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Surfaces with pg = q = 2
and an Irrational Pencil

Francesco Zucconi

Abstract. We describe the irrational pencils on surfaces of general type with pg = q = 2.

Introduction

Many authors have contributed to an explicit description of surfaces with small in-

variants. However if pg and q are the dimensions of the vector space of global holo-

morphic 2-forms and respectively 1-forms, even the classification of surfaces with

pg = q = 2 is not completed yet.

In [CCM, Theorem B, Theorem 3.23] the case with pg = q = 3 was partially

done and two families were found: one is given by the symmetric product of a genus

3 curve, the other is obtained by the G = Z/2-diagonal action on the product F ×C

of two genus-3 curves such that F/G is an elliptic curve and C/G has genus 2. In this

last case the surfaces have an irrational pencil; i.e. a fibration over a curve of genus

> 0. Recently [Pi], [HP] have ended the classification showing that those families are

the only ones.

The state of the art for surfaces with pg = q = 2 can be found in [Ci] and [CM].

Here we only remind the reader that two main cases occur according to the behaviour

of the Albanese morphism α : S → Alb(S) = A. In fact α can be surjective, and in

this case S is said to be of Albanese general type, or it induces a fibration over a genus 2

curve C contained in A. By analogy with the case pg = q = 3, Catanese proposed the

following question about surfaces X of Albanese general type with pg = q = 2: if X

has no irrational pencil is it true that X is the double cover of a principally polarized

Abelian surface branched on a divisor D linearly equivalent to 2Θ? We have been

informed by e-mail that A. J. Chen and C. D. Hacon have constructed an example of

a minimal surface of general type with pg = q = 2 and K2 = 5, hence the problem

has a negative answer.

In any case following that analogy, we were concerned on the other side of the

theory. In fact we classify all surfaces of general type with pg = q = 2 carrying on an

irrational pencil. The main result is:

Theorem [A] Every irrational pencil over a surface of Albanese general type with pg =

q = 2 is isotrivial if the genus of the curves of the pencil is > 2.

It relies on the famous result by Simpson [Sim, Theorem 4.2 p. 373] about the lo-

cus V 1(X) = {L ∈ Pic0(X) | h1(X,−L) ≥ 0} of an irregular variety X. In [Z1] there
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is an application to surfaces theory of this important technique, which we have fol-

lowed almost verbatim to prove the basic Lemma 2.3; incidentally [HP] has a similar

approach. Then we have studied irrational isotrivial pencil of genus g > 2 obtaining:

Theorem [B] A surface S of Albanese general type with pg = q = 2 has an irrational

isotrivial pencil of genus g > 2 if and only if it is the minimal desingularization of

C1 × C2/G where G = Z2 × Z2, C1, C2 have genus 3, C i → Ei = Ci/G is a Galois

covering branched over two points of the elliptic curve Ei and G acts diagonally. In this

case the general fiber F of the canonical morphism is obtained by the smoothing of two

curves of genus 3 which intersect in four points, then it has genus 9.

This theorem needs the theory showed in [Ca] and [Z2] to deal with isotrivial

fibrations.

The theory is very simple when over S there is an irrational pencil of curves of

genus 2. In fact S manifests itself as a double covering of the product of two elliptic

curves E1 × E2 = Y branched over a reduced divisor D ∈ |2π?1(P1) + 2π?2(P2)|,
where πi : Y → Ei are the natural projections, Pi is a point of Ei and i = 1, 2. More

precisely:

Proposition [C] A surface S of Albanese general type with pg = q = 2 has an irra-

tional pencil of curves of genus 2 if and only if it is the normalization of the double cover

of Y branched along D. In particular the general fiber F of the canonical map is a curve

of genus 5.

To complete the theory we classify the surfaces not of Albanese general type with

pg = q = 2. In this case the Albanese morphism induces a fibration ψ : S → C ⊂
Alb(S) over a curve of genus 2 and ψ is an étale bundle with genus 2-fiber F. In

particular S is the quotient of C ′ × F by the diagonal G-actions where F/G = P
1

and C ′ → C = C ′/G is étale. Then our study relies on the Bolza classification

in [Bl] of G-actions on a genus-2 curve and the wanted description of all the irra-

tional pencils is finished in Theorem 4.32. We like to point out that surfaces with

pg = q = 2 not of Albanese general type are the first occurrences of the concept

of G(eneralized)H(yperelliptic)-Surface studied in [Ca], [Z3]. In particular our final

Proposition 4.2 follows by the clear description of the irreducible components of the

moduli space of GH-surfaces given in [Ca, Theorem B].

It is a pleasure to take this opportunity to thank Fabrizio Catanese who helped

me to write a modern proof of the Bolza’s classification. I also thank Ciro Ciliberto

for the encouragement to write this article and Gian Pietro Pirola for an enlighten-
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colleagues of D.I.M.I. in Udine for the extension of my leave and to the people of De-

partamento de Matemàtica Aplicada I de la Universitat Politècnica de Catalunya, where

I wrote this article, for the invitation to stay there during the Autumn 2001. Finally I

thank the unknown referee whose comments helped me to write the final version of

this paper in a hopefully readable version.
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1 Notation and Vocabulary

Let X be an algebraic variety of dimension n. Let Ω1
X , ω⊗m

X be the sheaves of holo-

morphic 1-forms and respectively the m-tensor power of the holomorphic n-forms.

The graded ring
⊕∞

m=0 H0(X, ω⊗m
X ) is called the canonical ring of X and the tran-

scendency degree of its function field over C is the Kodaira dimension of X which

is denoted by Kod(X). If Kod(X) = dimC(X) = n then X is said to be a variety of

general type; essentially this means that there exists an m such that the map φm : X →
P
(

H0(X, ω⊗m
X )∨

)

is birational over its image. The numbers q = dimC H0(X,Ω1
X),

and Pm = dimC H0(X, ω⊗m
X ) are called the irregularity and respectively the m-

plurigenera of X. If q > 0, X is called an irregular variety. In the case of an algebraic

surface, thanks to its special role, P1 = dimC H0(S, ωS) is called also geometrical genus

and it is traditionally denoted by pg . The basic invariants of S are the Euler-Poincaré

characteristicχ(S) = pg−q+1 and the number K2
S which is the autointersection of the

canonical class KS. In our paper, S will be a surfaces of general type with pg = q = 2.

In particular χ(S) = 1.

A fibration f : X → Z is a morphism with connected fiber F over a smooth variety

Z. In the case of a surface, a fibration f : S → B is also called g(B)-pencil of genus g

due to the fact that B is a smooth curve an it is custom to denote by g the genus of the

smooth fibers. If g(B) > 0, f is also called irrational pencil and if B is an elliptic curve

sometimes f has been called elliptic pencil even if this can be ambiguous because one

could think it refers to the genus g of the fibers, but in our case g is always > 1. A

fibration is called relatively minimal if there are no −1-curves contained in a fiber.

The dualising sheaf ωS⊗ f ?ω∨
B is the main tool to study a relatively minimal fibration

and the number

χ f = χS −
(

g(B) − 1
)

(g − 1) = deg f?(ωS ⊗ f ?ω∨
B )

is one of the most important invariants. A fibration f : S → B is said to be isotrivial

if there exist a Galois base change C → B such that the pull back of f can be relatively

blown down to a product projection C × F → C .

