′
3(R)| � C(r, η, υ)μ(Qi ∩ Rj)

and there are functions bR,G,j : �N → �, satisfying ‖bR,G,j‖L∞(μ) � 1 if R ∈ D′ and G ∈
G(R), such that

A′
3(R) =

∑
G∈G(R)

G̃⊂�G
Qi ∩�G

Rj

〈1G̃bR,G,j, T(1(1+υ)G̃\G̃ϕQ,i)〉.

Here G̃ = G \ Gυ for every G ∈ G(R).

Proof. We expand A3(R) into a double series, where a typical summand is of the
form

〈1G1�̃Rj
ψR,j, T(1H1�̃Qi

ϕQ,i)〉, G, H ∈ G. (12.6)

Let us begin with estimating these quantities, and there are two cases to be treated.
First, if G �= H, then

�(Qi) � C(η, υ) dist(G ∩ �̃Rj , H ∩ �̃Qi ).

Hence, by (1.4) and (1.2),

|〈1G1�̃Rj
ψR,j, T(1H1�̃Qi

ϕQ,i)〉|

=
∣∣∣∣
∫

G∩�̃Rj

∫
H∩�̃Qi

ψR,j(x)K(x, y)ϕQ,i(y)dμ(y)dμ(x)

∣∣∣∣
� C(η, υ)

μ(Qi ∩ Rj)μ(Qi ∩ Rj)
�(Qi)d

� C(η, υ)μ(Qi ∩ Rj).

(12.7)

Here we also used the facts that �̃Rj ∪ �̃Qi ⊂ Qi ∩ Rj and μ(Qi) � �(Qi)d .
Then we consider the case G = H. By construction,

〈1G1�̃Rj
ψR,j, T(1G1�̃Qi

ϕQ,i)〉

=
{

〈1G̃ψR,j, T(1G̃ϕQ,i)〉, if G = G ∩ �G
Rj

= G ∩ �G
Qi

;

0 otherwise.

(12.8)

In what follows, we assume that G = G ∩ �G
Rj

= G ∩ �G
Qi

.
Consider the decomposition

〈1G̃ψR,j, T(1G̃ϕQ,i)〉 = 〈1G̃ψR,j, T(ϕQ,i)〉 − 〈1G̃ψR,j, T(1�N\5G̃ϕQ,i)〉
− 〈1G̃ψR,j, T(15G̃\(1+υ)G̃)ϕQ,i)〉 − 〈1G̃ψR,j, T(1(1+υ)G̃\G̃ϕQ,i)〉.

(12.9)

The fourth term in the right hand side will only contribute to A′
3(R). The first and third

terms in the right hand side are estimated as follows.
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Using both (11.6) and (11.7) together with (1.5) and (1.6), we obtain the estimate
‖T(ϕQ,i)‖L∞(μ) + ‖ψR,j‖L∞(μ) � 1. In particular,

|〈1G̃ψR,j, T(ϕQ,i)〉| � μ(G̃) ≤ μ(Qi ∩ Rj).

Then we consider the third term in the right hand side of (12.9). Recall that we are in
the case G = G ∩ �G

Rj
= G ∩ �G

Qi
hence, by construction, 5G̃ ⊂ 5G ⊂ Qi ∩ Rj. For this

reason we can repeat the argument (12.7) which, in turn, gives

|〈1G̃ψR,j, T(15G̃\(1+υ)G̃)ϕQ,i)〉| � C(η, υ)μ(Qi ∩ Rj).

It remains to consider the second term in the right hand side of (12.9). Part of it
will contribute to A3(R)′. We begin with certain preparations, and first denote

τ := T(1�N\5G̃ϕQ,i).

Using (1.3), reasoning as in (9.17) with R1 replaced by 5G̃, and observing the fact that
‖ϕQ,i‖L∞(μ) � 1, we see that

|τ (x) − τ (y)| � 1, x, y ∈ G̃. (12.10)

We use the fact that there exists an L∞-accretive system for T∗. Let bG̃ be a function
which is supported on G̃, whose average over G̃ is one, and

‖bG̃‖L∞(μ) + ‖T∗(bG̃)‖L∞(μ) � 1.

Let us denote βG̃ = 〈bG̃/μ(G̃), τ 〉. By properties of bG̃ and (12.10),

|τ (x) − βG̃| = |〈bG̃/μ(G̃), τ (x) − τ 〉| � 1, x ∈ G̃. (12.11)

After these preparations, we write

〈1G̃ψR,j, T(1�N\5G̃ϕQ,i)〉 = 〈1G̃ψR,j, τ − βG̃〉 + 〈1G̃ψR,j, βG̃〉.

By (12.11) and (11.6), we have the estimate |〈1G̃ψR,j, τ − βG̃〉| � μ(G̃) ≤ μ(Qi ∩ Rj).
To treat the term 〈1G̃ψR,j, βG̃〉 = βG̃〈1G̃ψR,j, 1〉, we write

βG̃ =
〈

bG̃

μ(G̃)
, τ

〉
=
〈

bG̃

μ(G̃)
, T(ϕQ,i)

〉
−
〈

bG̃

μ(G̃)
, T(15G̃\(1+υ)G̃ϕQ,i)

〉

−
〈

bG̃

μ(G̃)
, T(1(1+υ)G̃\G̃ϕQ,i)

〉
−
〈

bG̃

μ(G̃)
, T(1G̃ϕQ,i)

〉
.

