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ABSTRACT. The hypothesis is considered that the torsional wave observed on the Sun is an eigen-
mode oscillation excited in the presence of a weak poloidal magnetic field. We derive asymptotic
linear equations for a perturbation with a large number of nodes along the radius, assuming the
rotation to be slow and the characteristic perturbation period to be much longer than the rotational
period. The results of a preliminary numerical study of the stability of the torsional mode indicate
that the superadiabaticity of the solar convection may contribute to the excitation of this mode. In
the present work the approximation of harmonic radial dependence of the perturbation has been
used.

1. Introduction

Recently Howard and LaBonte (1980) made a detailed analysis of data on the solar horizontal
velocity field, and concluded that a solar torsional wave exists, which manifests itself as a
modulation of the average rotational velocity. At a fixed latitude the velocity is changed
with approximately an 11-yr period having an amplitude of close to 10 m s~! (Howard and
LaBonte, 1980; LaBonte and Howard, 1982). This wave is a travelling one showing strong
symmetry with respect to the equator. The whole picture seems to be repeated with a 22-yr
period.

Many authors consider the torsional wave as a dynamo wave (Yoshimura, 1981; Schiissler,
1981; Kleeorin and Ruzmaikin, 1984). However, the corresponding theory has not been
worked out in detail since there have appeared difficulties, which solar dynamo theory itself
has not yet overcome.

Wilson (1987), Snodgrass (1987a, 1987b), and Snodgrass and Wilson (1987) have a quite
different point of view. They suggest that the torsional wave observed is not in fact an
oscillation, but represents a modulation of the mean differential rotation caused by a system
of giant azimuthal convective rolls with opposite direction of rotation in any two adjacent
rolls of the same hemisphere. They also cite observational evidence that giant-cell convection
in the Sun takes the form of equatorward migrating azimuthal rolls. However, it remains
unclear whether a rotational velocity distribution exists which is self-maintained, and which
satisfies the constraints of the observational data.

A suggestion that the solar torsional wave is excited due to the instability of an appropri-
ate eigen-mode has been considered by Vandakurov (1988). In this case we need to assume
that the Sun has a weak, steady, poloidal magnetic field not detectable by current observ-
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ing techniques. For the oscillations in question, a toroidal magnetic field is generated, the
magnetic energy being transformed into kinetic energy and vice versa.

Torsional oscillations have been studied long ago by Walén (1948) and Layzer et al. (1955)
in connection with a hypothesis that sunspot fields might represent loops of a toroidal mag-
netic field gererated by such oscillations and then being pulled up to the surface. However,
the characteristic period of the torsional oscillations (for the fundamental mode with a mag-
netic field strength of around 2 G) turned out to be 25-100 times longer than the solar
activity cycle (Layzer et al., 1955).

Nevertheless, the difficulty with the long oscillation period can be eliminated if the tor-
sional mode has numerous nodes along the radius (Vandakurov, 1988). In this case the
steady magnetic field is rather weak. An additional restriction of its value follows from the
circumstance that in the presence of a steady poloidal magnetic field, an asymmetry should
develop between the even- and odd-numbered solar cycles (Boyer and Levy, 1984; Pudovkin
and Benevolenskaja, 1984). According to the latter two authors, a maximum value of 0.5 G
for the dipole type field gives results consistent with the observations. Such a field can appar-
ently be in accordance with the value 11 yr for the period of the torsional mode (Vandakurov,
1988).

The main question is whether the mode mentioned can be self-excited. This question
is considered in the present paper. Asymptotic linear perturbed equations are derived,
supposing that the perturbation has a large number of nodes along the radius, and that the
torsional oscillation period is much longer than the stellar rotation period. We take into
account different types of dissipation. Some results of this study have been discussed briefly
in Vandakurov (1988).

2. Asymptotic perturbed equations

Let us assume invariance with respect to ¢, the azimuth angle, and consider movements of
a viscous, gravitating, compressible medium with finite conductivity in the presence of a
magnetic field B. We assume the pressure p and thermal flux F to be proportional to pT'/u
and VT, respectively, where p is the density, T the temperature, and p the molecular weight.
A different expression for F will be considered later. In the following 7,9, are spherical
coordinates, and e, ey, and e, are unit vectors.

Let us now write down the ¢-component of the equation of motion, as well as the div and
e, curl of the same equation:

e, - (dv/dt + B x curl B/4mp — vV?v) =0, (1)
div(dv/dt + Vp/p + B x curl B/4rp — vV2v) + 47Gop = 0, (2)
e, - curl(dv/dt + B x curl B/4mp — vViv) —e, - (Vp x Vp)/p* = 0. (3)

The other basic equations are

9p/0t + div(pv) = 0, (4)

0BOt — curl(v x B) —vgV? B = 0, (5)
dp/dt — (yp/p)dp/dt — (v — 1)(pe — div F) = 0, (6)
dp/dt = 0. (1)
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Here d/dt = 8/0t + v - V, v and vp are kinematic and magnetic viscosities, and v, Gy, 7,
and ¢ denote, respectively, the velocity, gravitational constant, ratio of specific heats, and
energy production.