The variety A = Alb(X) = H0(X,Ω1
X)∨/H1(X,Z)/Tors is the the Albanese variety

of X and it turns to be an algebraic tori; we refer to [Be1, p. 81-86] for the main

facts about A. Here we only recall that for an irregular variety it remains defined

by integrations of the 1-forms along the paths inside X a map α : X → A called

the Albanese morphism. For a surface S, α can be only generically finite over its image

α(S) and in this case S is called of Albanese general type orα(S) = C is a smooth curve

of genus q and the fibres of α are connected cf. [Be1, Proposition V.15]. If pg = q = 2

then A is an algebraic 2-dimensional tori and α(S) = A or α(S) = C ⊂ A where C is

a smooth curve of genus 2.

2 Irrational Pencils Are Isotrivial

From the theory of fibrations we will use the following proposition.

Theorem 2.1 Let S be a smooth surface of general type and let f : S → B be a fibration

with general fiber F of genus g ≥ 2 over a curve B of genus b. Then χ f ≥ 0. Moreover
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χ f = 0 if and only if f is isogenous to a product i.e. there exists an unramified base

change B ′ → B such that the fiber product S×B B ′ is fiberwise isomorphic to the product

F × B ′.

Proof See [Be2].

We have two different cases for surfaces with pg = q = 2.

Lemma 2.2 Let S be a surface of general type with pg = q = 2. Then S is of Albanese

general type or the Albanese morphism induces an étale bundle φ : S → C ⊂ A with

fiber F of genus 2.

Proof Assume that α is not generically finite. Then by [Be1, Proposition V.15] there

exists a genus 2 curve C ⊂ A and a fibration φ : S → C which factorizes α. Let g be

the genus of the smooth fibers of φ. Since Kod(S) = 2, by Noether-Enriques theorem

cf. [Be1, Théorème III.4] and by [Be1, Proposition IX.3] g ≥ 2. By Theorem 2.1,

1 = χ(S) ≥ g −1. Then g = 2 and χ f = 0. By Theorem 2.1 it follows that φ : S → C

is an étale-bundle.

From now on in this section S will be a surface of general type with pg = q = 2

whose Albanese morphism α : S → Alb(S) is surjective.

Lemma 2.3 Let S be a surface of Albanese general type with pg = q = 2. Let φ : S →
B be a fibration of genus g. If the genus b of B is > 0 then b = 1 and

φ?ωS = L ⊕ OB

g−2
⊕

i=1

OB(ηi)

where ηi ∈ Tors
(

Pic0(B)
)

, ηi 6= 0, i = 1, . . . , g − 2 and L is an invertible sheaf of

degree 1.

Proof If b = 2 then S is not of Albanese general type by the universal property of

α, cf. [Be1, Remarques V.14 (2)]. Then B is an elliptic curve. By [Fu, Theorem 3.1

p. 786], φ?ωS = OB ⊕ F where F is a nef locally free sheaf of rank g − 1 such that

h0(B,F∨) = 0. Let F =
⊕k

i=1 Fi be the decomposition into indecomposable subvec-

torbundles. Since pg = 2, h0(B,F) = 1. Then by Riemann-Roch on B, deg F = 1.

Let L be the smallest subvectorbundle of F containing the subsheaf generically

generated by H0(B,F). In particular h0(B,L) = h0(B,F) = 1, deg L > 0 and it has

rank 1; that is L is an invertible sheaf of degree 1.

Claim Up to reordering the Fi ’s, it holds that L = F1.

⊂: The inclusion J : L ↪→ F gives for each factor the morphism πi ◦ J = Ji : L → Fi .

Set Ji(L) = Li and let di = deg Li . If Li 6= 0 then di ≥ 1. Since 1 = h0(B,F) ≥
∑k

i=1 di then, up to reorder, we have d1 = 1, di = 0 and Li = 0 where i = 2, . . . , k.
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⊃: By contradiction. Assume that F1 6= L. By definition of L the quotient F1/L is

locally free. Let

F1/L =

m
⊕

i=1

F1,i

be a direct sum of its indecomposable components. Note that: deg F1,i = 0. Then

H1

(

B,L ⊗
(

m
⊕

i=1

F1,i

)∨)

=

m
⊕

i=1

H1
(

B,L ⊗ (F1,i)
∨)

=

m
⊕

i=1

H0(B,L∨ ⊗ F1,i) = 0.

(1)

Now (1) and [Ha, III.6.2] imply that

0 → L → F1 →
m
⊕

i=1

F1,i → 0

splits: a contradiction, since F1 is indecomposable.

Claim F j ∈ Tors
(

Pic0(B)
)

\ {0} if j = 2, . . . , k.

By Atiyah classification of vector bundles over an elliptic curve, [At], for the rank

2 case cf. [Be1, Proposition III.15(ii)] we have F j = Fr j
⊗ T j where the rank-r j

sheaves Fr j
are obtained inductively through non trivial extensions by OB. Besides

T j ∈ Pic0(B). We want to prove that T j is torsion and r j = 1.

First Step: T j is Torsion Let Λ ∈ Pic0(B) \ {0}. By the Serre duality and by the

projection formula it holds:

(2) h2
(

S,KS + φ?(Λ)
)

= h0
(

S,−φ?(Λ)
)

= h0(B,−Λ) = 0.

By the Leray spectral sequence for the morphism φ,

h1
(

S,KS + φ?(Λ)
)

= h1(B,Λ) ⊕ h1(B,L ⊗ Λ)

n
⊕

j=1

h1(B,F j ⊗ Λ) + h0(B,Λ).

Then by Riemann-Roch on B and by relative duality we have:

(3) h1
(

S,KS + φ?(Λ)
)

=

n
⊕

j=1

h1(B,F j ⊗ Λ).

Choose Λ = −Ti where 2 ≤ i ≤ k. Then we have a jump in cohomology and by

the Simpson solution of the Beauville-Catanese conjecture [Sim, Theorem 4.2 p. 373

and Section V], we have that Ti are torsion sheaves.
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Second Step: r j = 1 Only for clarity reasons we assume that the torsion sheaves are

of relative prime order. By contradiction assume that there exists 2 ≤ i ≤ k with

ri > 1.

Let τi : Ei → B be the unramified covering given by Ti and denote by fi : Si =

S ×B Ei → Ei and by σi : Si → S the two projections. Then τ ?i Fi = Fri
, ωSi

=

σ?i ωS and fi?σ
?
i ωS = τ ?i φ?ωS. In particular, Fri

is a direct summand of fi?ωSi
. Then

h1(Ei , fi?ωSi
) = 2. By the just quoted result in [Fu], OB must be a direct summand of

fi?ωSi
; this forces Fri

to be decomposable: a contradiction.

Corollary 2.4 Any irrational pencil over S is an elliptic pencil of genus 2 ≤ g ≤ 5.

Proof By Stein factorization, every irrational pencil gives an elliptic fibration; choose

φ : S → B one of these fibrations. Following Lemma 2.3 even in the notation, we

have a direct summand L ↪→ φ?ωS where L is an invertible sheaf of degree 1. Then

there exists a section of L which vanishes only over one point P ∈ B. Then by

Xiao’s method cf. [BZ], it follows that KS − D is nef where D = φ−1(P). Then

(KS−D)KS ≥ 0. In particular by Miyaoka’s inequality 9χ(S) ≥ K2
S it follows 9 ≥ KSD

since χ(S) = 1. The genus b > 0, then D2 = 0 and now the inequality 2 ≤ g ≤ 5

easily follows by the adjunction formula.