(12.12)

Observe that the first and second term on the right hand side of (12.12) are bounded
in absolute value by a constant C � C(η, υ). This follows from the properties of bG̃
and the fact ‖T(ϕQ,i)‖L∞(μ) � 1 for the first term and, by reasoning as in (12.7), for the
second term.

For the last term in the right hand side of (12.12), we use ‖T∗(bG̃)‖L∞(μ) � 1 for∣∣∣∣
〈

bG̃

μ(G̃)
, T(1G̃ϕQ,i)

〉∣∣∣∣ = |〈T∗(bG̃), 1G̃ϕQ,i)〉/μ(G̃)| � 1.

https://doi.org/10.1017/S0017089514000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000123
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Regrouping the terms shows that 〈1G̃ψR,j, T(1�N\5G̃ϕQ,i)〉 can be expressed as a
sum of two terms, the first one being bounded in absolute value by a constant C �
C(η, υ)μ(Qi ∩ Rj), and the second one being

−〈bG̃, T(1(1+υ)G̃\G̃ϕQ,i)〉〈1G̃ψR,j, 1/μ(G̃)〉.

As said in the beginning of the proof, we expand A3(R) by using the cubes in G as
follows:

A3(R) = 〈1�̃Rj
ψR,j, T(1�̃Qi

ϕQ,i)〉
=
∑

G,H∈G
G�=H

〈1G1�̃Rj
ψR,j, T(1H1�̃Qi

ϕQ,i)〉 +
∑
G∈G

〈1G1�̃Rj
ψR,j, T(1G1�̃Qi

ϕQ,i)〉.

In both of the series above, the finite number of summands depends on N and η. Hence,
using the estimates above for a typical summand (12.6), we get

A3(R) = A′
3(R) + (A3(R) − A′

3(R)),

where |A3(R) − A′
3(R)| � C(η, υ)μ(Qi ∩ Rj) and A′

3(R) is the following quantity:

∑
G∈G

G̃⊂�G
Qi ∩�G

Rj

[
〈bG̃, T(1(1+υ)G̃\G̃ϕQ,i)〉〈1G̃ψR,j, 1/μ(G̃)〉 − 〈1G̃ψR,j, T(1(1+υ)G̃\G̃ϕQ,i)〉

]
.

It is straightforward to verify that A′
3(R) is of the required form. �

The summation involving the non-boundary terms A3(R) − A′
3(R), given by

Lemma 12.5, is controlled by the following result. It gives a uniform estimate for
the sum with respect to all systems of dyadic cubes D�; in particular, no expectations
over D� are needed.

LEMMA 12.13. Let f ∈ Lp(�N, μ; X) and g ∈ Lq(�N, μ; X∗). Then estimate∣∣∣∣ ∑
R∈D′

〈gR〉Rj

(
A3(R) − A′

3(R)
)〈fQ〉Qi

∣∣∣∣ � C(r, η, υ)‖g‖q‖f ‖p

is valid for every dyadic system D�.

Proof. Let us denote A4(R) := A3(R) − A′
3(R). By randomizing and using Hölder’s

inequality,∣∣∣∣ ∑
R∈D′

〈gR〉Rj A4(R)〈fQ〉Qi

∣∣∣∣
=
∣∣∣∣
∫∫

�×�N

∑
S∈D′

εS1Sj (x)〈gS〉Sj

∑
R∈D′

εR1Qi (x)
A4(R)

μ(Qi ∩ Rj)
〈fQ〉Qi dP(ε)dμ(x)

∣∣∣∣
≤
∥∥∥∥∑

S∈D′
εS1Sj 〈gS〉Sj

∥∥∥∥
Lq(�N ,P⊗μ;X∗)

∥∥∥∥ ∑
R∈D′

εR1Qi

A4(R)
μ(Qi ∩ Rj)

〈fQ〉Qi

∥∥∥∥
Lp(�N ,P⊗μ;X)

.

(12.14)
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Note that

1Sj 〈gS〉Sj = 1Sj 〈gk〉Sj = 1Sj Ek−1gk = 1Sj gk, S ∈ D′
k.

Hence, by using also the contraction principle, we have∥∥∥∥∑
S∈D′

εS1Sj 〈gS〉Sj

∥∥∥∥
Lq(�N ,P⊗μ;X∗)

�
∥∥∥∥ ∞∑

k=−∞
εkgk

∥∥∥∥
Lq(�N ,P⊗μ;X∗)

� ‖g‖Lq(�N ,μ;X∗).

