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All Irrational Extended Rotation Algebras
are AF Algebras

George A. Elliott and Zhuang Niu

Abstract. Let θ ∈ [0, 1] be any irrational number. It is shown that the extended rotation algebra Bθ

introduced by the authors in J. Reine Angew. Math. 665(2012), pp. 1–71, is always an AF algebra.

1 Introduction

In [8], a natural embedding of the irrational rotation C∗-algebra in a simple nuclear
C∗-algebra with trivial K1-group was constructed, which gives rise to an isomor-
phism of ordered K0-groups. For a dense Gδ of irrational numbers, the C∗-algebra
constructed (by adjoining natural spectral projections of the canonical unitary gen-
erators of the rotation algebra) was shown to be AF.

In the present paper, using the remarkable recent work of Matui and Sato ([18],
[14], [13]), together with what might be called the Winter–Lin–Niu deformation
technique ([20], [11], [12]), the new C∗-algebra is shown to be AF for every irrational
number. (See Corollary 4.7.)

By Remark 2.8 of [8], the flip of the rotation algebra extends to the larger alge-
bra, and it is easily seen that the automorphism of order four known as the Fourier
transform does also. It is an interesting question whether the whole of the natural
SL(2,Z)-action also extends. Also of interest is whether the (unique) extendibility
of, say, the flip automorphism, determines the embedding up to an automorphism.
(Note that, as pointed out in [9] and [7], all embeddings are approximately unitarily
equivalent, but the question of when two differ by an automorphism—in particular,
ours and the very concrete (if not absolutely unique) one of Pimsner and Voiculescu
constructed in [16]—is clearly an important question—analogous perhaps to the ba-
sic question in subfactor theory.)

2 Irrational Extended Rotation Algebras

Consider the C∗-algebra C(T) as the canonical sub-C∗-algebra of L∞(T), and denote
by σ the automorphism of L∞(T) induced by translation by e2πiθ:

f (z) 7→ f (e2πiθz).
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Note that C(T) is invariant under the action of σ.

Consider two collections of (closed, open, or half-open) subintervals { fi}i∈Λ1 and
{g j} j∈Λ2 of T, and still denote again by fi and g j the spectral projections of the canon-
ical unitary f (z) = z in L∞(T) corresponding to the subintervals fi and g j .

Consider the following two commutative C∗-algebras:

C(Ωu) := C∗
(

C(T) ∪ {σ−k( fi) ; i ∈ Λ1, k ∈ Z}
)
⊆ L∞(T)

and

C(Ωv) := C∗
(

C(T) ∪ {σk(g j) ; j ∈ Λ2, k ∈ Z}
)
⊆ L∞(T),

where Ωu and Ωv denote the spectra of these algebras. Note that the rotation σ can
be extended to an automorphism of C(Ωu) (or C(Ωv)). Denote also by u and v the
canonical generators of C(T) inside C(Ωu) and C(Ωv).

Definition 2.1 For an irrational number θ, and two collections of subintervals
{ fi}i∈Λ1 and {g j} j∈Λ2 of the unit circle T, let us (as in [8]) refer to the universal
C∗-algebra generated by C(Ωu) and C(Ωv) with respect to the relations

(i) uv = e2πiθvu,
(ii) uσk(g j)u∗ = σk+1(g j) for any j ∈ Λ2 and k ∈ Z, and
(iii) vσ−k( fi)v∗ = σ−k−1( fi) for any i ∈ Λ1 and k ∈ Z,

as the (irrational) extended rotation algebra, and denote it by Bθ (= Bθ({ fi}, {g j})).

Remark 2.2 If the intervals in the collections { fi}i∈Λ1 and {g j} j∈Λ2 are arbitrary
mixtures of open, closed, or half-open, then by [8, 5.14], there is a short exact se-
quence

0 //⊕K // Bθ
// B′θ // 0 ,

where B′θ is an extended rotation algebra which can be generated by half-open in-
tervals with the same orientation, and K is the algebra of compact operators. In
this paper, we will show that the C∗-algebra B′θ is an AF algebra, and hence (by [3]
and [5]) the C∗-algebra Bθ is AF as well.

If { fi}i∈Λ1 and {g j} j∈Λ2 are two collections of half-open subintervals of T with
the same orientation, then there is another set of generators and relations for Bθ, as
we shall now describe.

By Lemma 2.3 of [8], there is a θ-independent set of real numbers {ak ; k ∈ Λu}
for some countable index set Λu (finite or infinite) such that the C∗-algebra C(Ωu) is
generated by

{σn(pk), σn(ek) ; n ∈ Z, k ∈ Λu},

where pk is the spectral projection corresponding to [ak, ak + θ) or (ak, ak + θ], and ek

is the minimal projection corresponding to {ak} or zero. Since the half-open inter-
vals fi , i ∈ Λ1, are chosen to have the same orientation, the projection ek is always
zero. Let us refer to the points {ak ; k ∈ Λu} as the cutting points of the canonical
unitary u. A similar argument also works for C(Ωv); let {bl ; l ∈ Λv} denote the
corresponding cutting points of v, where Λv is a countable index set.
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Theorem 2.3 ([8, Corollary 2.10]) Assume that { fi}i∈Λ1 and {g j} j∈Λ2 are two col-
lections of half-open subintervals of T with the same orientation. The C∗-algebra Bθ

is the universal C∗-algebra generated by unitaries u and v and positive elements
{hu,k ; k ∈ Λu} and {hv,l ; l ∈ Λv} with respect to the relations

(i) uv = e2πiθvu,
(ii) ‖hu,k‖ = ‖hv,l‖ = 1,
(iii) u = e2πi(hu,k+ak), and
(iv) v = e2πi(hv,l+bl),

where {ak} and {bl} are as above.