By the universal property of the Albanese morphism once we have an elliptic pen-

cil f1 : S → E1 it follows that the Albanese surface A is isogenous to a product of

elliptic curves E1 × E ′
2. In particular there exists a map h2 : S → E ′

2. By the Stein

factorization of h2 we find a fibration f2 : S → E2 where E2 → E ′
2 is obviously an

unramified covering. So we can introduce the following number:

N = min{m | m = deg(A → E1 × E2)}

an we will call the set {( f1, E1), ( f2, E2)} a good couple if E1×E2 realizes the minimum

N where f1 and f2 are the induced fibrations.

Corollary 2.5 If S has an elliptic pencil f1 : S → E1 then there exists a good couple

{( f1, E1), ( f2, E2)}.

Proof Trivial.

Definition 2.6 The two elliptic fibration fi : S → Ei , i = 1, 2 associated to a good

couple will be called natural fibrations of S. Moreover Fi will denote the general fibre

of fi and gi will denote the genus of Fi where i = 1, 2.

For further reference we sum up some results on irrational pencils:

Proposition 2.7 If {( f1, E1), ( f2, E2)} is a good couple then 2gi − 2 ≥ F1F2 where

i = 1, 2.
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Proof By the proof of Corollary 2.4 we know that KS − F1 is nef. Then 2g1 − 2 =

KSF1 ≥ F2F1. The same holds with 1 and 2 interchanged.

The following theorem shows that the Jacobians of the smooth fibers of an irra-

tional pencil f1 : S → E1 dominate a fixed Abelian variety of dimension g1 − 1; under

our hypothesis this forces isotriviality if g1 > 2.

Theorem 2.8 Every elliptic fibration with fiber of genus g > 2 over a surface with

pg = q = 2 is an isotrivial pencil.

Proof Let f1 : S → E1 be one of the two natural fibrations of Definition 2.6 and

assume that g1 > 2. By Lemma 2.3 it holds:

(4) f1?ωS = L ⊕ OE1

g−2
⊕

i=1

OE1
(ηi)

where ηi ∈ Tors
(

Pic0(E1)
)

\0 and L is an invertible sheaf of degree 1. Let σ : E → E1

be the unramified base change given by lcm{ηi}g−2
i=1 . X = S ⊗E1

E is connected. Let

ψ : X → E, τ : X → S be the projections. It is easy to see that from (4):

(5) ψ?ωX = τ ?L ⊕
g−1
⊕

i=1

OE.

By [Fu, Theorem 3.1] it follows that q(X) = g. By the universal property, the Jacobian

over the smooth fiber has a surjection µt : J(Ft ) → A where t ∈ E, Ft is smooth and

A is a fixed Abelian subvariety of Alb(X). In particular, up to isogenies over A, there

exists an elliptic curve Et ↪→ J(Ft ) such that

(6) 0 → Et → J(Ft ) → A → 0

is exact. Now if Et is independent of t then the Abelian variety rigidity imply that

J(Ft ) is fixed. Then the smooth fibers are isomorphic. This means that f1 is isotrivial.

Assume that the Et ’s are a non constant family. By Proposition 2.7 the generic

smooth Ft is equipped with two morphisms: Ft → E2, Ft → Et where E2 is the

fixed elliptic curve which is the basis of the other natural fibration f2 : S → E2. Since

Et moves in a continuous family, the induced morphism into the product νt : Ft →
E2×Et is an immersion. By adjunction, it easily follows that ρa(Ft ) ≥ 5. In particular

Ft → E2 is a 2-to-1 morphism. The same argument works interchanging the role

between f1 and f2. Then S → E1 × E2 is a generically finite 2-to-1 covering whose

branch locus ∆ ∈ |2δ| satisfies the conditionsδ(E1 × {y}) = 4, δ({x} × E2) = 4

where x ∈ E1 and y ∈ E2. On the other hand δ2 ≤ 2 since 9 ≥ K2
S ≥ 4δ2. It is easy

to see that δ does not exist.

We have shown Theorem [A]. For further use we prove:
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Proposition 2.9 Every surface S of Albanese general type with pg = q = 2 equipped

with an irrational pencil with fiber of genus g > 2 can be realized as the minimal

desingularization of the quotient surface X/G, where X = B1 × B2, G acts diagonally

over X and faithfully over the smooth curves B1, B2. Moreover B1/G = E1, B2/G = E2

where E1, E2 are the elliptic curves of a good couple.

Proof By Stein factorization the pencil induces on S an elliptic fibration. By The-

orem 2.8 and by [Ca, Proposition 3.15] the claim follows since the two pencils are

distinct.

3 Elliptic Isotrivial Pencils

By Proposition 2.9 the classification task is reduced to classify all the Galoisian G

actions over curves B1 and B2 of genus at most 2 ≤ bi ≤ 5, i = 1, 2 such that

the quotient curves B1/G = E1, B2/G = E2 are elliptic and the diagonal G action

over X = B1 × B2 has quotient with pg = q = 2. We have a linear representation

G → GL
(

H0(B1, ωB1
)
)

cf. [Se, Cap.2]. We decompose H0(B1, ωB1
) into the direct

sum of the irreducible representations and we group the isomorphic representations.

Let G? = {χ1, . . . , χh} be the set given by the characters of the irreducible repre-

sentations of G and let V (1)
χ be the direct sum of the irreducible representations with

character χ. We do the same for B2.

Lemma 3.1 Every surface S of Albanese general type with pg = q = 2 equipped

with an isotrivial pencil can be realized as the minimal desingularization of a quotient

surface X/G if and only if there exists a faithful G action on the two smooth curves B1,

B2 of genus 2 ≤ bi ≤ 5, i = 1, 2 such that for the two decompositions H0(B1, ωB1
) =

⊕

χ∈G? V (1)
χ , H0(B2, ωB2

) =
⊕

χ∈G? V (2)
χ it holds that there exists a unique nontrivial

character χ with V (1)
χ ⊗ V (2)

χ−1 6= 0. Moreover the following two numerical conditions

hold:

1) dimC V (1)
id = dimC V (2)

id = 1 and

2) dimC V (1)
χ = dimC V (2)

χ−1 = 1.

Proof The direct proof is easy; otherwise it follows as in cf. [Z2, Lemma 1.3] and

[Z2, Theorem 1.4].

We need to compute the G-actions over F where 2 ≤ g(F) ≤ 5 and F/G is elliptic.

Lemma 3.2 Let π : F → E be a Galois morphism with group G such that E is an

elliptic curve and F has genus 2 ≤ g ≤ 5. Then the occurring actions are listed in

appendix [I], where V i
χ means that the χ-piece of H0(F, ωF) has dimension i. We have

denoted by U 2, U 2
i the irreducible subspaces of dimension 2 for the S3-representations

and for the D4-representations only (two of) the linear characters occur.