In the last step we reasoned as in the end of Section 9.
Rewrite the second summation in the last line of (12.14) in terms of D. Then

using the contraction principle and the fact that |A4(R)| � C(r, η, υ)μ(Qi ∩ Rj), given
by Lemma 12.5, results in estimates∥∥∥∥ ∑

R∈D′
εR1Qi

A4(R)
μ(Qi ∩ Rj)

〈fQ〉Qi

∥∥∥∥
Lp(�N ,P⊗μ;X)

� C(r, η, υ)

∥∥∥∥∑
Q∈D

εQ1Qi〈fQ〉Qi

∥∥∥∥
Lp(�N ,P⊗μ;X)

� C(r, η, υ)

∥∥∥∥ ∞∑
k=−∞

εkfk

∥∥∥∥
Lp(�N ,P⊗μ;X)

.

Reasoning as in the end of Section 9 finishes the proof. �

Estimate for υ-boundary terms. The following lemma controls a summation
involving the υ-boundary terms

A1(R) + A2(R) + A′
3(R).

Taking the expectations over the dyadic system D� is invaluable here and, on the other
hand, this is the only place where these expectations are required. Elsewhere we obtain
uniform estimates over these systems.

LEMMA 12.15. Suppose that s ∈ [2,∞) is such that both X and X∗ have cotype s.
Let t > (s ∨ q) ∨ p be a positive real number. Then

ED�

∣∣∣∣ ∑
R∈D′

〈gR〉Rj (A1(R) + A2(R) + A′
3(R))〈fQ〉Qi

∣∣∣∣
� C(r, η)υ1/t‖T‖L(Lp(μ;X))‖g‖Lq(μ;X∗)‖f ‖Lp(μ;X)

for every f ∈ Lp(�N, μ; X) and q ∈ Lq(�N, μ; X∗).

Proof. First we focus on the sum involving the terms A1; these are defined in (12.4).
Randomise and use Hölder’s inequality for the estimate∣∣∣∣ ∑

R∈D′
〈gR〉Rj 〈1�′

Rj
ψR,j, T(1�G

Qi
ϕQ,i)〉〈fQ〉Qi

∣∣∣∣
=
∣∣∣∣
∫

�

〈 ∑
S∈D′

εS1�′
Sj
ψS,j〈gS〉Sj , T

( ∑
R∈D′

εR1�G
Qi

ϕQ,i〈fQ〉Qi

)〉
dP(ε)

∣∣∣∣
≤
∥∥∥∥∑

S∈D′
εS1�′

Sj
ψS,j〈gS〉Sj

∥∥∥∥
Lq(P⊗μ;X∗)

∥∥∥∥T( ∑
R∈D′

εR1�G
Qi

ϕQ,i〈fQ〉Qi

)∥∥∥∥
Lp(P⊗μ;X)

.

(12.16)
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First extract the operator norm from the second factor and index the summation in
terms of D. Then, by using the contraction principle and estimate

|1�G
Qi

ϕQ,i| ≤ 1Qi

which is valid μ-almost everywhere, we see that the second factor in the last line of
(12.16) is bounded (up to a constant multiple) by

‖T‖L(Lp(μ;X))

∥∥∥∥ ∞∑
k=−∞

εkfk

∥∥∥∥
Lp(P⊗μ;X)

� ‖T‖L(Lp(μ;X))‖f ‖Lp(μ;X).

In order to estimate the first factor in the last line of (12.16) we let S ∈ D′
k, where

k ∈ �. Due to (11.1) and (12.2), we have

�′
Sj

⊂ Gυ(S) =
⋃
G∈G

δυ
G ⊂

j(η)+k−1⋃
m=j(η)+k−r−1

⋃
G∈D�

m

δυ
G =: δυ(k).

As a consequence, we have |1�′
Sj
ψS,j| ≤ 1δυ (k)1Sj pointwise μ-almost everywhere. Using

also the contraction principle and the assumption that t ≥ q, we get

ED�

∥∥∥∥∑
S∈D′

εS1�′
Sj
ψS,j〈gS〉Sj

∥∥∥∥
Lq(P⊗μ;X∗)

� ED�

∥∥∥∥∑
k∈�

εk1δυ (k)

∑
S∈D′

k

1Sj 〈gS〉Sj

∥∥∥∥
Lq(P⊗μ;X∗)

≤
(∫

�N

[
ED�

∥∥∥∥∑
k∈�

εk1δυ (k)(x)
∑
S∈D′

k

1Sj (x)〈gS〉Sj

∥∥∥∥t

Lq(P;X∗)

]q/t

dμ(x)
)1/q

.

If x ∈ �N , the last integrand evaluated at x is of the form as in Proposition 2.4 with

ξk =
∑
S∈D′

k

1Sj (x)〈gS〉Sj ∈ X∗.

The random variables

ρk := 1δυ (k)(x)

as functions of β� ∈ ��, where �� is the probability space supporting the distribution
of the random dyadic system D�, belong to Lt(��), and they satisfy

sup
k∈�

‖1δυ (k)(x)‖Lt(��) = sup
k∈�

Pβ� (1δυ (k)(x) = 1)1/t � C(r, η)υ1/t.