For the extended rotation algebraBθ in the case considered in Theorem 2.3 (which
we shall usually consider now, unless otherwise specified—see Proposition 2.5 and
Corollary 4.7), one has the following.

Theorem 2.4 ([8, Theorems 3.6 and 5.1]) Assume that { fi}i∈Λ1 and {g j} j∈Λ2 are
two collections of half-open subintervals of T with the same orientation. The C∗-algebra
Bθ is simple and nuclear, and has a unique tracial state τ .

Consider the two C∗-algebras

Bu := C∗{ f , u ; f ∈ C(Ωv)} and Bv := C∗{ f , v ; f ∈ C(Ωu)}.

Then one has

Bu = C(Ωv) oσ Z and Bv = C(Ωu) oσ Z.

Both Bu and Bv contain the rotation algebra Aθ, and one also has that Bθ = Bu ∗Aθ Bv.

Proposition 2.5 (Propositions 3.4 and 5.3 of [8]) There exist conditional expecta-
tions Eu : Bθ → C(Ωu) and Ev : Bθ → C(Ωv). Moreover, if { fi}i∈Λ1 and {g j} j∈Λ2 are
half-open subintervals with the same orientation, then Eu and Ev are faithful.

3 Strict Comparison of Positive Elements

In this section, we shall show that any irrational extended rotation algebra has strict
comparison for positive elements (Theorem 3.8). The technique we are going to use
is that of the (one-sided) large sub-C∗-algebra due to N. C. Phillips (based on the
method of Putnam in [17]; see [15]). Since (as shown in [8]) irrational extended
rotation algebras are simple and nuclear, and have a unique tracial state, by a result
of Matui and Sato these C∗-algebras are Z-stable, i.e., Bθ ⊗ Z ∼= Bθ.

Lemma 3.1 Let q be a spectral projection of v, and let ε > 0. Then there is δ > 0 such
that if e is a spectral projection of u with support in an interval with length at most δ,
one has

‖eqe− τ (q)e‖ < ε,

where τ is the canonical tracial state.
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Proof The proof is almost the same as the proof of Lemma 5.7 of [8]. Let f , g ∈
C∗(v) be such that f ≥ q ≥ g and

τ ( f − g) < ε/2.

Choose polynomials F(v) and G(v) such that

‖ f − F‖ < ε/2 and ‖g − G‖ < ε/2.

Denote by n the larger of the degrees of F and G. Since θ is irrational, there is δ > 0
such that if e is a spectral projection of u with support in an interval with length
at most δ, one has evie = 0 for all 1 ≤ i ≤ n. In particular, this implies that
eFe = F(0)e and eGe = G(0)e, where F(0) and G(0) are the constant terms of F
and G, respectively. Note that

|F(0)− τ (q)| < ε/2 and |G(0)− τ (q)| < ε/2,

and also note that

F(0)e = eFe ≈ε/2 e f e ≥ eqe ≥ ege ≈ε/2 eGe = G(0)e.

Then

(τ (q) + ε)e ≥ eqe ≥ (τ (q)− ε)e,

which is the conclusion of the lemma.

Lemma 3.2 Let a ∈ Bθ. For any ε > 0, there is δ such that if e is a spectral projection
of u with support in an interval with length at most δ, then

‖eae− Eu(a)e‖ < ε

(where Eu is the canonical conditional expectation from Bθ to C(Ωu)).

Proof Choose
∑n

j=1 c j p jq j such that∥∥∥a−
n∑

j=1
c j p jq j

∥∥∥ < ε/3.

Then, by Lemma 3.1, there is δ > 0 such that if e is a spectral projection of u with
support in an interval with length at most δ, then∥∥∥ e

( n∑
j=1

c j p jq j

)
e−

( n∑
j=1

c j p jτ (q j)
)

e
∥∥∥ < ε/3.

Note that

Eu

( n∑
j=1

c j p jq j

)
=

n∑
j=1

c j p jτ (q j)

and, therefore,

‖eae− Eu(a)e‖ ≤
∥∥∥ e
( n∑

j=1
c j p jq j

)
e− Eu

( n∑
j=1

c j p jq j

)
e
∥∥∥ + 2ε/3

≤ ε,

as desired.
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Lemma 3.3 Assume that { fi}i∈Λ1 and {g j} j∈Λ2 are two collections of half-open
subintervals of T each with the same orientation. Let b be a non-zero positive element
of Bθ. Then there is a non-zero element a ∈ C(Ωu) such that a � b. In particular, the
C∗-algebra Bθ has the property (SP).