Proof It is an application of the Riemann Hurwitz formula plus a careful analysis on

the action over the branch loci. We stress that by Riemann-Hurwitz G is of order≤ 8.
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Here we show how the quaternion actions over a genus 5 curve with elliptic quotient

can be excluded. In fact the orbifold exact sequence cf. [Ca, Definition 4.4] for these

actions is:

0 → π(F) → 〈a, b, x, y | x2
= y2

= xy[ab] = 1〉 µ→ H → 0

where H is the quaternion group. Since H has only one element of order 2, denote

it by −1, then µ : x 7→ −1 and µ : y 7→ −1. In particular [µ(a), µ(b)] = 1 and µ
cannot be surjective: a contradiction. Using the fact that the dihedral group of order

8, D4, has one normal subgroup of order 2 we can compute also this action.

Now the final step is to use Proposition 2.9 and Lemma 3.1 to construct the quo-

tient surface.

Construction To exclude the non Abelian cases it requires only to couple the possible

actions to see that it never happens that pg = q = 2. The computation for the Abelian

case can be easily done. The two solutions correspond to a Z2 diagonal action on

the product of two genus-2 curves and to a diagonal G = Z2 × Z2 action over the

product of two genus 3 curves; in this last case G acts on the two factors via the

action V 1
χ1

⊕ V 1
χ2

and respectively V 1
χ1

⊕ V 1
χ12

. A more geometrical construction can

be achieved following [Z2]. We have:

Theorem 3.3 There are only two classes MZ2
, MZ2×Z2

of Albanese general type sur-

faces with pg = q = 2 and with an isotrivial pencil. An element S ∈ MZ2
is the minimal

desingularization of the quotient surface B1 × B2/G where G = Z2, B1, B2 have genus

b1 = b2 = 2 and Bi → Ei = Bi/G is a Galois covering branched over two points of

the elliptic curve Ei . In this case the general fiber F of the canonical morphism is ob-

tained by the smoothing of two curves of genus 2 which intersect in two points, then it

has genus 5. An element S ∈ MZ2×Z2
is the minimal desingularization of C1 × C2/G

where G = (Z2)2, C1, C2 have genus c1 = c2 = 3 and Ci → Ei = Ci/G is a Galois

covering branched over two points of Ei . In this case the general fiber F of the canonical

map is obtained by the smoothing of two curves of genus 3 which intersect in four points,

then it has genus 9.

In particular we have proved Theorem [B] and Proposition [C].

4 Surfaces With pg = q = 2 and Non Surjective Albanese Morphism

In this section S will be a surface of general type with pg = q = 2 and with non

surjective Albanese morphism. We will show that the fibration given by Lemma 2.2

φ : S → C ⊂ Alb(S) is isogenous to a product cf. Theorem 2.1 and that S is a

Generalized Hyperelliptic surface. In fact these surfaces are baby examples of GH-

surfaces.

Generalized Hyperelliptic Surfaces The following definition is in [Ca], see also

[Z3]. Let C1, C2 be two smooth curves with the corresponding automorphisms
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groups: Aut(C1), Aut(C2). Let G be a non trivial finite group G with two injections:

G ↪→ Aut(C1), G ↪→ Aut(C2).

Definition 4.1 The quotient surface S = C1 × C2/G by the diagonal action of G

over C1 ×C2 is said to be of Generalized Hyperelliptic type (GH) if

(i) the Galois morphism π1 : C1 → C = C1/G is unramified;

(ii) the quotient curve C2/G is isomorphic to P
1.

Proposition 4.2 If S is not of Albanese general type with pg = q = 2 then S is GH.

Proof By Lemma 2.2 we know that α : S 7→ Alb(S) induces a fibre bundle of genus 2

over a curve C of genus 2: φ : S → C ⊂ Alb S. Now let us call C2 the fiber of φ. Then

there exists a group G acting on two curves C1, C2 such that π1 : C1 → C1/G = C is

étale, g(C2) = 2 and the pull-back Y = C1×C S is isomorphic to C1×C2. In particular

g(C1) > g(C) = g(C2) = 2 and G acts diagonally on Y . Then g(C2/G) = 0 since

[S, Proposition 2.2] and S is GH.

The Viceversa of Proposition 4.2 holds in a strong form:

Proposition 4.3 Let C1, C2 and G as above. If g(C2) = 2, C2/G = P
1 and π1 : C1 →

C1/G = C is an étale morphism where g(C) = 2 then the quotient S = C1 × C2/G by

the diagonal action is a minimal smooth surface of general type with pg(S) = q(S) = 2

and non surjective Albanese morphism.

Proof Since G acts freely over C1 × C2 = Y then S is minimal, smooth, of general

type and χ(Y ) = nχ(S), K2
S = 1/nK2

Y being n the order of G. By Riemann-Hurwitz

g(C1) = n + 1 then pg(Y ) = 2(n + 1) and q(Y ) = n + 3; that is χ(Y ) = n. Then

χ(S) = 1 and by [S, Proposition 2.2] it follows pg(S) = q(S) = 2 since g(C) = 2. In

particular g(F/G) = 0. Let us consider the natural fibration S → C . Since

S
α

//

�� !!D

D

D

D

D

D

D

D

D

Alb(S)

��

C // J(C)

is commutative, then α is not surjective.

From Proposition 4.3 we can extract the following property which is a standard

feature of GH-surfaces.

Remark 4.4 Let S be a minimal surface with pg = q = 2 such that α(S) = C is a

curve. Then Alb(S) = J(C).

Notice that since S is GH, S → C2/G = P
1 is not the canonical map.

By Proposition 4.3 we have the following classification criteria
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Remark 4.5 To classify S is equivalent (i) to classify all the G actions over a genus

2 curve C2 such that C2/G = P
1 and (ii) for each occurrence of G in (i) to classify all

the étale morphisms π1 : C1 → C1/G = C where g(C) = 2.

We give a modern way to solve (i) and so we will have a classification of S following

[Ca, Theorem B].

The classification of all the couples (C,G) where C is a curve of genus 2 and G

is a subgroup of Aut(C) was obtained by Bolza [Bl]. However, probably because

he assumed it to be trivial (at least for our understanding of his proof) he did not

specify the different dihedral actions. In every case we rewrite it again because we

adopt a completely different approach which should be generalizable to the other

hyperelliptic curves and also because we give a recipe to compute easily each action.

Weighted Projective Spaces Let C be a curve of genus 2. By the embedding C ↪→
Proj(R) where R =

⊕

m≥0 H0(C, ω⊗m
C ), C can be seen as an hypersurface C =

Proj(R) of the weighted projective space P(1, 1, 3) = Proj C[x0, x1, z] where x0, x1

have degree 1 and z has degree 3. We want to find explicitly the action of Aut(C) over

Proj(R). This description requires some well known facts that we recall since they

can be useful for further generalizations.

The genus 2 curve C is the normalization of the projective closure C̄0 ⊂ P
2 of C0 =

{(x, y) ∈ A
2 | y2 = β(x)} where β ∈ C[x], deg β = 6 and it has 6 distinct roots.