Hence, by Proposition 2.4

ED�

∥∥∥∥∑
S∈D′

εS1�′
Sj
ψS,j〈gS〉Sj

∥∥∥∥
Lq(P⊗μ;X∗)

� C(r, η)υ1/t
∥∥∥∥∑

S∈D′
εS1Sj 〈gS〉Sj

∥∥∥∥
Lq(P⊗μ;X∗)

� C(r, η)υ1/t‖g‖Lq(μ;X∗).
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Combining the estimates above, we obtain the required estimate for summation
involving terms A1(R).

Estimate for the sum involving terms A2(R), see (12.4), is similar to the estimate
above, involving terms A1(R). We omit the details.

It remains to estimate the following sum involving terms A′
3(R), see Lemma 12.5,

ED�

∣∣∣∣ ∑
R∈D′

∑
G∈G(R)

G̃⊂�G
Qi ∩�G

Rj

〈gR〉Rj 〈1G̃bR,G,j, T(1(1+υ)G̃\G̃ϕQ,i)〉〈fQ〉Qi

∣∣∣∣.

Observe that the inner summation involves only finitely many terms for every fixed R –
in fact, the number of terms is bounded by a constant depending on η and N. Hence,
by reindexing these cubes and using the triangle-inequality, we are left with estimating
quantities of the form

E :=ED�

∣∣∣∣ ∑
R∈D′

〈gR〉Rj 〈1G̃bR,G,j, T(1(1+υ)G̃\G̃ϕQ,i)〉〈fQ〉Qi

∣∣∣∣,
where G = G(R) ∈ G(R) inside the summation satisfies G̃ ⊂ �G

Qi
∩ �G

Rj
.

At this stage we randomise, apply Hölder’s inequality, and extract the operator
norm in order to obtain the estimate

E ≤ ‖T‖L(Lp(μ;X))ED�

{∥∥∥∥∑
S∈D′

εS1G̃bR,G,j〈gS〉Sj

∥∥∥∥
Lq(P⊗μ;X∗)

·
∥∥∥∥ ∑

R∈D′
εR1(1+υ)G̃\G̃ϕQ,i〈fQ〉Qi

∥∥∥∥
Lp(P⊗μ;X)

}
.

(12.17)

By lemma 12.5,

|1G̃(S)bR,G,j| � 1G̃(S) ≤ 1�G
Sj

≤ 1Sj

pointwise μ-almost everywhere. Also, (1 + υ)G̃(R) \ G̃(R) ⊂ 5G(R) ⊂ Qi and

(1 + υ)G̃(R) \ G̃(R) ⊂ Gυ(R) ⊂ δυ(k), Q = Q(R) ∈ Dk.

It follows that |1(1+υ)G̃\G̃ϕQ,i| � 1δυ (k)1Qi μ-almost everywhere if Q ∈ Dk. Hence, by
indexing the second summation in the right hand side of (12.17) in terms of D, the
argument proceeds as above. We omit the details. �

Estimate for η-boundary terms. Here we focus on a summation involving the
η-boundary terms

M2(R) + M4(R) + α2(R) + α3(R),

see (11.8) and (12.3). Observe that although both α2(R) and α3(R) depend on the
random dyadic system D�, the estimate below are uniform over all such systems.
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LEMMA 12.18. Suppose that s ∈ [2,∞) is such that both X and X∗ have cotype s.
Let t > (s ∨ q) ∨ p be a positive real number. Then

EDED′

∣∣∣∣ ∑
R∈D′

〈gR〉Rj (M2(R) + M4(R) + α2(R) + α3(R))〈fQ〉Qi

∣∣∣∣
� C(r)η1/t‖T‖L(Lp(μ;X))‖g‖Lq(μ;X∗)‖f ‖Lp(μ;X)

for every f ∈ Lp(�N, μ; X) and g ∈ Lq(�N, μ; X∗).

Proof. By (11.8) and (12.3),

M2(R) + α2(R) = 〈1Rj,∂ ψR,j, T(1QiϕQ,i)〉 − 〈1�∂
Rj
ψR,j, T(1�G

Qi
ϕQ,i)〉;

M4(R) + α3(R) = 〈1�Rj
ψR,j, T(1Qi,∂ ϕQ,i)〉 − 〈1�Rj

ψR,j, T(1�∂
Qi

ϕQ,i)〉.

Observe that

|1Rj,∂ ψR,j| + |1�∂
Rj
ψR,j| � 1Rj,∂ , |1QiϕQ,i| + |1�G

Qi
ϕQ,i| � 1Qi ;

|1�Rj
ψR,j| � 1Rj , |1Qi,∂ ϕQ,i| + |1�∂

Qi
ϕQ,i| � 1Qi,∂ .

(12.19)

pointwise μ-almost everywhere. By triangle inequality, it suffices to estimate the
following sums: one involving terms m(R) ∈ {M2(R), α2(R)}, and the other involving
terms in {M4(R), α3(R)}. We focus on the first sum; the second one is estimated in an
analogous manner.

