The connectivity of total graphs

Mehdi Behzad

Abstract

We associate with a graph (finite, undirected, without loops and multiple lines) a graph $T(G)$, called the total graph of G. This new graph has the property that a one-to-one correspondence can be established between its points and the elements (points and lines) of G such that two points of $T(G)$ are adjacent if and only if the corresponding elements of G are adjacent or incident. The object of this article is to prove the following theorem: If $k\left(G_{1}\right)=n, n \geqq 1$, and $\lambda\left(G_{2}\right)=m, m \geqq 1$, then $\kappa\left(T\left(G_{1}\right)\right) \geqq n+2+[(n-2) / 3], \lambda\left(T\left(G_{1}\right)\right) \geqq 2 n$, $\kappa\left(T\left(G_{2}\right)\right) \geq m+1$, and $\lambda\left(T\left(G_{2}\right)\right) \geq 2 m$, where $\kappa(G)$ and $\lambda(G)$ denote the connectivity and line-connectivity of the graph G.

1. Introduction

The (point) connectivity $K(G)$ of a graph (finite, undirected, with no loops and multiple lines) G is the least number of points whose removal disconnects G or reduces it to K_{1}. The line-connectivity $\lambda(G)$ of a nontrivial graph G is the minimum number of lines whose removal results in a disconnected graph. (For completeness, $\lambda\left(K_{1}\right)$ is defined to be zero.)

We associate with a graph G another graph $T(G)$, called the total graph of G. This new graph has the property that a one-to-one correspondence can be established between its points and the elements (the set of points and lines) of G such that two points of $T(G)$ are adjacent if and only if the corresponding elements of G are adjacent (if both elements are points or both are lines) or they are indicent (if one element

[^0]175
is a point and the other a line).
In this note we investigate the connectivity relationships between a graph and its total graph. In particular, we show that if $\kappa(G)=n, \quad n \geqq 1$, and $\lambda(G)=m$, then $\lambda(T(G)) \geqq 2 m$, and $\kappa(T(G)) \geqq n+2+[(n-2) / 3]$, where $[x]$ is the greatest integer less than or equal to x.

2. Preliminaries

In this section we review some useful terminologies and results dealing with the problem.

The point set of a graph G will be denoted by $V(G)$ and its line set by $X(G)$. The degree, $\operatorname{deg}_{G} a$, of a point a of G is the number of lines incident with a. If $\operatorname{deg}_{G} a=d$ is constant on $V(G)$, then G is called regular of degree d. A regular graph of order (the number of elements of $V(G)) p$ and degree $p-1$ is denoted by K_{p}. A connected regular graph of degree 2 is called a cycle.

The Z ine-graph, $L(G)$, of G is that graph whose point set is $X(G)$, and in which two points are adjacent if and only if they are adjacent in G.

Following these definitions we observe that both G and $L(G)$ are (disjoint) subgraphs of $T(G)$. (See [1], [2].) Moreover, for a point a of $T(G)$ belonging to $V(G)$ we have $\operatorname{deg}_{T(G)} a=2 \operatorname{deg}_{G} a$, and for a point b of $T(G)$ belonging to $X(G)=V(L(G))$ we have $\operatorname{deg}_{T(G)} b=\operatorname{deg}_{G} u+\operatorname{deg}_{G} v$, where u and v are the points of G incident with b. (For an illustration, a graph G is given in Fig. l together with $T(G)$. In $T(G)$ the "dark" points correspond to the points of G while the "light" points correspond to the lines of $G ; L(G)$ consists of the "light" points and the lines of $T(G)$ joining two such points. These lines are drawn in Fig. l with dashed lines.)

A graph G is said to be n-connected if $K(G) \geqq n$ and m-Zine connected if $\lambda(G) \geqq m$. Characterizations of n-connected graphs and m-line connected graphs presented next are due to Whitney [4], [5].

THEOREM A A graph G is n-connected (m-line connected) if and only if between every pair of distinct points there exist at least n disjoint (m line-disjoint) paths.

The next theorem is due to Chartrand and Stewart [3].
THEOREM B If $\kappa\left(G_{1}\right)=n$ and $\lambda\left(G_{2}\right)=m$, then $\kappa\left(L\left(G_{1}\right)\right) \geqq n$ and $\lambda\left(L\left(G_{1}\right)\right) \geqq 2 n-2$ while $k\left(L\left(G_{2}\right)\right) \geqq m$ and $\lambda\left(L\left(G_{2}\right)\right) \geqq 2 m-2$.

In conclusion of this section we state an observation due to Whitney [6]. We write $\min \operatorname{deg} G$ to denote the smallest degree among the points in G.