Proof By Proposition 2.5, the conditional expectation Eu is faithful. Choose ε with

0 < ε < ‖Eu(b)‖/2.

By Lemma 3.2, there is e ∈ C(Ωu) such that

‖ebe− Eu(b)e‖ < ε.

Moreover, again since Eu(b) 6= 0, the spectral projection e can be chosen so that∣∣‖Eu(b)e‖ − ‖Eu(b)‖
∣∣ < ε

2
.

Put

a′ := Eu(b)e ∈ C(Ωu)

and set a = (a′ − ε)+. Then

a � ebe � b.

Note that

‖a′‖ = ‖Eu(b)e‖ > ‖Eu(b)‖ − ε

2
>

3ε

2
,

and hence a 6= 0, as desired.

Lemma 3.4 Let A be a C∗-algebra and let a1, a2, . . . , an ∈ A. Then

(a1 + · · · + an)∗(a1 + · · · + an) ≤ na∗1 a1 + · · · + na∗nan.

In particular,

(a1 + · · · + an)∗(a1 + · · · + an) � a∗1 a1 ⊕ · · · ⊕ a∗nan.

Proof For any a, b ∈ A, since (a− b)∗(a− b) ≥ 0, one has

a∗b + b∗a ≤ a∗a + b∗b.

Then

(a1 + · · · + an)∗(a1 + · · · + an) =
n∑

i=1
a∗i ai +

n∑
i< j

(a∗i a j + a∗j ai)

≤
n∑

i=1
a∗i ai +

n∑
i< j

(a∗i ai + a∗j a j)

= n
n∑

i=1
a∗i ai ,

as desired.
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Lemma 3.5 Assume that { fi}i∈Λ1 and {g j} j∈Λ2 are two collections of half-open
subintervals of T with the same orientation. For any a ∈ Bθ, any ε > 0, and any
b ∈ Bθ \ {0}, there are c ∈ Aθ and g ∈ Bθ such that

(i) ‖a− (c + g)‖ < ε,
(ii) g∗g � b in Bθ.

Proof By Lemma 3.3, one may assume that b ∈ C(Ωu), and hence one may assume
that b is a projection in Aθ.

By Theorem 1 of [9], one can choose
∑n

i=1 ci piqi such that∥∥∥a−
n∑

i=1
ci piqi

∥∥∥ < ε/2,

where pi and qi are spectral projections in C(Ωu) and C(Ωv), respectively. Then
choose a projection e ∈ Aθ with e < b and 4n[e] < [b].

Since (by [17]) the C∗-algebra C(Ωu)oZ is an AT algebra, it has strict comparison
of positive elements. Then, for each spectral projection pi , we can choose f−i , fi

and f +
i such that

pi = f−i + fi + f +
i ,

with fi ∈ C∗(u) and
f−i , f +

i � e, i = 1, . . . , n.

Similarly, one also chooses g−i , gi and g+
i such that

qi = g−i + gi + g+
i ,

with gi ∈ C∗(v) and
g−i , g

+
i � e, i = 1, . . . , n.

Then,
n∑

i=1
ci piqi =

n∑
i=1

ci( f−i + fi + f +
i )(g−i + gi + g+

i )

=
n∑

i=1
ci figi +

n∑
i=1

ci f−i qi +
n∑

i=1
ci f +

i qi +
n∑

i=1
ci fiqg−i +

n∑
i=1

ci fiqg+
i .

Put

c =
n∑

i=1
ci figi

and

g =
n∑

i=1
ci f−i qi +

n∑
i=1

ci f +
i qi +

n∑
i=1

ci fiqg−i +
n∑

i=1
ci fiqg+

i .

By Lemma 3.4, one has

g∗g �
n⊕

i=1
f−i ⊕

n⊕
i=1

f +
i ⊕

n⊕
i=1

g−i ⊕
n⊕

i=1
g+

i

�
4n⊕

e � b,

as desired.

We thank N. C. Phillips for communicating to us the following two lemmas ([15,
Lemmas 1.13 and 1.15]).
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Lemma 3.6 (1.13 of [15]) Let A be a C∗-algebra, let a, b ∈ A be positive, and let
α, β ≥ 0. Then(

a + b− (α + β)
)

+
� (a− α)+ + (b− β)+ � (a− α)+ ⊕ (b− β)+.

Lemma 3.7 (1.15 of [15]) Let A be a C∗-algebra, and let a, b ∈ A be such that
0 ≤ a ≤ b. Let ε > 0. Then (a− ε)+ � (b− ε)+.

Theorem 3.8 Assume that { fi}i∈Λ1 and {g j} j∈Λ2 are two collections of half-open
subintervals of T with the same orientation. The irrational extended rotation algebra Bθ

has strict comparison of positive elements.

Proof Let a, b be positive elements of Bθ (or of a matrix algebra over Bθ) such that
dτ (a) < dτ (b)− δ for some δ > 0, where τ is the canonical trace.

Suppose that 0 is not an isolated point of sp(b). Choose δ1 > 0 such that

dτ
(

(b− η)+

)
> dτ (b)− δ/4, for all η ∈ (0, δ1).