We assume that in equilibrium the toroidal magnetic field is absent, and

v =e,rQsind, B = Bob, (8)

where Q and By are constant, and b is the dimensionless meridional vector. The equilibrium
conditions follow from Eqs. (1)—(7) if we insert expressions (8). We do not write them down
here.

To obtain the perturbed equations we insert, instead of p, v, etc., p+ p*, e,rQsin?d + v*,
etc., where p*(r,?,t) and v*(r,9,t) are Eulerian components of the perturbation. In the
linear approximation it follows from Egs. (3) and (5) that

dvy, Bgb - V(B%rsind
5t ¢ 4 2Q(v}sind + v} cos V) — — (Bersind)

4mprsind —v Lvg) =0, (9a)

aB* !ll
5 £ — Borsindb - V(

£_)~vp L (B})=0, (98)

where

19 2 0 1 g . ,0 1
—— (= sind— - —).
=7or or + 2 sin19(319 X sim?)
To find the velocities v} and v} in these equations, we need to use the equations of system

(1)~(7). Let us write them in the approximations of slow rotation, very slow movements,
and small h,, the radial scale of the perturbation, i.e.,

/g <1, |/ <1, hahp <], (10)

where g = —dp/pdr is the gravitational acceleration, and h, = —dr/dInp is the radial scale
of the equilibrium pressure. If /0t ~ iw, then the frequency w will be of order Qg7/h, as
follows from Eq. (9), with Q% = BZ/4rpr?.

One can see that the main terms in Eq. (3) are the last one and the one that contains
the angular velocity 2. A similar approximation for slow motion (but for the case of large
Lorenz force) has been used by Taylor (1963). Note furthermore that from Eq. (2) we obtain
the estimate

p*/p ~ (ha/hp)(p*/p)- (11)
Thus, neglecting small terms (but retaining those which are important at small 7), we get
0 (pyr)= 992
29 (v sind) — 2Qcosﬂar(‘rv¢ =99 (12)

In addition, the equations of continuity and energy give

140 2 1 9
ror v’+rsm19819v"sm0 0, (13)

9% p*  adv: 0 ,0 1 4, ,0 dp* | svr\ _
3t2—+;7_9 (01‘ 0r+sin19819 n 55) (_51:7-'-7)_0’ (14)
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where
_1ldlnp dlnp _ dlnp (y-1)F. T

= 3ydmr dinr T "dlnr F = Lpr2(dT/dr)’

Here we have taken into account that du*/dt = suv}/r, T*/T = —p*[p+p*/u. Actually, all
terms having an extra factor of order w?/Q? or h,/h, have been omitted in Eqs. (12)-(14).
However, we retain terms with a factor of order r2h,Q?/gh?.

Eqgs. (9), (12)—(14) constitute a system for the perturbation components v, B, and
p*. The boundary conditions are the following. Near the centre (under the condition that
b, # 0), the term with Q in Eq. (9a) is small for the perturbation in question. Near the
surface where p is small, this term is also small. Thus the boundary conditions are the same
as those in the absence of rotation, i.e., at the boundaries 9(v},/rsin9)/dr = 0.

When deriving Eq. (14) we assumed that the heat flux is proportional to VT. In the
convection zone where a < 0, this flux depends mainly on the entropy gradient. Let, for
instance, F;. be proportional to (—a)*, where a < 0, and X is a positive constant. Then, with

our approximation,
F? = (=ArF[/a)V(p*/p - p* /YD),

where the term p*/yp is negligibly small. We see that Eq. (14) holds true if we put s = 0,
and replace Qr by Qrc, where

Qrc = —(y — 1)AF;/vypra. (15)

3. Model with a radial steady magnetic field

A simple solution of the above equations may be found for the case of an idealized magnetic
field distribution: b = be,, where r2b, = const, and b, is positive (negative) if 9 < 7/2 (¢ >
7/2). In this case, the field direction abruptly reverses when the equator is crossed. Besides,
we retain in the equations only terms with the highest radial derivative of the perturbed
quantities, assuming the latitudinal derivative not to be large. For example, we replace the
operator L by Lo = 8*/0r*. In this approximation the term with 8v},/09 in Eq.(12) may be
omitted. The solution of Egs. (9), (12), and (13) may be expressed in the following form:

vy = [r*(1- %) /y] A (8 E/0rdy), (16)

vy = [r2(1 - v2)' /242Q) K (9E/drdy), (17)

vr = (r/20)(8/8y) {{(1 - v*)/s*) K (9E[dp)}, (18)
B}, = [r*b,Bo(1~4*)'""* [y] Lo (0E/dy), (19)
p*/p = (2r°Q/g) AL, (E), (20)

where K = r2b2Q% Lo— A(0/0t—vLo), A = 8/0t—vpLo,y = cosd, and E is a dimensionless
function of r,y, and ¢. Substitution of these expressions in the energy equation (14) yields