THEOREM C For any graph G,

$$
\begin{gathered}
\kappa(G) \leqq \lambda(G) \leqq \min \operatorname{deg} G . \\
\text { 3. Main results }
\end{gathered}
$$

Before we prove our first theorem we observe that G is connected if and only if $T(G)$ is connected; and that in $T(G)$ a point of G is adjacent to at least $\min \operatorname{deg} G$ points of $L(G)$.

THEOREM 1 If G is m-Zine connected, then $T(G)$ is $2 m$-Zine
connected.
Proof If $m=0$, then the theorem is clearly true. So assume $m \geqq 1$. First we show between each pair u and v of distinct points of $T(G)$ belonging to $L(G)$ there exist at least $2 m$ line-disjoint paths. By Theorem B, there exist at least $2 m-2$ line-disjoint paths in $L(G)$. Let u and v correspond to the lines $x=a b$ and $y=c d$, respectively. If x and y have a point in common, that is, if for example $d=b$, then the paths (u, b, v) and (u, a, b, c, v) are two line-disjoint $u-v$ paths, and no line of these paths belongs to $L(G)$. In case x and y have no points in common, $m \geqq 1$ implies that there exists at least one $b-d$ path, say $\left(b=b_{0}, b_{1}, b_{2}, \ldots, b_{n}=d\right)$ in G, where n is a positive integer. The u - v paths ($u, b, b_{1}, b_{2}, \ldots, b_{n-1}, d, v$) and $\left(u, a, b, b_{1}, \ldots, b_{n}, c, v\right)$ are line-disjoint. Again no line of these paths is in $L(G)$. Hence the assertion follows.

Next suppose a set $S,|S| \leqq 2 m-1$, of lines disconnects $T(G)$. Remove S and denote the resulting graph by H. In H all points of $L(G)$ must be in one of its components, say H_{1}. Let H_{2} be another component of H. All points of H_{2} are points of G, moreover, the number of points of H_{2} is at least 2 . This contradicts the inequality $|S| \leqq 2 m-1$, since in $T(G)$ there are at least $2 \mathrm{~min} \operatorname{deg} G$ lines joining points of H_{1} to points of H_{2}, and by Theorem C $2 m \leqq 2 \min \operatorname{deg} G$.

COROLLARY 1.1 If G is m-connected, then $T(G)$ is $2 m$-line connected.

Proof $K(G) \leqq \lambda(G)$ implies that G is m-line connected.
The equalities $k\left(K_{m+1}\right)=\lambda\left(K_{m+1}\right)=m$ and $\min \operatorname{deg} T\left(K_{m+1}\right)=2 m$ show that the results of Theorem 1 and Corollary 1.1 are the best.

THEOREM 2 If G is m-line connected, $m \geqq 1$, then $T(G)$ is ($m+1$)-connected.

Proof Suppose a set S consisting of s points of $T(G), s \leqq m$, disconnects $T(G)$. Let $S=S_{1} \cup S_{2}$, where S_{1} is the set of all elements of S which are points of $L(G)$, and $S_{2}=S-S_{1}$. If
$\left|S_{1}\right|<m$, then the removal of S from $L(G)$ results in a connected graph. This and the fact that a point of G in $T(G)$ is adjacent to at least m points of $L(G)$ give rise to a contradiction. So $\left|S_{1}\right|=m$ and $\left|S_{2}\right|=0$. But then every point of $L(G)$ being adjacent to two points of G in $T(G)$ gives rise to a contradiction again. This completes the proof of the theorem.

The result of Theorem 2 is best possible, too. Identify two copies of K_{m+1} at one point v and denote the resulting graph by G. The point v is a cut-point of G and $\lambda(G)=m$. The subgraph $L(G)$ of $T(G)$ has point connectivity m. The m points which disconnect $L(G)$ together with the point v, disconnect $T(G)$. Hence $\kappa(T(G))=m+1$. The graph G in Fig. 1 illustrates this for $m=2$.

Next, we note that a point of $L(G)$ in $T(G)$ is adjacent with at least $2(\min \operatorname{deg} G-1)$ other points of $L(G)$.

THEOREM 3 If G is m-connected, $m \geqq 1$, then $T(G)$ is $(m+2+[(m-2) / 3])$-connected .

Proof Since S is m-line connected, $T(G)$ is $(m+1)$-connected. Hence for $m=1$, the theorem is true. So assume $m \geqq 2$. Suppose there exists a set S having $s=m+1+[(m-2) / 3]$ or less points of $T(G)$ whose removal from $T(G)$ results in a disconnected graph H. Suppose $S_{1} \subset S$ consists of those points of S belonging to $L(G)$ and $S_{2}=S-S_{1}$.