Randomizing, using Hölder’s inequality, extracting the operator norm of T , and
finally applying the contraction principle with (12.19) results in the estimate

ED

∣∣∣∣ ∑
R∈D′

〈gR〉Rj m(R)〈fQ〉Qi

∣∣∣∣ �ED

∥∥∥∥∑
S∈D′

εS1Sj,∂ 〈gS〉Sj

∥∥∥∥
Lq(P⊗μ;X∗)

· ‖T‖L(Lp(μ;X))

∥∥∥∥ ∑
R∈D′

εR1Qi〈fQ〉Qi

∥∥∥∥
Lp(P⊗μ;X)

.

(12.20)

Indexing the summation in terms of D and using the contraction principle, we see
that the last factor is bounded ‖f ‖Lp(μ;X). For the first factor in the right hand side of
(12.20), we write

δη(k) =
k−1⋃

m=k−r−1

⋃
Q∈Dm

δ
η

Q.

By (11.1), we have

1Sj,∂ ≤ 1Sj 1δ
η

Qi
≤ 1Sj 1δη(k), if Q = Q(S), S ∈ D′

k.

Fix x ∈ �N . The random variables ρk := 1δη(k)(x) as functions of β ∈ ({0, 1}N)�, D =
D(β), belong to Lt(({0, 1}N)�) and they satisfy

sup
k∈�

‖1δη(k)(x)‖Lt(({0,1}N )�) = sup
k∈�

Pβ(1δη(k)(x) = 1)1/t � C(r)η1/t.
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Hence, proceeding as in the proof of Lemma 12.15, we find that

ED

∥∥∥∥∑
S∈D′

εS1Sj,∂ 〈gS〉Sj

∥∥∥∥
Lq(P⊗μ;X∗)

� C(r)η1/t
∥∥∥∥ ∑

R∈D′
εR1Rj 〈gR〉Rj

∥∥∥∥
Lq(P⊗μ;X∗)

. (12.21)

Noticing that the last term is bounded by a constant multiple of C(r)η1/t‖g‖Lq(μ;X∗)

finishes the proof. �

REMARK 12.22. It seems to us that using two independent dyadic systems D and
D′ is necessary for the step (12.21).

13. Synthesis. The proof of Theorem 1.7 will be completed. This involves
choosing appropriate values for the auxiliary parameters r, η, υ. Hence, any dependence
on these numbers will be indicated explicitly.

Proof of Theorem 1.7 Let us fix f ∈ Lp(μ; X) and g ∈ Lq(μ; X∗) such that

‖T‖L(Lp(μ;X)) ≤ 2|〈g, Tf 〉|, ‖f ‖p = 1 = ‖g‖q.

Taking expectations over estimate (5.1) gives us

|〈g, Tf 〉| � ‖g‖q‖f ‖p + EDED′

∣∣∣∣ ∑
Q∈D, R∈D′

〈Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣.

Because X is a UMD function lattice, its dual X∗ is also a UMD function lattice.
Hence, by symmetry, it suffices to consider the summation over dyadic cubes Q and R
for which �(Q) ≤ �(R).

We decompose this series further as follows:

∑
R∈D′

∑
Q∈D

�(Q)≤�(R)

=
∑
R∈D′

∑
Q∈DR-good
�(Q)≤�(R)

+
∑
R∈D′

∑
Q∈DR-bad
�(Q)≤�(R)

. (13.1)

Observe that this decomposition to good and bad parts depends on D′ = D(β ′).
Let us first focus on the good summation in the right hand side of (13.1). We

denote Q ∼ R if these cubes satisfy (11.1), that is, if they are close to each other both
in position and size. Then we have the decomposition

∑
R∈D′

∑
Q∈DR-good
�(Q)≤�(R)

=
∑
R∈D′

∑
Q∈DR-good

Q∼R

+
∑
R∈D′

∑
Q∈DR-good

Q⊂R
�(Q)<2−r�(R)

+
∑
R∈D′

∑
Q∈DR-good

Q�⊂R
�(Q)<2−r�(R)

+
∑
R∈D′

∑
Q∈DR-good

2−r�(R)≤�(Q)≤�(R)
�(Q)≤dist(Q,R)

.
(13.2)

Let us consider the third double series on the right hand side further. Assume that
R ∈ D′ and Q ∈ DR-good satisfies Q �⊂ R and �(Q) < 2−r�(R). Remark 2.6 implies that
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dist(Q, R) = dist(Q, ∂R) > �(Q)γ �(R)1−γ ≥ �(Q). As a consequence, we can write∑
R∈D′

∑
Q∈DR-good

Q�⊂R
�(Q)<2−r�(R)

=
∑
R∈D′

∑
Q∈DR-good

�(Q)<2−r�(R)
�(Q)≤dist(Q,R)

.

Hence, by combining 3rd and 4th term on the right hand side of (13.2), we obtain the
identity ∑

R∈D′

∑
Q∈DR-good
�(Q)≤�(R)

=
∑
R∈D′

∑
Q∈DR-good

Q∼R

+
∑
R∈D′

∑
Q∈DR-good

Q⊂R
�(Q)<2−r�(R)

+
∑
R∈D′

∑
Q∈DR-good

�(Q)≤�(R)∧dist(Q,R)

.