9 _ O 1=y’ L (OEN]_ 2(0 _ . 9E\ _
(aat sr QFLO) ay[ 7 K(ay)] | ™QrLy ) AL B =0. (21)
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Here q = 4rQ?/g.
One can see that the solution of this equation for one mode is

E(r,y,t) = Y(y)exp(ikr + iwt). (22)
Then 4 [1-g2dy
- -5%Y, 2
dy [ y? dy] 7 (23)

where j = const., while the frequency w satisfies a cubic equation studied in Vandakurov
(1988). In this paper Eq. (23) has also been investigated.
If v and vp are small, the stability condition is (Vandakurov, 1988)

%0 - 5) > 0, (24)

i.e., thermal dissipation in zones with a superadiabatic temperature gradient serves to self-
excite torsional modes with numerous nodes along the radius. In contrast, both ordinary
and magnetic viscosity tend to dampen these modes (Vandakurov, 1988).

4. Approximation of harmonic dependence of the perturbation on radius

The equilibrium magnetic field studied in the preceding section had a steplike change near
the equator. For a more realistic field distribution, one needs to solve the complicated system
of equations in partial derivatives. Since we study perturbations having many radial nodes,
the dependence on the boundary conditions becomes of small significance. Then, to form
a general concept of the stabilizing or destabilizing contribution of some layer, it seems
sufficient to use the approximation of harmonic radial dependence of the perturbation. Thus
we assume the perturbation to be proportional to exp(ikr+iwt), where k and w are constant.
Besides, we do not use the approximation that the latitudinal derivative of the perturbation
is much smaller than the radial one. Furthermore, we assume the equilibrium magnetic field
to be

by = 2cos 9, by = —fBsind. (25)
Here 8 = 81n(r?b,)/dInr, and |3/kr| < 1. Eliminating B}, from Eq. (9), we find

r262Q 2
(1+ 'BV sin” 19) lﬂgﬂm 1980W 2TVQ(w:+w,‘,‘cot0)—

-2 cotz?aW BrPw + /B 2kt QB [ﬂ ?1:7 — (2ikr cos® 9 + ﬂ)W] R (26)

a9

Qr 0 . 00 [ . KrQp
Daiar i igg = (1r g ) @+ am o @)
owy 00 | 2iwrQsind (. OW .
559 = 39 —(smﬂw—zkrcosﬂ W), (28)
1 0 -
0999 — sind w;, = —tkrwy, (29)
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where w* = v*/iwr, W = w},/sin9, @ = T*/T. Here we put vg = 0.

These equations are equivalent to six first-order differential equations for six variables:
W, aW /99, w:, w}, ©, and 90/dV. In the vicinity of the polar axis (¥ = 0, or ¥ = 7), the
following expansions are valid:

W=Wy+Wysin?d+..., wi=Vo+ Vasin?d+..., =00+ O,sin’d+..., (30)

where

. 2002 2
Wy = L [kz,,z (1 _ ‘M) Wo — K—Q(ikr -2) Vo] , (31)
8 wv v
_ w k%r QF
0, = 05 [(a -8V + ( + o ) 90] ) (32)
)
v, = % (92 + k'rng Wo) ] (33)

Thus the constants Wy, Vp, and @p remain undetermined. This fact permits us to construct
three independent solutions. The whole solution calculated with the initial point at 4 = 0
coincides with that found with the initial point at ¥ = = if at the equator (9 = 7/2) the
quantities OW/39, 00/9, and w} are zero. These conditions give three linear algebraic
equations for Wy, V;, and ©p. The condition that these three equations are solvable,

D(w) =0, (34)
provides an equation for the complex eigenvalue w.
5. The case of a chemically homogeneous medium