Let ν : C → C̄0 be the normalization morphism then the hyperelliptic involution

i : C → C is induced by the affine automorphism (x, y) → (x,−y) and

(7) ω0 = ν?
dx

y
, ω1 = ν?x

dx

y

give a basis of H0(C, ωC ). Set η = ν?y( dx
y

)3. Then

(8) 〈ω3
0 , ω

2
0ω1, ω0ω

2
1 , ω

3
1 , η〉

is a basis of H0(C, ω⊗3
C ). By (7) it holds

i?ω0 = i? ◦ ν? dx

y
= ν? ◦ i?

dx

y
= −ν? dx

y
= −ω0

and in the same way i?ω1 = −ω1. In particular if ρ : Aut(C) → GL
(

H0(C, ωC )
)

is the natural faithful representation we have that ρ(i) = − Id and i commutes with

every g ∈ G. By the tricanonical morphism there is also a faithful representation

ρ3 : Aut(C) → GL
(

H0(C, ω⊗3
C )
)

.

Lemma 4.6 The hyperelliptic involution i is in the center of Aut(C). The action of i

splits:

H0(C, ω⊗3
C ) = S

3H0(C, ωC ) ⊕ ηC.

Moreover the decomposition is preserved by every g ∈ Aut(C).

https://doi.org/10.4153/CJM-2003-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-027-8


660 Francesco Zucconi

Proof We have just seen that i is central. Obviously i?(ωs
0ω

j
1) = −ωs

0ω
j
1 with s +

j = 3 and i?η = η; and then we have the claimed decomposition for i. Let g ∈
Aut(C) we want to show that g?η = χ(g)η, where χ : Aut(C) → C is a character of

Aut(C). By (8), g?η =
∑

i+ j=3 ai jω
i
0ω

j
1 + χ(g)η. Since g?η = g?i?η = i?g?η then

∑

i+ j=3 ai jω
i
0ω

j
1 + χ(g)η = −

∑

i+ j=3 ai jω
i
0ω

j
1 + χ(g)η; that is ai j = 0 for every i, j.

Let us consider P(1, 1, 3) = Proj(c[x0, x1, z]). The map

j : R → C[x0, x1, z]
(

z2 − β(x0, x1)
)

defined by ω0 7→ x0, ω1 7→ x1 η 7→ z is an isomorphism; that is C = Proj(R) = C6 ⊂
P(1, 1, 3). In particular, by j, we can fix once for all an identification GL(2,C) ∼
GL(R1). Thanks to the interpretation of C as an hypersurface in P(1, 1, 3) we have

another description of H0(C, ωC ) and of H0(C, ω⊗3
C ).

Lemma 4.7 If C ⊂ P(1, 1, 3) and ω is the regular differential induced by x0dx1 −
x1dx0 then:

(i) H0(C, ωC ) = {(ω
z

)P1(x0, x1) | P1(x0, x1) ∈ j(R), deg(P1) = 1};

(ii) H0(C, ω⊗3
C ) = {(ω

z
)3P3(x0, x1, z) | P3(x0, x1, z) ∈ C[x0, x1, z], deg(P3) = 3}.

Proof A local computation.

Corollary 4.8 Via the identification GL(2,C) ∼ GL(R1) it holds:

(i) If G ⊂ Aut(C) then G ⊂ GL(2,C);

(ii) If 〈i〉 is the group generated by the hyperelliptic involution then 〈i〉 = {Id,− Id};

(iii) G acts over z by the character χ = det.

Proof Trivial exercise in representation theory.

Corollary 4.9

(i) χ(i) = 1.

(ii) G acts over β via the character λ = χ2 = det2.

Subgroups of GL(2,C) We have seen that G ⊂ GL(2,C). Let GL(2,C)
π→

P GL(2,C) be the canonical projection, π :
(

a b
c d

)

7→
[(

a b
c d

)]

and we set K = π(G).

We consider the following exact sequences:

0 → ∆ → GL(2,C)
π→ P GL(2,C) → 0(9)

0 → {± Id} → SL(2,C)
π1→ P GL(2,C) → 0.(10)

By Corollary 4.8 we can write Aut(C) ⊂ GL(2,C). In particular Aut(C) ∩ ∆ =

{± Id} and this is a motivation for the following definition.
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Definition 4.10 Let K be a subgroup of P GL(2,C). Let G be a subgroup of

GL(2,C). G is said to be extendable if

0 → {± Id} → G
π→ K → 0

is exact, and G is said to be non-extendable if π|G : G → K is an isomorphism.

Let B = {(x0, x1) ∈ P
1 | β(x0, x1) = 0}.

Remark 4.11 Let G ⊂ Aut(C) and K = π(G). It holds (1) G is extendable iff

i ∈ G; (2) B is K-invariant.

Obvious.

The finite subgroups K ⊂ P GL(2,C) are well known [Kl], and it is easy to find

the K-invariant polynomials β.

Then we will show that the data K and β uniquely determine an extendable group

G acting on C .

Proposition 4.12 Let K ⊂ P GL(2,C) be a finite subgroup and B = {β(x0, x1) = 0}
a K-invariant reduced divisor of degree 6. There exists a unique G ⊂ GL(2,C) such

that

(i) G is a group of automorphisms of C[x0,x1,z]
(

z2−β(x0,x1)
) and

(ii) G is extendable.

Proof. Unicity If G1,G2 ⊂ GL(2) satisfy the claim and h1 ∈ G1 − G2, there exists

h2 ∈ G2 such that πh1 = πh2, since K = πG1 = πG2. But i ∈ G1 ∩ G2, then

h1 = ih2 ∈ G2: a contradiction.

Existence By (10) we have:

(11) 0 → {± Id} → K̂
π1→ K → 0.

Using the K-invariance of B, define λ : K̂ → C
? by

(

π(k̂)
) ?

(β) = λ(k̂)β. Since

deg(β) is even, λ descends to the quotient K =
K̂

{± Id} and we will not distinguish

this latter character from λ.

Define

(12) G =
{

±
√

(

λ(k)
)−1

k̂ | k̂ ∈ K̂, k = π(k̂)
}

.

G is the claimed group. Notice that G ⊂ GL(2,C) and G is a group. We can write the

G-action over R:

(13)















g(x0) = ±
√

(

λ(k)
)−1

k(x0)

g(x1) = ±
√

(

λ(k)
)−1

k(x1)

g(z) =
(

λ(k)
)−1

z = det(g)z
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where g = ±
√

(

λ(k)
)−1

k̂. It remains to prove that

0 → {± Id} → G
π→ K → 0

is exact. By definition π is surjective. Let g ∈ ker π. By (12) there exists k̂ ∈ K̂

such that g = ±
√

(

λ(k)
)−1

k̂. Then k̂ = ± Id; in particular λ(k) = 1 and it follows

g = ± Id.

Actually we have shown:

Theorem 4.13 The couples (C,G) where C is a fixed curve of genus 2 and G ⊂
Aut(C) is extendable are in bijection with the classes (K,B) up to Aut(P

1) where K ⊂
P GL(2,C) is a finite subgroup and B is a degree 6, K-invariant, reduced divisor.

We want to classify non-extendable groups. If G is non-extendable we need to

understand how G fits into G ′ = Aut(C). To this end, set K ′ = π(G ′), and restrict

(9) to G ′:

(14) 0 → {± Id} → G ′ π→ K ′ → 0.

Notice that in general it is not true that G ⊂ SL(2,C). We have to consider subgroups

K ⊂ K ′ and their liftings to G ′.

Definition 4.14 A subgroup K ⊂ K ′ is said to be of splitting-type if (π)−1(K) is

splitted (i.e. (π)−1(K) = K × {± Id}). Otherwise it is of non splitting type.