Invoking Propositions 7.1, 9.1, and 11.2 we are able to estimate all of the summands
above, and we reach the estimate

EDED′

∣∣∣∣ ∑
R∈D′

∑
Q∈DR-good
�(Q)≤�(R)

〈Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣

≤ C(r, η, υ) + (C(r, η)υ1/t + C(r)η1/t)‖T‖L(Lp(μ;X)).

Then we concentrate on the remaining bad summation in the right hand side of
(13.1). By randomizing, using Hölder’s inequality, and using Theorem 4.1 with the
identity ‖g‖Lq(X∗) = 1, we get

EDED′

∣∣∣∣ ∑
R∈D′

∑
Q∈DR-bad
�(Q)≤�(R)

〈Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣

= EDED′

∣∣∣∣ ∞∑
k=0

∑
j∈�

∑
R∈D′

j

∑
Q∈D(j−(j−k)−1)-bad

j−k

〈Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣

= EDED′

∣∣∣∣ ∞∑
k=0

∫
�

∑
j∈�

∑
i∈�

εjεi

∑
R∈D′

j

∑
Q∈D(k−1)-bad

i−k

〈Da,2
R g, T(Da,1

Q f )〉dP(ε)

∣∣∣∣
�

∞∑
k=0

EDED′

∥∥∥∥T
(∑

i∈�

εi

∑
Q∈D(k−1)-bad

i−k

Da,1
Q f
)∥∥∥∥

Lp(P⊗μ;X)
.

(13.3)

In order to estimate this series, we fix k ≥ 0. Extracting the operator norm, we see that
the k’th summand is bounded by

‖T‖L(Lp(X)) · EDED′

∥∥∥∥∑
i∈�

εiλ
k
bad,iD

a,1
i−kf
∥∥∥∥

Lp(P⊗μ;X)
,

where we have denoted

λk
bad,i :=

∑
Q∈D(k−1)-bad

i−k

1Q ∈ L1(�N, μ; �).
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Fix t > (s ∨ p) ∨ q, where s is such that both X and X∗ have cotype s ∈ [2,∞).
Using Proposition 2.4, we get the estimate

EDED′

∥∥∥∥∑
i∈�

εiλ
k
bad,iD

a,1
i−kf
∥∥∥∥

Lp(P⊗μ,X)

≤ ED

(∫
�N

[
ED′

∥∥∥∥∑
i∈�

εiλ
k
bad,i(x)Da,1

i−kf (x)

∥∥∥∥t

Lp(P;X)

]p/t

dμ(x)
)1/p

� sup
i,x

‖λk
bad,i(x)‖Lt(Pβ′ ;�)

∥∥∥∥∑
i∈�

εiD
a,1
i−kf
∥∥∥∥

Lp(P⊗μ;X)
.

Note that, by using Theorem 4.1, we have the estimate

∥∥∥∥∑
i∈�

εiD
a,1
i−kf
∥∥∥∥

Lp(P⊗μ;X)
� 1.

On the other hand, if x ∈ �N , then by Lemma 2.7 we have

sup
i

‖λk
bad,i(x)‖Lt(Pβ′ ;�)

= sup
i

{
Pβ ′ [x ∈ Q ∈ Di−k and Q is (k − 1)-bad(γ, r)]1/t} � 2−(r∨(k−1))γ /t,

All in all, we have established the following estimate

EDED′

∣∣∣∣ ∑
R∈D′

∑
Q∈DR-bad
�(Q)≤�(R)

〈Da,2
R g, T(Da,1

Q f )〉
∣∣∣∣ � ‖T‖L(Lp(μ;X))

∞∑
k=0

2−(r∨(k−1))γ /t

� r2−rγ /t‖T‖L(Lp(μ;X)) = δ(r)‖T‖L(Lp(μ;X)).

Here δ(r) → 0 as r → ∞.
Collecting the estimates above, we find that

‖T‖L(Lp(μ;X)) ≤ C(r, η, υ) + (Cδ(r) + C(r)η1/t + C(r, η)υ1/t)‖T‖L(Lp(μ;X)). (13.4)

Next we choose r so large hat Cδ(r) < 1/4. Then we choose η > 0 so small that
C(r)η1/t < 1/4. Lastly we choose υ > 0 so small that C(r, η)υ1/t < 1/4. This results in
the desired estimate

‖T‖L(Lp(μ;X)) ≤ C(r, η, υ) + 3
4
‖T‖L(Lp(μ;X)).

Indeed, it follows that ‖T‖L(Lp(μ;X)) ≤ 4C(r, η, υ). �

14. Operator-valued kernels. In this section we explain the proof of Theorem 1.8.
This proof is a straightforward modification of the proof of Theorem 1.7.
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We define a d-dimensional Rademacher–Calderón–Zygmund kernel as a function
K(x, y) of variables x, y ∈ �N with x �= y and taking values in L(X), which satisfies

R
({|x − y|dK(x, y) : x, y ∈ �N, x �= y}) ≤ 1;

R
({ |x − y|d+α

|x − x′|α [K(x, y) − K(x′, y)],
|x − y|d+α

|x − x′|α [K(y, x) − K(y, x′)]

: x, x′, y ∈ �N, 0 < |x − x′| ≤ |x − y|/2
})

≤ 1

(14.1)

for some α > 0. Recall that R(T ) designates the Rademacher-bound of an operator
family T ⊂ L(X), as defined after (2.2).