Fix ε > 0 with ε < δ1/9. Since 0 is not an isolated point of sp(b), we may also assume
that h(0,ε/2)(b) 6= 0 and h(ε/2,ε)(b) 6= 0 for continuous positive functions h(0,ε/2) and
h(ε/2,ε) with support in (0, ε/2) and (ε/2, ε), respectively.

By Lemma 3.5, there are b0 ∈ Aθ and b1 ∈ Bθ such that
∥∥(b− ε)1/2 − (b0 + b1)

∥∥
is sufficiently small that

(3.1) ‖(b− ε)+ − (b0 + b1)∗(b0 + b1)‖ < ε

and also

(3.2) b∗1 b1 � h(0,ε/2)(b).

Moreover, we may assume that

(3.3)
∥∥(b− 8ε)+ −

(
(b0 + b1)∗(b0 + b1)− 7ε

)
+

∥∥ < ε.

Then, by Lemma 3.4,

b∗0 b0 = (b0 + b1 − b1)∗(b0 + b1 − b1) ≤ 2(b0 + b1)∗(b0 + b1) + 2b∗1 b1,

and then by Lemma 3.7 and Lemma 3.6,

(b∗0 b0 − 3ε)+ �
(

2(b0 + b1)∗(b0 + b1) + 2b∗1 b1 − 3ε
)

+
(3.4)

�
(

2(b0 + b1)∗(b0 + b1)− 2ε
)

+
+ (2b∗1 b1 − ε)+

� (b− ε)+ + h(0,ε/2)(b) (by (3.1) and (3.2)).

In particular,

dτ
(

(b∗0 b0 − 3ε)+

)
≤ dτ (b).
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On the other hand,

(b− 9ε)+ =
(

(b− 8ε)+ − ε
)

+
(3.5)

�
(

(b0 + b1)∗(b0 + b1)− 7ε
)

+
(by (3.3))

� (2b∗0 b0 + 2b∗1 b1 − 7ε)+

� (2b∗0 b0 − 6ε)+ + (2b1b∗1 − ε)+

� (b∗0 b0 − 3ε)+ ⊕ b∗1 b1.

In particular,

dτ
(

(b− 9ε)+

)
≤ dτ

(
(b∗0 b0 − 3ε)+

)
+ dτ (b∗1 b1),

and hence

dτ
(

(b∗0 b0 − 3ε)+

)
≥ dτ

(
(b− 9ε)+

)
− dτ (b∗1 b1)

> dτ (b)− δ/4− δ/4 = dτ (b)− δ/2.

(3.6)

Applying Lemma 3.5 to a1/2, we define a0 ∈ Aθ and a1 ∈ Bθ such that

‖a− (a0 + a1)∗(a0 + a1)‖ < ε,

a∗1 a1 � h(ε/2,ε)(b),

and ∥∥(a− 7ε)+ −
(

(a0 + a1)∗(a0 + a1)− 7ε
)

+

∥∥ < ε.

Then the same argument as for (3.5) shows that

(3.7) (a− 8ε)+ � (a∗0 a0 − 3ε)+ + a∗1 a1,

and since
a∗0 a0 ≤ 2(a0 + a1)∗(a0 + a1) + 2a∗1 a1,

the same argument as for (3.4) shows that

(a∗0 a0 − 3ε)+ �
(

(a0 + a1)∗(a0 + a1)− ε
)

+ (a∗1 a1 − ε/2)+

� a⊕ a∗1 a1.

Therefore, by (3.6),

dτ
(

(a∗0 a0 − 3ε)+

)
≤ dτ (a) + dτ (a∗1 a1) < dτ (a) + δ/2

< dτ (b)− δ/2 < dτ
(

(b∗0 b0 − 3ε)+

)
.

Note that (a∗0 a0 − 3ε)+ ∈ Aθ and (b∗0 b0 − 3ε)+ ∈ Aθ. Since (by [6] or [2]) Aθ has
strict comparison for positive elements, one has

(a∗0 a0 − 3ε)+ � (b∗0 b0 − 3ε)+,

and hence

(a− 8ε)+ � (a∗0 a0 − 3ε)+ + a∗1 a1 (by (3.7))

� (b∗0 b0 − 3ε)+ + a∗1 a1

� (b− ε)+ + h(0,ε/2)(b) + h(ε/2,ε)(b) (by (3.4))

� b.
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Since (by Lemma 3.3) ε is arbitrary, and the left side converges to a as ε converges to
zero, by inspection of the definition of Cuntz comparison, one has

a � b.

Suppose now that 0 is an isolated point of sp(b). Then the range projection of b in
the bidual of Bθ belongs to Bθ, and is Cuntz equivalent to b, and so we may assume
that b is a projection. Since (by Lemma 3.3) Bθ has property (SP), if b 6= 0 (as we may
suppose), there is a non-zero projection p < b such that τ (p) < τ (b) − dτ (a). Pick
a positive element c ∈ pBθp with sp(c) = [0, 1], and consider the positive element

b′ := (b− p) + c.

Then

dτ (b′) ≥ τ (b− p) > dτ (a),

sp(b′) = [0, 1], and b′ < b. By the first part of the proof, one has that

a � b′.

Since b′ < b, we again have a � b.