If $\left|S_{1}\right| \leqq m-1$, then the removal of S_{1} from $L(G)$ results in a connected graph. This together with the fact that in $T(G)$ each point of G is adjacent to m points of $L(G)$ contradicts the fact that H is a disconnected graph. Thus $\left|S_{1}\right| \geqq m \geqq 2$. From this we conclude that

$$
\begin{equation*}
\left|S_{2}\right|=|S|-\left|S_{1}\right| \leqq s-m=1+[(m-2) / 3] \leqq m-1 . \tag{1}
\end{equation*}
$$

Since H is disconnected, $\left|S_{2}\right| \geqq 2$. Hence:

$$
\begin{equation*}
2 \leqq\left|S_{2}\right| \leqq m-1 \tag{2}
\end{equation*}
$$

Therefore, the removal of S_{2} from G results in a connected graph.
Now remove S from $T(G)$ and denote the connected subgraph containing all remaining points of G (and possibly some points of $L(G)$) by H_{1} and let H_{2} denote the rest of the resulting graph H. The graph H_{2} contains at least one point, say u. The first inequality in (2) implies that

$$
\begin{equation*}
\left|S_{1}\right| \leqq m-1+[(m-2) / 3] \tag{3}
\end{equation*}
$$

From (3) and the note preceding Theorem 3 we get:

$$
\begin{equation*}
2 m-2-m+1-[(m-2) / 3] \geqq 1 . \tag{4}
\end{equation*}
$$

Hence u is adjacent to another point v of $L(G)$ in H_{2}. The points u and v correspond to two adjacent lines in G. These two lines are incident with 3 points in G which must belong to S_{2}. Hence:

$$
\begin{equation*}
\left|S_{1}\right| \leqq 8-3=m-2+[(m-2) / 3] . \tag{5}
\end{equation*}
$$

Again, from (5) and the note preceding the theorem, we obtain:

$$
\begin{equation*}
2 m-2-m+2-[(m-2) / 3] \geqq 2 . \tag{6}
\end{equation*}
$$

Therefore, besides v, the point u is adjacent to another point w of $L(G)$ in H_{2}. The points u, v, and w correspond to three lines U, V, and W, respectively, of G. Since the line U is adjacent to both V and W, one of the graphs in Fig. 2 must be a subgraph of G.

Figure 2

In each case there are at least $3 m-6$ lines in G, different from U, V, and W, which are adjacent to U, V, or W. Hence, in addition to u, v, and w, there are at least $3 m-6$ points in $L(G)$ which are adjacent to the points u, v, or w. Therefore, we have:

$$
\begin{equation*}
3 m-6-(s-3)=2 m-4-[(m-2) / 3] \geqq m-2 . \tag{7}
\end{equation*}
$$

Now (7) implies that at least $m-2$ points of $L(G)$ are left which are adjacent to u, v, or w in H_{2}. These points correspond to $m-2$ lines
of G adjacent to U, V, or W. These $m-2$ lines together with the lines U, V, and W are adjacent with at least $[(m-2) / 3]$ points of G which must belong to S_{2}. Hence the set S contains at least $m+3+[(m-2) / 3]$ points. Since this number is greater than s, the theorem must hold.

Now we summarize our main results in the following
THEOREM 4 If $\kappa\left(G_{1}\right)=n, n \geqq 1$, and $\lambda\left(G_{2}\right)=m, m \geqq 1$, then $\kappa\left(T\left(G_{1}\right)\right) \geqq n+2+[(n-2) / 3]$, $\lambda\left(T\left(G_{1}\right)\right) \geqq 2 n$, $\kappa\left(T\left(G_{2}\right)\right) \geq m+1$,
and

$$
\lambda\left(T\left(G_{2}\right)\right) \geqq 2 m .
$$

References

[1] Mehdi Behzad, "A criterion for the planarity of the total graph of a graph", Proc. Cambridge Philos. Soc. 63 (1967), 679-681.
[2] Mehdi Behzad and Heydar Radjavi, "The total group of a graph", Proc. Amer. Math. Soc. 19 (1968), 158-163.
[3] Gary Chartrand and M.J. Stewart, "The connectivity of line-graphs", (to appear).
[4] G.A. Dirac, "Short proof of Menger's graph theorem", Mathematika, 13 (1966), 42-44.
[5] F. Harary, A Seminar on Graph Theory, (Holt, Rinehart and Winston, New York, 1967).
[6] Hassler Whitney, "Congruent graphs and the connectivity of graphs", Amer. J. Math. 54 (1932), 150-168.

Pahlavi University,
Iran,
and
Western Michigan University,
USA.

[^0]: Received 21 March 1969. Received by J. Austral. Math. Soc. 22 March 1968. Revised 7 October 1968. Communciated by G.B. Preston. The author is grateful to the referee for some improvements in this exposition. Research supported in part by a grant from the Office of Naval Research.