Obviously we have the following remarks that we write for further reference:

Remark 4.15 K is splitting if and only if there exist a lifting ε : K → G ′ such that

π ◦ ε = IdK . In particular K is splitting if and only if there exists a nontrivial homo-

morphism ε : K → {± Id}.

Remark 4.16 If G in (C,G) is non-extendable then K = π(G) is of splitting type.

On the other hand if G is extendable both cases for K = π(G) may occur. The

following case is easy to describe:

Remark 4.17 If G in (C,G) is extendable and π(G) = K is of splitting type then

G = K × {± Id}.

The following corollary gives the analogue of Proposition 4.12 for the non-extend-

able groups:

Corollary 4.18 Let K and B as in Proposition 4.12. The set of the couples (C, G)

where G is non-extendable is in bijection with the set of the liftings ε : K → Gs where Gs

is the unique extendable group constructed in the proof of Proposition 4.12 through the

data K and B.
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Proof Trivial.

If G is of splitting type there exists a lifting K
ε→ GL(2,C) and let us denote by

µ : K → C
? the character uniquely defined by the relation µ(k)β =

(

ε(k)
) ?

(β).

Proposition 4.19 The isomorphism class (K,B) up to Aut(P
1) induces (C,Gs) where

Gs is splitted if and only if there exists

(i) a lifting K
ε→ GL(2,C) and

(ii) a square root ν of the character µ associated to ε and β.

Proof Assume that the procedure described in Proposition 4.12 gives a splitted cou-

ple (C,Gs). By Remark 4.17, (i) follows. From the proof of Proposition 4.12 and by

ε : K → GL(2,C) we have that in (11)

(15) K̂ =

{

k̂ = ±
√

(

det
(

ε(k)
)

)−1

ε(k) | k ∈ K
}

.

Moreover the character λ to construct the claimed Gs is by definition

λ(k) =

(

det
(

ε(k)
)

)−3

µ(k).

By Proposition 4.12

Gs =

{

±
√

(

det
(

λ(k)
)

)−1

k̂ | k̂ ∈ K̂
}

,

then by the form k̂ in (15) it holds

±
√

(

λ(k)
)−1

√

(

det
(

ε(k)
)

)−1

ε(k)

= ±

√

(

(

det
(

ε(k)
)

)−3

µ(k)

)−1
√

(

det
(

ε(k)
)

)−1

ε(k)

that is, if we set ρ(k) =
√
λ(k) det(ε(k))−1 we can write the claimed square root

ν(k) =
det(ε(k))
ρ(k)

.

Viceversa Assume that (i) and (ii) hold. We define ρ(k) =
det(ε(k))
ν(k)

and the same

computation in reverse order shows that (ε) ′ = ρε is a lifting ε ′ : K → Gs. The by

Remark 4.15 Gs is splitted.

Bolza Classification In [Kl] Klein shows the finite groups acting on P
1:
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Group K order special orbits Order of K

Zn 1, 1 n Cyclic

Dn n, n, 2 2n Dihedral

A4 6, 4, 4 12 tetrahedral

S4 12, 8, 6 24 esahedral or octahedral

A5 30, 30, 12 60 Icosahedral or dodecahedral

Table 1

In our case B is a reduced K-invariant divisor then A5 does not occur. In the same

book we find the groups K̂ such that 0 → {± Id} → K̂ → K → 0 is exact:

Group K̂ Generator Relations

Z2n ζ =

(

eiπ/n 0
0 e−iπ/n

)

〈ζ | ζ2n = 1〉

Dn o Z2 ζ =

(

eiπ/n 0

0 e−iπ/n

)

, η =
(

0 i
i 0

)

〈

ζ, η
∣

∣

ζ2n
=η4

=1

ζn
=η2

η2ζ=ζη2

〉

Â4

ζ=1/2(i−1)
(

1 −i
1 i

)

η=(i+1)
(

i −i
−1 −1

)

〈

ζ, η
∣

∣

∣

ζ3
=η3

=ηζ4
=1

(ζη)2
=(ηζ)2

(ηζ)2ζ=ζ(ηζ)2

(ηζ)2η=η(ηζ)2

〉

Ŝ4

ζ=1/2(i−1)
(

1 −i
1 i

)

η= 1
√

2

(

i+1 0
0 1−i

)

〈

ζ, η
∣

∣

∣

ζ3
=η8

=ηζ4
=1

η4ζ=ζη)4

〉

Table 2

If one wants to look directly to the quoted book, notice that if K̂ = Â4 then, in the

book’s notation, we have:

ζη =

(

i 0

0 −i

)

, ηζ =

(

0 1

−1 0

)

while if K̂ = Ŝ4 then

η2
=

(

i 0

0 −i

)

, (ηζ)2
=

(

0 −i

i 0

)

, (ζη)2
=

(

0 −1

1 0

)

.

We have just noticed that the case A5 does not occur but it is not the unique one:

Lemma 4.20 The groups of Table 1 which give a couple (C,G) where G is extendable

are completely classified in Table 3.
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K G C

Z6 Z6 × Z2 z2 = x6
1 − x6

0

Z5 Z10 z2 = x0(x5
1 − x5

0)

Z4 Z8 z2 = x1x0(x4
1 − x4

0)

Z3 Z6 z2 = (x3
1 − x3

0)(x3
1 + x3

0)

Z2 Z4 z2 = (x2
1 − x2

0)(x2
1 − 4x2

0)(x2
1 − 9x2

0)

Z2 Z2 × Z2 z2 = x1x0(x2
1 − x2

0)(x2
1 − 4x2

0)

〈id〉 Z2 z2 = generic polynomial of degree 6

D6

〈

TU

∣

∣

∣

∣

T2 = U 6 = (TU )4 = 1

T(TU )2 = TU 2T

U (TU )2 = (TU )2U

〉

z2 = (x6
1 − x6

0)

D4

〈

TU
∣

∣

∣

T2 = U 8 = (U T)4 = 1

TU 4 = U 4T

〉

z2 = x0x1(x4
1 − x4

0)

D3 D6 z2 = (x3
0 − 2x3

1)(x3
1 − 2x3

0)

D3

〈

TU

∣

∣

∣

∣

T3 = U 4 = (TU )4 = 1

(TU )2 = U 2

TU 2 = U 2T

〉

z2 = (x6
1 − x6

0)

D2 Z4 × Z2 z2 = x0x1(x2
1 − 4x2

0)(x2
0 − 4x2

1)

D2 H z2 = x0x1(x4
0 − x4

1)

A4 Â4 z2 = x0x1(x4
0 − x4

1)

S4

〈

TU
∣

∣

∣

T3 = U 8 = (U T)2 = 1

TU 4 = U 4T

〉

z2 = x0x1(x4
0 − x4

1)

Table 3

Proof

First Step: To Find the Occurrences of β This is easy since for each K in Table 1 we

have to find which unions of orbits have order 6.

Second Step: To Find G By the first step we know B and K. The procedure described

in Proposition 4.12 gives the result. For example, we show how to obtain the extend-

able group associated to S4. In particular we will see that it is different from Ŝ4. Let

us consider Table 2. We find two generators of Ŝ4:

ζ = 1/2(i − 1)

(

1 −i

1 i

)

η =
1√
2

(

i + 1 0

0 1 − i

)

.
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The character λ, to start with Proposition 4.12, can be obtained by the following

game:

λ(ζ)β = (ζ)?(β) = β

λ(η)β = (η)?(β) = −β.