Corollary 3.9 Assume that { fi}i∈Λ1 and {g j} j∈Λ2 are two collections of half-open
subintervals of T with the same orientation. Then the irrational extended rotation alge-
bra Bθ is Z-stable.

Proof By Theorem 5.1 and Theorem 3.6 of [8], Bθ is simple and has a unique tracial
state. By Corollary 7.5 of [8], Bθ is nuclear. Hence, by Theorem 1.1 of [13], Bθ is
Z-stable.

4 Quasidiagonality and the UCT

In this section, let us show that any Bθ is quasidiagonal and satisfies the UCT. Then,
by a result of Matui and Sato in [14] and a recent classification theorem, it will follow
that the C∗-algebra Bθ is an AF algebra.

Theorem 4.1 Assume that { fi}i∈Λ1 and {g j} j∈Λ2 are two collections of half-open
subintervals of T with the same orientation. Then, for any irrational θ, the extended
rotation algebra Bθ is quasidiagonal.

Proof Since Bθ is nuclear ([8, 7.5]), it is enough to show that Bθ can be (unitally)
embedded into

∏∞
λ=1 Mnλ(C)/

⊕∞
λ=1 Mnλ(C) for suitable natural numbers nλ.

Let mλ, nλ be natural numbers such that mλ/nλ → θ as λ → ∞. Set ωλ =
e2πimλ/nλ ,

uλ :=


0 1 0 0 · · · 0
0 0 1 0 · · · 0

. . .
. . .

. . .
. . .

0 0 0 0 · · · 1
1 0 0 0 · · · 0

 ∈ Mnλ(C),
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and

vλ := diag{ωλ, ω2
λ, . . . , ω

nλ
λ } ∈ Mnλ(C).

For each k ∈ Λu, pick

hu,k,λ =
1

2πi
log(uλe−iak )

with 0 ≤ hu,k,λ ≤ 1, and for each l ∈ Λv, pick

hv,l,λ =
1

2πi
log(vλe−ibl )

with 0 ≤ hv,l,λ ≤ 1.
Consider the elements

u := (̃uλ), v := (̃vλ), hu,k := (̃hu,k,λ), and hv,l := (̃hv,l,λ)

in
∏∞

λ=1 Mnλ(C)/
⊕∞

λ=1 Mnλ(C). We shall show that that the C∗-algebra generated by
these elements is isomorphic to Bθ, giving the desired embedding.

By Theorem 2.3, it is enough to show that u, v, hu,k, hv,l satisfy the relations

(1) uv = e2πiθvu,
(2) ‖hu,k‖ = ‖hv,l‖ = 1,
(3) u = e2πi(hu,k+ak), and
(4) v = e2πi(hv,l+bl).

One only has to verify condition (1) since the other conditions are satisfied straight-
forwardly. A calculation shows that

uλvλu∗λv∗λ = e2πimλ/nλ ,

and hence

lim
λ→∞

uλvλu∗λv∗λ = lim
λ→∞

e2πimλ/nλ = e2πiθ,

which implies

uv = e2πiθvu

in
∏∞

λ=1 Mnλ(C)/
⊕∞

λ=1 Mnλ(C). Therefore, the elements u, v, hu,k, hv,l generate a
copy of Bθ in

∏∞
λ=1 Mnλ(C)/

⊕∞
λ=1 Mnλ(C), as desired.

Let us now show that the C∗-algebra Bθ satisfies the UCT. It will be convenient to
show at the same time, for use in the final classification, that K1(Bθ) = {0} and that
K0(Bθ) is torsion free.

Note that Bθ = Bu ∗Aθ Bv. (In the case that there is only one cutting point for each
of u and v, it follows directly from the Cuntz–Germain–Thomsen exact sequence that
K0(Bθ) = Z + θZ and K1(Bθ) = {0}.) Denote by iu and iv the embeddings of Aθ

into Bu and Bv, respectively, and denote by ju and jv the embeddings of Bu and Bv

into Bθ, respectively.
Before looking at K∗(Bθ), let us consider the C∗-algebras Bu and Bv, and rewrite

them as certain amalgamated free products.
Recall that Bu = C(Ωv)oσ Z, and suppose that there are only finitely many cutting

points {bl ; l ∈ Λv} for the unitary v. Put 0 = b1 < b2 < · · · < b|Λv| < 1.
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For each l ∈ Λv, denote by Il the closed interval [bl, bl+1] (assume b|Λv|+1 = 1), and
consider the C∗-algebra

⊕
l∈λv

C(Il). For each l ∈ Λv, define a function hl : [0, 1]→
[0, 1] by

hl : t 7→

{
t − bl, if t ∈

⋃̇
s≥lIs,

t + (1− bl), otherwise.

Then {1, hl ; l ∈ Λv} is a set of generators for the C∗-algebra
⊕

l∈λv
C(Il). Regard

the unitary v as the function

t 7→ e2πit , t ∈
⋃̇

lIl,

in
⊕

l∈Λv
C(Il). Then a direct verification shows that

v = e2πi(hl+bl), l ∈ Λv.