If s = 0, Egs. (26)-(29) need some modification. Differentiating Eqs. (26) and (27) with
respect to 9, and excluding (using also Eq. (28)) the derivatives 00/8¥¢ and dw} /99, we
find

e 41‘9291:' li] ow _
[7‘2 +< w ag 99 smﬂa sind 89

_ BRY  irQ0F\ |, 2_ 3_W
= 4kr ( » +—ag sin 19cos196051n19 619+

2
+ {Vk2 sin? 9 — 2kLQB (2tkr cos? 9 + 38)sin’ 9 +
4rQ

(919
- E(w + szZQF)] sin® 9 cos 9 W—

[(w + k2r?Qp)sin? 9 4 2ikrQp] sin 19} BW

+4ikr [2k'r 92

-9 [ikrw} sin 29 — 2w}y (sin® 9 - 2)] . (35)
Now Egs. (35) and (29) reduce to a system of four first-order differential equations for W,

sind W /99, sind (8/89)(sinv¥ §W/d¥), and w}. The velocity iwrw} in these equations is
determined by Eq. (26). The expansions in the vicinity of the polar axis turn out to be given
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by the first two expressions in Eq. (30), in which the constant W; is determined by Eq. (31).
One can see that the constants Vy and Wy are arbitrary, so by setting the variables 9W/39
and w} at the equator (¥ = 7/2) equal to zero, we find two equations for V5 and Wy. The
determinant D,.(w) of these two equations should be equal to zero, i.e., the equation for w is

D.(w)=0 (36)
6. Numerical study of the unstable modes

The excitation of the torsional wave observed on the Sun can occur due to the superadia-
baticity of the solar convection zone. In general the approximation that the perturbation
has a large number of nodes along the radial direction is not well-founded in the case of the
convection zone (Vandakurov, 1988). Nevertheless, some preliminary estimates can be made
using Egs. (35), (29), and (26).

We have carried out a numerical solution of these equations considering the convec-
tion zone as a chemically homogeneous medium with a superadiabatic temperature gra-
dient (@ < 0 ), with a turbulent viscosity, and, of course, with a convective thermal
conductivity. We choose the following values for the parameters: kr = 10, a = —107%,
v=13x102%cm? s~ !, Qpc = 5v, r = 6 x 101%m, 7 = 2 x 10°cm s~1, rQ%/g = 2 x 1073,
B =05,0% =9.72x 10~%ag, where ap is either equal to 1 or to 0.1. If p = 0.001 g cm 3,
these values of ap correspond to 6.6 G (if ap = 1) and 2.1 G (ap = 0.1). In the case of
smaller values of a.g, the computation becomes more time-consuming.

Complex solutions of Eq. (36) were found by the Newton method generalized to cover
the case of two-dimensional variables. We searched only for a solution with a positive real
part of the quantity ww. Such solutions imply instability. Note that attempts to find similar
solutions for the case of some models with positive values of a did not succeed.

It turns out that the dependence of D.(w) on some trial values of w is extremely compli-
cated, so the procedure mentioned is convergent only if the trial w-value is sufficiently close
to an eigen-solution. Under the conditions ¥5; = 0.006 and ap = 1, we found the solution
iw = (0.5285 — ¢ 0.0116) x 108 s~1, where ¥, is the initial value of the angle ¥. For other
small values of ¥4, the quantity iw may differ from the above value by several percent, and
fixing iw exactly appears to be rather troublesome. However, the latitudinal dependence
of the perturbation undergoes only minor changes during the procedure of making the fre-
quency w more accurate. The dependence of w} on latitude is shown in Figure 1. Here we
assume that at the pole (9 = 0) W is unity. In the region of 9 & 20° the perturbation
amplitude is very small (if ¥ = 90°, then w}, = 9 x 1079(1 + ), and the real (imaginary)
part of w}, goes through zero at ¥ = 74°(80°)).

The radial velocity v} has many nodes in the vicinity and to the left of the point ¥ = 9.,
where ¥, = 9°.1. This is because the coefficient in brackets on the left-hand side of Eq. (35)
is small. If 9 < 9., then the closer 9 is to Y., the larger is wy, with a maximum value as
large as —5220 + 1 2590. We do not know whether these large values of w} are consistent
with our approximations or not.

In the case that ap = 0.1 we found a solution iw = (0.08145—1 0.00538) x 1078 s~! which
apparently belongs to the same mode as that considered above. These solutions correspond
to nearly exponentially growing modes with a characteristic growth time of the order of
several years. Overstable modes are possible if there are zones in which the perturbation is
propagating. Thus the study of models having not only convective but also radiative zones
is needed.
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oo Figure 1. Real (solid curve) and imaginary

(dashed curve) parts of wy, the dimension-
less azimuthal displacement, as functions of
! L

s 500 700 7/2 — ¥, the latitude.
Latitude

Note in conlusion that the aforementioned nearly exponentially growing unstable mode
can coexist together with the torsional wave found by Howard and LaBonte (1980). We
suggest that this mode having large radial velocities in some zones near the poles is the
cause of the solar activity observed at high latitudes (Makarov and Sivaraman, 1989). We
may relate the existence of such a mode to the weak polar poloidal magnetic fields whose
direction reverses periodically. Then the growth of the instability is supposed to begin after
the new polar fields have formed. The growth time can be smaller than the cycle duration
if the parameter Qp is larger than in the previous examples.
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