By construction, the solution is G =
{

±
√

(

λ(k)
)−1

k̂ | k̂ ∈ Ŝ4

}

and in G there are:

T = (ζ)2
= i/2(i − 1)

(

1 1

i −i

)

U = iη =
1√
2

(

i − 1 0

0 i + 1

)

.

Let H = 〈T,U 〉 be the subgroup generated by T and U . We want to show that

H = G. Obviously: H ⊂ G and U 4 = − Id. Then we can restrict (9) to H and it

gives K1 ⊂ P GL(2,C) such that

0 → 〈U 4〉 → H
π→ K1 → 0

is exact. The task is to show that K1 = S4. That is, we have to show that S4 ⊂ K1.

Set u = π(U ) and t = π(T). From Table 2 we have u = π(η) and t = π(ζ2). We

conclude by (10) restricted to S4.

Remark 4.21 The way we prove Lemma 4.20 gives an explicit description of the

extendable groups as subgroups of GL(2,C). They are listed in Table 4: see appendix

[II].

To end the classification we have to find which groups in Table 3 are splitted and

in the affirmative case to classify all the liftings ε : K → G such that C/ε(K) = P
1. It

requires only a few basic facts on curves theory: essentially that if C is a genus 2 curve,

G ⊂ Aut(C) and C/G is elliptic then G = Z2; this follows from the Hurwitz formula

and the easy monodromy argument that an Abelian covering over an elliptic curve

has at least two branch points. In some cases to find the splitted group Gs, instead of

Proposition 4.19, we can use a more direct argument.

Lemma 4.22 If K = A4 or K = S4 then K is non splitting.

Proof The proofs are similar. We only do the case K = S4. If S4 were splitting, then

the corresponding extendable group in Table 3 would be G = S4 × Z2; a contradic-

tion, because in G there is an element of order 8.

The Dihedral Case If K = Dn we like to consider two cases depending on the parity

of n.

Lemma 4.23 Let K = Dn, then K is splitting if and only if n is odd.
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Proof Dn ⊂ P SL(2) is given by:

〈[(

0 1

1 0

)]

,

[(

1 0

0 ξ

)]〉

.

If Dn
ε→ GL(2) is a lifting, the preimage of

[(

0 1
1 0

)]

is
{

±
(

0 1
1 0

)}

and every liftings

of
[(

1 0
0 ξ

)]

has the following form: ξ i
(

1 0
0 ξ

)

. By definition, ε is an isomorphism over

its image then the relation defining ε(Dn) forces

ξi

(

ξ 0

0 1

)

=

(

ξi

(

1 0

0 ξ

)

)−1

to hold. Then ξ2i+1 = 1, which has a solution if and only if n is odd.

By Lemma 4.23 and by Table 3 the case K = Dn splitting is achieved applying

Proposition 4.19 to K = D3. We recall:

Remark 4.24 If n is odd then Z2 is the group of Dn-linear characters.

Let D3
ε→ GL(2) be a lifting, for example:

ε

[(

1 0

0 ξ

)]

=

(

1 0

0 ξ

)

, ε

[(

0 1

1 0

)]

=

(

0 1

1 0

)

where ξ = e2iπ/3. There are two cases. If β = x6
1 − x6

0 the character µ induced by ε, β
is:

µ

(

1 0

0 ξ

)

= 1, µ

(

0 1

1 0

)

= −1.

By Remark 4.24, it does not exist a character ν such that ν2 = µ. In the other case

β = (x3
0 − 2x3

1)(x3
1 − 2x3

0), and we have

µ

(

1 0

0 ξ

)

= 1, µ

(

0 1

1 0

)

= 1.

We easily see that ν = 1 satisfy the condition of Proposition 4.19. If ε1 = det(ε)ε,
ε1 : D3 → D6 ⊂ GL(2) is a lifting and

ε1(D3) = G1 =

〈(

ξ 0

0 ξ2

)

,

(

0 −1

−1 0

)〉

.

To conclude the case D3 we need:

Remark 4.25 Let K ⊂ P GL(2,C) with a fixed lifting K
ε1→ GL(2,C). Then for

every lifting ε2 : K → GL(2,C) it holds ε2 = ρε1 where ρ is a character of K.
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Then by Remarks 4.25 and 4.24, we have another lifting ε2 = ρε1, with

ρ

[(

1 0

0 ξ

)]

= 1, ρ

[(

0 1

1 0

)]

= −1,

and

ε2(D3) = G2 =

〈(

ξ 0

0 ξ2

)

,

(

0 1

1 0

)〉

.

We sum up the dihedral case in the following lemma:

Lemma 4.26 If K = Dn is splitting then K = D3, β = (x3
0 − 2x3

1)(x3
1 − 2x3

0) and

there are two liftings εi : D3 → D6 ⊂ GL(2,C) where i = 1, 2 such that if Gi = εi(D3)

then C/Gi = P
1.

The Cyclic Case Even in the case K = Zn the behaviour depends on the parity.

Lemma 4.27 Let K = Zn with n odd. If G is the corresponding extendable group then

G = Z2n, and it is splitted. Moreover every lifting ε : K → G gives the same subgroup of

G and C/ε(K) = P
1.

Proof An easy computation with the cases n = 5, n = 3 in Table 3.

If n is even we have more cases.

Lemma 4.28 If n is even, K = Zn and B contains some special orbits then the corre-

sponding extendable group is non-splitted.

Proof The special orbit in B = {β = 0} is given by x0x1 = 0. By Table 1 and

Table 3 we have to consider only the case with n = 4 or n = 2. The cyclic subgroup

of P GL(2,C) is
〈[(

1 0
0 ξ

)]〉

, where ξ = e2iπ/n. Let ε
[(

1 0
0 ξ

)]

=
(

1 0
0 ξ

)

be a lifting.

Using the notation of Proposition 4.19, µ
[(

1 0
0 ξ

)]

= ξ. Then it does not exist a

character ν of Zn, such that ν2 = µ. By Proposition 4.19 we conclude.

By Table 3 we have only two cases to consider: (K,B) = (Z6, x
6
1−x6

0) and (K,B) =

(Z2, x
2
1 − x2

0)(x2
1 − x2

0)(x2
1 − x2

0).

Lemma 4.29 Let (K,B) = (Z6, x
6
1 − x6

0) then K is splitting and it has two liftings

εi : Z6 → Z12 ⊂ GL(2,C), i = 1, 2. Letting Gi = εi(Z6) it holds that C/Gi = P
1 and

G1 =

〈(

e2iπ/3 0

0 eiπ/3

)〉

, G2 =

〈(

−e2π/3 0

0 −eiπ/3

)〉

.

Proof An easy computation.
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Lemma 4.30 Let (K,B) = (Z2, x
2
1 − x2

0)(x2
1 − x2

0)(x2
1 − x2

0). Then K is splitting and

it has two liftings εi : Z2 → Z2 × Z2 ⊂ GL(2), i = 1, 2. Moreover if Gi = εi(Z2) then

C/Gi is an elliptic curve.