On the other hand, in the concrete C∗-algebra Bu, the commutative C∗-algebra
C(Ωv) contains a copy of

⊕
l∈Λv

C(Il). Let h̄l denote the generator in C(Ωv) corre-
sponding to the element hl. Then, there is a homomorphism φ from the amalga-
mated free product Aθ ∗C(T)

(⊕
l∈Λv

C(Il)
)

to Bu induced by

(4.1) φ(u) = u, φ(hl) = h̄l, l ∈ Λv.

Since the image contains {u−nh̄lun ; n ∈ Z, l ∈ Λv}, it contains all the elements of
C(Ωv), and therefore φ is surjective. Let us show that the map φ is also injective.

Lemma 4.2 Under the assumption that |Λv| < ∞, the map φ defined in (4.1) is
injective. In particular, the C∗-algebra Bu is isomorphic to Aθ ∗C(T)

(⊕
l∈Λv

C(Il)
)

.

Proof The argument is similar to that of Theorem 2.9 of [8]. Set

B′u = Aθ ∗C(T)

( ⊕
l∈Λv

C(Il)
)
.

Choose a faithful representation π of B′u on some Hilbert space H, and let us still use
the same notation for the images of the elements of B′u as for the elements themselves.

Since v = e2πi(hl+bl), one has

(4.2) hl =
1

2πi
log(e−2πibl v) + el,

where el is a subprojection of the spectral projection Ev({e2πibl}).
Consider the positive elements g1 := f1(hl) and g2 := f2(hl), where

f1(x) =


0 if 0 ≤ x ≤ 1/2,

linear if 1/2 ≤ x ≤ 1− θ,
1 otherwise,

and

f2(x) =


1 if 0 ≤ x ≤ θ,
linear if θ ≤ x ≤ 1/2,

0 otherwise.
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Then

g1 = f1

( 1

2πi
log(v)

)
+ el,

g2 = f2

( 1

2πi
log(v)

)
+
(

Ev({e2πibl})− el

)
,

and hence

g1(ug2u∗)

(4.3)

=

(
f1

( 1

2πi
log(v)

)
+ el

)(
u f2

( 1

2πi
log(v)

)
u∗ + u

(
Ev({e2πibl})− el

)
u∗
)

= f1

( 1

2πi
log(v)

)
· u f2

( 1

2πi
log(v)

)
u∗ + el + u

(
Ev({e2πibl})− el

)
u∗

= Ev((bl − θ, bl)) + el + u
(

Ev({e2πibl})− el

)
u∗.

Therefore, the element g1ug2u∗ is a projection. Let us define

dl,n := u−n−1
(

g1(vg2u∗)
)

un+1.

Then the elements
{v, dl,n ; n ∈ Z, k ∈ Λv}

satisfy the set of relations R′ of [8], and by Lemma 2.6 of [8], the C∗-algebra gener-
ated by {v, dl,n; n ∈ Z, k ∈ Λv} is isomorphic to C(Ωv) under the map

v 7→ z, dl,n 7→ σ−n(χ[bl,bl+θ)).

Therefore, there is a homomorphism

ψ : Bu
∼= C(Ωv) o Z→ B′u

with
ψ(u) = u and ψ

(
σ−n(χ[bl,bl+θ))

)
= dl,n.

In particular, by (4.2) and (4.3), one has

ψ(h̄l) = hl, l ∈ Λv,

and hence ψ ◦ φ = idB′u , which implies that the map φ is injective.

Lemma 4.3 Consider the C∗-algebra Bu (or Bv). Let a ∈ K0(Bu) such that na ∈
(iu)0

(
K0(Aθ)

)
for some non-zero n ∈ N. Then a ∈ (iu)0

(
K0(Aθ)

)
.

Proof Assume that |Λv| < ∞. By Lemma 4.2 and Theorem 6.4 of [19], a straight-
forward calculation shows that the sequence

0 −→ K0

(
C(T)

) ι
−→ K0(Aθ)⊕

(⊕
K0

(
C(Il)

)) (iu)0−(η)0

−−−−−−→ K0(Bu)

is exact, where
ι(1) = (0, 1)⊕ (1, . . . , 1),
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and η is the embedding of
⊕

l C(Il) into Bu.
Let (a, b)⊕ (c1, . . . , c|Λv|−1) ∈ K0(Aθ)⊕

(⊕
K0(C(Il))

)
be a representative of a.

One then has that(
(na, nb)⊕ (nc1, . . . , nc|Λv|−1)

)
−
(

(a′, b′)⊕ (0, . . . , 0)
)

= (0,m)⊕ (m, . . . ,m)

for some a′, b′,m ∈ Z. In particular, this implies that m is divisible by n, and

c1 = · · · = c|Λv|−1 = m/n.

Then the element

(a, b)⊕ (c1, . . . , c|Λv|−1)− (0,m/n)⊕ (m/n, . . . ,m/n) = (a, b−m/n)⊕ (0, . . . , 0)

is still a representative of a, and it is in the image of K0(Aθ), as desired.
If |Λv| = |{b1, b2, . . . , bi , . . . }| = ∞, then for each n = 1, 2, . . . , denote by Ωv,n

the commutative C∗-algebra generated by the spectral projections

{χ[bl+kθ,bl+(k+1)θ) ; i = 1, . . . , n, k ∈ Z},
and consider the C∗-algebra crossed product

Bu,n := C(Ωv,n) oσ Z.