Let T : f �→ Tf be a linear operator acting on some functions f : �N → X or
f : �N → �, producing new functions Tf : �N → X in the former case and Tf : �N →
L(X) in the latter. If ξ ∈ X and F : �N → � or F : �N → L(X), define the function
F ⊗ ξ by (F ⊗ ξ )(x) := F(x)ξ , where the last expression is the product of a scalar and a
vector, or the action of an operator on a vector, respectively. With this notation, suppose
that T(ϕ ⊗ ξ ) = (Tϕ) ⊗ ξ for ϕ : �N → � and ξ ∈ X . The adjoint T∗ is defined via
duality 〈g, f 〉 = ∫

�N 〈g(x), f (x)〉 dμ(x) between functions f : �N → X and g : �N →
X∗: for ϕ,ψ : �N → �, ξ ∈ X and ξ ∗ ∈ X∗,

ξ ∗(〈ψ, Tϕ〉ξ) = 〈ψ ⊗ ξ ∗, T(ϕ ⊗ ξ )〉 := 〈T∗(ψ ⊗ ξ ∗), ϕ ⊗ ξ 〉 =:
(〈T∗ψ, ϕ〉ξ ∗)(ξ ),

and hence 〈T∗ψ, ϕ〉 = (〈ψ, Tϕ))∗ ∈ L(X∗) for scalar-valued functions ϕ,ψ .
Such a T is called an L(X)-valued Rademacher–Calderón–Zygmund operator with

kernel K if

Tf (x) =
∫

�N
K(x, y)f (y) dμ(y)

for points x ∈ �N outside the support of f .
We are ready to explain the modifications in the proof of Theorem 1.7. These

occur in sections 5–13 and, roughly speaking, they are as follows: one repeats the
proof, and the assumed R-boundedness conditions ensure that whenever one “pulled
out” bounded scalar coefficients from the randomised series, which persist throughout
the arguments, the same can be done with the operator coefficients by the very definition
(2.2) of R-boundedness. Some technicalities arise when treating the paraproducts in
Section 10. Our goal is to provide a comprehensive treatment and, at the same time,
avoid repeating arguments. To accomplish this task, we have chosen to explain the
modifications in sections 6, 7 and 10.

Operator-valued decoupling estimates. Let us begin with Section 6. Instead of
scalars satisfying (6.5), we now consider the followingR-bounded families of operators:

R
({λRQTRQ ∈ L(X) : R ∈ D′, Q ∈ DR−good, �(Q) ≤ �(R)}) � 1, (14.2)

where TRQ ∈ L(X) and the scalar coefficients are

λRQ := D(Q, R)d+α

μ(Ru)μ(Qv)�(Q)α/2�(R)α/2
.
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These R-bounded families occur in the following counterpart of Lemma 6.6.

LEMMA 14.3. Assume that Ek−1fk = fk and Ek−1gk = gk, where fk and gk, k ∈ �, are
as in Lemma 6.6. Assume also that the estimate (14.2) holds. Then∣∣∣∣ ∑

R∈D′

∑
Q∈DR-good
�(Q)≤�(R)

〈gR〉Ru TRQ〈fQ〉Qv

∣∣∣∣
�
∥∥∥∥ ∞∑

k=−∞
εkgk

∥∥∥∥
Lq(P⊗μ;X∗)

∥∥∥∥ ∞∑
k=−∞

εkfk

∥∥∥∥
Lp(P⊗μ;X)

.

(14.4)

The proof of this lemma proceeds as the proof of Lemma 6.6 with appropriate
modifications. The key fact is that the operators

t̃RQ = 2(n+j)α/4μ(S)
TRQ

μ(Ru)μ(Qv)
∈ L(X),

where the parameters are clear from the context, belong to an R-bounded family. This
follows from the normalizations and the condition (14.2).

Then we can proceed to Section 7, where the goal is to prove a counterpart of
Proposition 7.1 under the assumptions of Theorem 1.8. For this purpose, we need the
following counterpart of Lemma 7.9.

LEMMA 14.5. Suppose that for every pair of cubes Q ∈ D and R ∈ D′, satisfying
�(Q) ≤ �(R) ∧ dist(Q, R), we are given functions ϕQ, ψR ∈ L1(�N, μ; �) such that
supp(ϕQ) ⊂ Q, supp(ψR) ⊂ R, and ∫

ϕQ dμ = 0.

Then

R
({σRQ〈ψR, TϕQ〉 ∈ L(X) : �(Q) ≤ �(R) ∧ dist(Q, R)}) ≤ 1,

where the normalizing factors are given by

σRQ := dist(Q, R)d+α

�(Q)α‖ϕQ‖L1(μ)‖ψR‖L1(μ)
.