Proof The group Z2 × Z2 ⊂ GL(2,C) is G =
〈(

1 0
0 −1

)

,
( −1 0

0 1

)〉

. K is generated

by
[(

1 0
0 −1

)]

, and its two liftings are ±
(

1 0
0 −1

)

. Finally if H0 =
〈(

1 0
0 −1

)〉

and

H1 =
〈( −1 0

0 1

)〉

then x0, x1 in the canonical ring correspond to the invariant 1-forms

by H0 and respectively, by H1. In particular C/Hi has genus 1 where i = 0, 1.

The classification result is:

Theorem 4.31 Let C be a curve of genus 2 and let G ⊂ Aut(C) be a non trivial

subgroup such that C/G = P
1. There are only 21 types of couples (C,G). Moreover

15 have extendable type and they are listed in Table 3. The remaining 6 types are listed

below:

K ∼ ε(K) = G Gs generators of ε(K)

Z3 Z3 × Z2

(

e2iπ/3 0

0 e4iπ/3

)

Z5 Z5 × Z2

(

e2iπ/5 0

0 e4iπ/5

)

Z6 Z6 × Z2

(

e2iπ/3 0

0 eiπ/3

)

Z6 Z6 × Z/2

(

−e2iπ/3 0

0 −eiπ/3

)

D3 D6

(

0 −1

−1 0

)

,

(

e2iπ/3 0

0 eiπ/3

)

D3 D6

(

0 1

1 0

)

,

(

−e2iπ/3 0

0 −eiπ/3

)

Proof It follows from Lemmas 4.20, 4.22, 4.26, 4.27, 4.29, 4.30.

The full classification of the case with pg = q = 2 and S not of Albanese gen-

eral type would require to compute all the unramified G actions C1 → C1/G where

g(C1/G) = 2, for each occurrence of G mentioned in Theorem 4.31. We think that

the outcome is not worthy of the effort. However since S is GH, by [Ca, Theorem B],

[Ca, Theorem C] then we can say:

Theorem 4.32 Each irreducible component of the moduli space of surfaces with pg =

q = 2 and not of Albanese general type is given by M(Π, 4), the moduli space of surfaces

isogenus to a product with fundamental group Π, Euler number 4 and each component

is specified by a fixed isomorphism Π(S) → Π which fits into the exact sequence

0 → Π1(C1) × Π1(C2) → Π → G → 0

https://doi.org/10.4153/CJM-2003-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-027-8


670 Francesco Zucconi

such that the factors Π1(Ci) are normal in Π, the orbifold exact sequences of the coverings

C1 → C = C1/G, C2 → P
1 = C2/G,

0 → Π1(Ci) → Π(i) → G → 0

are such that there is no element of Π mapping in each Π(i) to an element of finite order

and G embeds in Out
(

Π(Ci)
)

= Aut
(

Π(Ci)
)

/ Int
(

Π(Ci)
)

by the above sequence

where i = 1, 2 and G is one of the groups classified in Theorem 4.31.

Appendix [I]

g G
⊕

χ∈G?\id V i
χ

2 Z2 V 1
−

3 Z2 V 2
−

3 Z3 V 1
χ ⊕V 1

χ2

3 Z4 V 1
χ ⊕V 1

χ3

3 Z2 × Z2 V 1
χ1
⊕V 1

χ12

4 Z2 V 3
−

4 Z3 V 1
χ ⊕V 2

χ2

4 Z2 × Z2 V 1
χ1
⊕V 1

χ12
⊕V 1

χ2

4 Z4 V 1
χ ⊕V 1

χ2 ⊕V 1
χ3

4 Z6 V 1
χ ⊕V 1

χ3 ⊕V 1
χ5

4 S3 U 2 ⊕W 1

4 S3 W 3

5 Z2 V 4
−

5 Z3 V 2
χ ⊕V 2

χ2

5 Z2 × Z2 V 2
χ1
⊕V 2

χ12

5 Z2 × Z2 V 2
χ1
⊕V 1

χ12
⊕V 1

χ2

5 Z4 V 2
χ ⊕V 1

χ2 ⊕V 1
χ3

5 Z4 V 2
χ ⊕V 2

χ3

5 Z5 ⊕4
i=1V 1

χi

5 S3 U 2
1 ⊕U 2

2

5 S3 U 2 ⊕W 2

5 S3 W 4

5 (Z2)3 V 1
χ1
⊕V 1

χ2
⊕V 1

χ3
⊕V 1

χ123

5 Z2 × Z4 V 1
χ1
⊕V 1

χ1χ2
⊕V 1

χ1χ2
2
⊕V 1

χ1χ3
2

5 Z2 × Z4 V 1
χ1
⊕V 1

χ2
⊕V 1

χ3
2
⊕V 1

χ1χ2
2

5 Z2 × Z4 V 1
χ2
⊕V 1

χ3
2
⊕V 1

χ2
⊕V 1

χ1χ2
2

5 Z8 V 1
χ ⊕V 1

χ3 ⊕V 1
χ5 ⊕V 1

χ7

5 D4 V 2
χ1
⊕V 2

χ12

Actions over a curve of genus 2 ≤ g ≤ 5 with elliptic quotient.
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Appendix [II]

K G generators of G

Z6 Z6 × Z2

(

e2iπ/3 0

0 eiπ/3

)

,

(

−1 0

0 −1

)

Z5 Z10

(

e3iπ/5 0

0 eiπ/5

)

Z4 Z8

(

eiπ/4 0

0 e3iπ/4

)

Z3 Z6

(

e−iπ/3 0

0 eiπ/3

)

Z2 Z4

(

eiπ/2 0

0 e−iπ/2

)

Z2 Z2 × Z2

(

1 0

0 −1

)

,

(

−1 0

0 1

)

〈id〉 Z2

(

−1 0

0 −1

)

D6

〈

TU

∣

∣

∣

∣





T2 = U 6 = (TU )4 = 1

T(TU )2 = TU 2T

U (TU )2 = (TU )2U





〉

(

0 −1

−1 0

)

,

(

e2iπ/3 0

0 eiπ/3

)

D4

〈

TU
∣

∣

∣

(

T2 = U 8 = (U T)4 = 1

TU 4 = U 4T

)〉 (

0 1

1 0

)

,

(

e3iπ/4 0

0 eiπ/4

)

D3 D6

(

0 1

1 0

)

,

(

−e−2iπ/3 0

0 −e2iπ/3

)

D3

〈

TU

∣

∣

∣

∣





T3 = U 4 = (TU )4 = 1

(TU )2 = U 2

TU 2 = U 2T





〉

(

0 i

i 0

)

,

(

e2iπ/3 0

0 e−2iπ/3

)

D2 Z4 o Z2

(

0 1

1 0

)

,

(

i 0

0 i

)

D2 H

(

0 i

i 0

)

,

(

i 0

0 −i

)

A4 Â4

ζ = 1/2(i − 1)

(

1 −i

1 i

)

η = (i + 1)

(

i −i

−1 −1

)

S4

〈

TU
∣

∣

∣

T3 = U 8 = (U T)2 = 1

TU 4 = U 4T

〉 T = (ζ)2 = i/2(i − 1)

(

1 1

i −i

)

U = iη =
1√

2

(

i − 1 0

0 i + 1

)

Table 4: Extendable groups as subgroups of GL(2,C).
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