Then, as a sub-C∗-algebra of Bu, each Bu,n contains Aθ, and Bu =
⋃∞

n=1 Bu,n. The
conclusion follows from the preceding case, that there are only finitely many cutting
points.

Lemma 4.4 With the setting as above, the following facts obtain:

(i) K1(Bθ) = {0}, and K0(Bθ) is torsion free.
(ii) The map (iu,−iv) : Aθ → Bu ⊕ Bv induces an injective map on the K-groups.

Proof Since Bu = C(Ωv) o Z and the action of σ on Ωv has no nontrivial clopen
subset, a direct calculation using the Pimsner–Voiculescu six-term exact sequence
shows that K1(Bu) is isomorphic to Z, and is generated by the canonical unitary u.
The same argument also works for Bv. In particular, this implies that (iu,−iv) (or
(iu, iv)) induces an isomorphism between K1(Aθ) and K1(Bu)⊕ K1(Bv).

For the injectivity on K0-groups, by applying the standard trace on Bu (or Bv),
one has that the map ιu (or ιv) also induces an embedding of K0(Aθ) into K0(Bu) (or
K0(Bv)). In particular, the map (iu,−iv) (or (iu, iv)) induces an injective map from
K1(Aθ) to K1(Bu)⊕ K1(Bv).

By Theorem 6.4 of [19], one has the exact sequence

K0(Aθ)
(iu0,iv0) // K0(Bu)⊕ K0(Bv)

ju0− jv0 // K0(Bθ)

��
K1(Bθ)

OO

K1(Bu)⊕ K1(Bv)
ju1− jv1

oo K1(Aθ).
(iu1,iv1)
oo

Since (iu1, iv1) : K1(Aθ) → K1(Bu) ⊕ K1(Bv) is an isomorphism, one has that
K1(Bθ) embeds into K0(Aθ) with image the kernel of the map (iu0, iv0) : K0(Aθ) →
K0(Bu) ⊕ K0(Bv). But the map (iu0, iv0) is injective, as shown above. Therefore,
K1(Bθ) = {0}.
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Let us show that K0(Bθ) is torsion free. As shown above, one has that

K0(Bθ) =
(

K0(Bu)⊕ K0(Bv)
)
/(iu0, iv0)

(
K0(Aθ)

)
.

Let (a, b) ∈ K0(Bu)⊕ K0(Bv) with n(a, b) = 0 for some nonzero n ∈ Z; that is

n(a, b) =
(

(iu)0(c), (iv)0(c)
)

for some c ∈ K0(Aθ), and hence

na = (iu)0(c) and nb = (iv)0(c).

By Lemma 4.3, one has that

a ∈ (iu)0

(
K0(Aθ)

)
and b ∈ (iv)0

(
K0(Aθ)

)
.

Denote by a′, b′ ∈ K0(Aθ) the preimages of a, b, respectively. Since the maps (iu)0

and (iv)0 are injective, one has

na′ = c = nb′.

Since K0(Aθ) is torsion free, one has a′ = b′, and therefore

(a, b) =
(

(iu)0(a′), (iv)0(b′)
)
∈
(

(iu)0, (iv)0

)(
K0(Aθ)

)
,

which implies

(a, b) = 0 ∈ K0(Bθ).

This shows that the group K0(Bθ) is torsion free.

Let A,B be C∗-algebras. In what follows, let

γ(A,B) : KK(A,B)→ Hom
(

K∗(A),K∗(B)
)

denote the canonical homomorphism. Let us also use the same notation for the
analogous homomorphism with domain E(A,B).

Proposition 4.5 (23.8.1 of [1]) Let A be a separable C∗-algebra. Suppose that for
every separable C∗-algebra B with divisible K-groups, γ(A,B) is an isomorphism. Then
for every separable C∗-algebra B, the exact sequence of the UCT holds for A and B.

Theorem 4.6 For any irrational θ, the extended rotation algebra Bθ satisfies the UCT.

Proof Since Bθ is nuclear, the group E(Bθ,D) and KK(Bθ,D) are canonically iso-
morphic for any separable D. Therefore by Proposition 4.5, it is enough to show that
γ(Bθ,D) is an isomorphism between E(Bθ,D) and Hom

(
K∗(Bθ),K∗(D)

)
for any

separable D with divisible K-groups.
By Theorem 6.3 of [19], one has the exact sequence

(4.4) E(Aθ,D)

��

E(Bu,D)⊕ E(Bv,D)
i∗u−i∗voo E(Bθ,D)

( j∗u , j
∗
v )oo

E(Bθ, SD)
( j∗u , j

∗
v )
// E(Bu, SD)⊕ E(Bv, SD)

i∗u−i∗v

// E(Aθ, SD).

OO
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Applying the functor γ to the lower-right corner of (4.4), one has the commutative
diagram

E(Bu, SD)⊕ E(Bv, SD)

γ(Bu,SD)⊕γ(Bv,SD)

��

i∗u−i∗v // E(Aθ, SD)

γ(Aθ ,SD)

��
Hom(K∗(Bu),K∗(SD))⊕Hom(K∗(Bv),K∗(SD))

i∗u−i∗v

// Hom(K∗(Aθ),K∗(SD)).