Proof. Suppose that Q ∈ D and R ∈ D′ satisfy �(Q) ≤ �(R) ∧ dist(Q, R). Let yQ be
the center of the cube Q. Denoting

F(x, y) := |y − yQ|α
|x − yQ|d+α

ϕQ(y)ψR(x)σRQ,

we obtain ∫
�N

∫
�N

|F(x, y)| dμ(y) dμ(x) ≤ 1.
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Hence, by denoting

T =
{ |x − y|d+α

|y − y′|α [K(x, y) − K(x, y′)] : y, y′, x ∈ �N, |y − y′| ≤ |x − y|/2
}
,

we obtain

σRQ〈ψR, TϕQ〉 =
∫

�N

∫
�N

K(x, y)ϕQ(y)ψR(x)σRQ dμ(y) dμ(x)

=
∫

�N

∫
�N

[K(x, y) − K(x, yQ)]ϕQ(y)ψR(x)σRQ dμ(y) dμ(x)

=
∫

�N

∫
�N

|x − yQ|d+α

|y − yQ|α [K(x, y) − K(x, yQ)] F(x, y) dμ(y) dμ(x)

∈ abs conv (T ).

Here the closure is taken in the strong operator topology and the absolute convex hull,
denoted by abs conv (T ), is the set of all vectors of the form

∑k
j=1 λjxj with

∑k
j=1 |λj| ≤ 1

and xj ∈ T for j = 1, 2, . . . , k. Since,

R(abs conv (T )) = R(T ),

it remains to use the second R-boundedness estimate in (14.1) �
Proceeding as in the proof of Proposition 7.1, and using Lemma 14.5 instead of

Lemma 7.9, we find that the R-boundedness estimate (14.2) holds for the family of
operators in L(X) defined by the equation (7.12). Hence, after applying Lemma 14.3
instead of Lemma 6.6, the proof of Proposition 7.1 continues as before.

Operator-valued paraproducts. We proceed to Section 10. Let us first indicate the
modifications in the proof of the estimate (10.6), the boundedness of the paraproduct.
The first one comes in the proof of Lemma 10.13: Theorem 4.16 and Proposition 4.18
are used with UMD function lattice Z instead of �.

The step from (10.16) to (10.17) is now established by the following lemma and
assumption R(B̄Z) � 1.

LEMMA 14.6. Suppose that t > q ∨ s, where X∗ has cotype s. Then∥∥∥∥∑
j∈�

ε�
j djEjg

∥∥∥∥
Lq(��×�N×�;X∗)

� R(B̄Z) · ‖{||dj(·)||Lt(�;Z)}j∈�‖Cart(D′) · ‖g‖Lq(�N ;X∗),

(14.7)

where ε� = {ε�
j : j ∈ �} ∈ �� are Rademacher random variables and

dj : �N → Lt(�; Z) : x �→
(

ε �→
∑
R∈D′

j

∑
Q∈D

S(Q)=R

εQπQ,Ra (x)
)

for functions πQ,Ra : �N → Z that are determined by (10.11).
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Proof. Note first that LHS(14.7) can be written as(∫∫∫
��×�N×�

∣∣∣∣∑
j∈�

ε�
j

dj(x, ε)
|dj(x, ε)|Z |dj(x, ε)|ZEjg(x)

∣∣∣∣q
X∗

dP(ε) dμ(x) dP(ε�)
)1/q

.

Using Fubini’s theorem and the fact that the closed unit ball of Z is R-bounded, we
see that LHS(14.7) can be bounded by a constant multiple of

R(B̄Z)
(∫∫∫

�×�N×��

∣∣∣∣∑
j∈�

ε�
j |dj(x, ε)|ZEjg(x)

∣∣∣∣q
X∗

dP(ε�) dμ(x) dP(ε)
)1/q

.

Recall that t > q. Using Fubini’s theorem, followed by the Hölder’s inequality, we find
that LHS(14.7) is bounded by a constant multiple of

R(B̄Z)
(∫∫

��×�N

∥∥∥∥∑
j∈�

ε�
j |dj(x)|ZEjg(x)

∥∥∥∥q

Lt(�;X∗)
dμ(x) dP(ε�)

)1/q

= R(B̄Z)

∥∥∥∥∑
j∈�

ε�
j |dj(·)|ZEjg

∥∥∥∥
Lq(��×�N ;Lt(�;X∗))

.

Let us denote d̃j(x, ε) := |dj(x, ε)|Z. Then, for a fixed x ∈ �N ,

‖d̃j(x)‖Lt(�;�) =
(∫

�

|d̃j(x, ε)|t dP(ε)
)1/t

= ‖dj(x)‖Lt(�;Z).

Hence, by using Lemma 10.8, we can conclude that the estimate (14.7) holds. �
In order to estimate the right hand side of (10.18), we use the fact that L2(�, Z)

has cotype 2 since Z has it. The described modifications suffice for obtaining estimate
(10.6) in the context of Theorem 1.8. Finally, in the proof of estimate (10.7) we use
Theorem 4.16, with UMD function lattice Z, and the fact that the family {Ek}k∈� of
operators in Lq(μ; Z) is R-bounded by the UMD-valued Stein’s inequality [2].

This concludes the description of modifications in Section 10.
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