By Lemma 4.4 (ii), the map (iu,−iv) : Aθ → Bu ⊕ Bv induces an embedding of K-
groups. Then, since K∗(D) is divisible, the map i∗u − i∗v in the bottom row is a surjec-
tive homomorphism. Since the C∗-algebras Bu, Bv, and Aθ are nuclear and satisfy the
UCT, the vertical maps induced by the functor γ are isomorphisms, and therefore the
map

i∗u − i∗v : E(Bu, SD)⊕ E(Bv, SD)→ E(Aθ, SD)

must be surjective.
Then, by exactness of the sequence (4.4), the map E(Aθ, SD) → E(Bθ,D) is zero,

and therefore the map

( j∗u , j∗v ) : E(Bθ,D)→ E(Bu,D)⊕ E(Bv,D)

is injective.
Let us consider the map γ(Bθ,D) and show that it is an isomorphism. Applying

the functor γ to the top part of (4.4), one has the commutative diagram
(4.5)

Hom
(

K∗(Aθ),K∗(D)
) ⊕

•=u,v
Hom

(
K∗(B•),K∗(D)

)i∗u −i∗voo Hom
(

K∗(Bθ),K∗(D)
)( j∗u , j

∗
v )oo

E(Aθ,D)

γ(Aθ ,D)

OO

⊕
•=u,v

E(B•,D)
i∗u −i∗voo

γ(Bu ,D)⊕γ(Bv ,D)

OO

E(Bθ,D).
( j∗u , j
∗
v )oo

γ(Bθ ,D)

OO

Since the map ( j∗u , j∗v ) in the bottom row is injective, and as before, the first two
vertical maps (actually, we only need the middle one here) are isomorphisms, the
map γ(Bθ,D) must be injective.

Let us show that γ(Bθ,D) is also surjective. Note that the sequence

0 −→ K0(Aθ)
(i∗u ,−i∗v )
−−−−−→ K0(Bu)⊕ K0(Bv)

j∗u + j∗v
−−−→ K0(Bθ) −→ 0

is exact, and K1(Bθ) = {0}. Then a direct calculation shows that the top sequence
of (4.5) is exact in the middle, and the map ( j∗u , j∗v ) (in the top row) is injective.
Since the C∗-algebras Aθ, Bu, and Bv satisfy the UCT, the maps γ(Aθ,D), γ(Bu,D),
and γ(Bv,D) are isomorphisms. Let a ∈ Hom

(
K0(Bθ),K0(D)

)
, and denote the

image of a in E(Bu,D) ⊕ E(Bv,D) by a′. Then, by the exactness of the top sequence,
the element a′ must be sent to 0 in E(Aθ,D), whence, by the exactness of the lower
sequence, there is an element a′′ ∈ E(Bθ,D) which is sent to a′. Since ( j∗u , j∗v ) is
injective also at the level of Hom (in the top row), the element a′′ must be sent to a
under the map γ(Bθ,D). This shows that the map γ(Bθ,D) is surjective, as desired.
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Corollary 4.7 For arbitrary collections of sub-intervals { fi}i∈Λ1 and {g j} j∈Λ2 , the
irrational extended rotation algebra Bθ = Bθ({ fi}, {g j}) is an AF algebra.

Proof Suppose that { fi}i∈Λ1 and {g j} j∈Λ2 are two collections of half-open intervals
with the same orientation; then Bθ is simple, unital, nuclear, and has a unique tracial
state. It is quasidiagonal by Theorem 4.1. Hence by [14, Theorem 6.1], Bθ⊗Q is TAF
for the universal UHF algebra Q. In other words, Bθ is rationally TAF.

By Theorem 4.6, Bθ satisfies the UCT; and by Corollary 3.9, it is Z-stable. There-
fore, it is covered by the classification theorem of [20], [11], and [12]. By Lemma 4.4
(i), the group K1(Bθ) is zero and K0(Bθ) is torsion free. Also, as Bθ is Z-stable,
by [10], the ordered group K0(Bθ) is unperforated. Since Bθ has a unique tracial
state, the ordered group K0(Bθ) has a unique state. (It is the same to show that
K0(Bθ⊗Q) has a unique state, but this holds as Bθ⊗Q has a unique tracial state and
is TAF—see above.) Furthermore, the image of K0(Bθ) is dense in R (it contains the
subgroup Z + Zθ). Therefore, K0(Bθ) is a Riesz group.

It follows by [4] that there is an AF algebra with the same invariant, which is also
covered by this classification theorem, and so the C∗-algebra Bθ is isomorphic to that
AF algebra.

For the general case, that { fi}i∈Λ1 and {g j} j∈Λ2 are two collections of arbitrary
intervals, by 5.14 of [8], there is a short exact sequence

0 //⊕K // Bθ
// B′θ // 0 ,

where B′θ is an extended rotation algebra which can be generated by half-open inter-
vals with the same orientation, and K is the algebra of compact operators. Since the
previous argument shows that B′θ is an AF algebra, the C∗-algebra Bθ is an extension
of AF algebras, and therefore (by [3] and [5]) it is an AF algebra as well.
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