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Abstract

The paper deals with six groups: the unitary, orthogonal, symplectic, Fredholm unitary, special
Fredholm orthogonal, and Fredholm symplectic groups of an infinite-dimensional Hilbert space.
When each is furnished with the invariant Finsler structure induced by the operator-norm on the Lie
algebra, it is shown that, between any two points of the group, there exists a geodesic realising this
distance (often, indeed, a unique geodesic), except in the full orthogonal group, in which there are
pairs of points that cannot be joined by minimising geodesies, and also pairs that cannot even be
joined by minimising paths. A full description is given of each of these possibilities.

1980 Mathematics subject classification (Amer. Math. Soc): primary 47 D 10; secondary 22 E 65.

This paper investigates the Finsler geometry (the metric, minimising paths, and
minimising geodesies) of the orthogonal, unitary, and symplectic groups of
Hilbert space, in the Finsler structure given by the operator-norm on the Lie
algebra. The methods used derive ultimately from [8] (their extension to the
unitary and symplectic cases was noted in [4], but not published).

Notations and definitions are given in Sections 1 and 2. Then in Sections 3 and
4 we discuss the relation between spectral theory and the metric. In Section 5, we
review the results of [8]; this enables us to describe the Finsler metric explicitly in
Section 6. The existence and uniqueness of minimising paths and minimising
geodesies in the unitary and symplectic groups are settled in Section 7 (rather
easily); the far more difficult case of the orthogonal group is resolved in Section 8.
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197 Geometry of groups of isometries [2]

1. Hilbert spaces: notations

For this material, see [1, Chapter 3], [2, Chapter 1], and [4].
(1.1) Throughout the paper, E denotes a complex Hilbert space with complex

Hermitian inner product ( , >. By a conjugate-isometry of E, we mean a
conjugate-linear bijection J: E -> E such that, for any x, y e E,

(1.2) A real Hilbert space may be identified, by complexification, with a pair
(E,J), where J is an involutive (J2 = I) conjugate-isometry of the complex
Hilbert space E. In effect, J is complex conjugation.

(1.3) A left-quaternionic Hilbert space is identified with a pair (E, J) of a
complex Hilbert space E and a conjugate-isometry J which satisfies J2 = -I. In
effect, J is left-multiplication by the quaternion j . The quatemionic inner
product ( , > H and scalar multiplication are given by

(a + Pi + yj + 8k)x = (a + fii)x +(y + Si)J(x),

(where a, /?, y, S are real, and / is both complex and quatemionic.)
(1.4) For uniformity, we shall also describe the pair (E, J) when / = / as a

complex Hilbert space. In each case, the (real, quatemionic or complex) subspaces
of the original space correspond to the /-invariant complex subspaces of E, and
the (real, quatemionic or complex) linear operators of the original space corre-
spond to the complex linear operators of E which commute with J. We shall
often speak of Hilbert spaces, subspaces, and operators, leaving further precision
to the context. The correspondence preserves adjoints, operator-norms, and
orthogonal complements. By the spectrum, eigenvalues, or eigenvectors of an
operator, one means those of the associated complex operator in E.

(1.5) In a left-quaternionic Hilbert space, one may construct orthonormal bases
(over the quaternions H) in the usual way. For such a basis [ev: v e A), and for
any x in the space, there is a square-summable indexed class {rr: v e A} in H
such that Y.Tve>, sums unconditionally to x with respect to the topology of E.
Define right-multiplication by a e H relative to the basis { ev} by

The map x >-» x • a is left-linear over H, and so is an operator in (E, J). Its
operator-norm is \a\, and its adjoint is right-multiplication by a relative to { ev}.

(1.6) Let (E, J) be a Hilbert space. Let L(£, / ) denote the real Banach algebra
(in operator-norm) of its bounded operators, and \J(E, J) the group of regular
isometric operators in L<£, J); that is, T e V(E, J) if and only if T e L(£, J)
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[3] C. J. Atkin 198

and T*T = TT* = I. (The isometry group \J(E,J) is called the orthogonal,
unitary, or symplectic group of (E, J) in the real, complex, and quaternionic cases,
respectively.) The subgroup of \J(E, J) consisting of those isometric operators
which differ from the identity only by a compact operator is called the Fredholm
isometry group, and is denoted UC(£, / ) . Each of the six groups thus introduced
is a closed subset in the appropriate L(£, / ) , and is a Banach Lie group (see [3],
[5]). The Lie algebra of U(£, / ) is naturally identified with the algebra u(E, J) of
skew-adjoint operators in L(£, / ) , the Lie bracket being the commutator and the
exponential map being operator exponentiation; and the Lie algebra of UC(£, J)
is similarly identified with the algebra uc(£, J) of compact skew-adjoint opera-
tors.

2. The Finsler structure

(2.1) Let © be a Banach Lie group, with identity element e. The tangent space
at x e © is Tx%; left translation by y e © is Ly: x -»yx, and TxLy: Tx® -»
7^© is its tangent map. The Lie algebra g of © is identified with Te%. Now
suppose || • || is a norm on g defining the correct topology. Define a norm || • ||x
on Tx® by

The norms || • ||x constitute a Finsler structure on © (as in [7]), called the
left-invariant Finsler structure on © induced by || • ||. There is an analogous
right-invariant Finsler structure, and the two agree if and only if the adjoint
representation of © on g consists entirely of isometries with respect to || • ||.

(2.2) Henceforth, © will denote either one of the groups of (1.6), or the
principal component thereof. Its Lie algebra g is identified with an algebra of
operators as in (1.6), and © is furnished with the left-invariant Finsler structure
induced from the operator-norm on g (which is also right-invariant, by (2.1)).
This Finsler structure is a natural one to use, especially when E is of infinite
dimension; in each group ©, the operator-norm on g may be characterised in
terms of the algebraic structure of g.

The Finsler metric on ©, denoted by d, is defined as follows: when x, y are in
different components of G, let d(x, y) = 2TT. Otherwise, let d(x, y) be the
minimum of 2-rr and the infimum of the Finsler lengths (see [7]) of the piecewise
C1 paths in G joining x and y. A path in © is said to be rectifiable if it is
rectifiable in the obvious sense with respect to d. Thus, a piecewise C1 path is
rectifiable. Any rectifiable path p has a well-defined length ((p) which is not less
than the distance between its ends; when p is C1, then S{p) is the same as the
Finsler length of p.
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199 Geometry of groups of isometries [4 ]

A path in © is, by inclusion, equally a path in L ( £ , / ) . If it is rectifiable in @,

it is also rectifiable in h(E, / ) , and its length in © is the same as its length in

HE, I).
(2.3) By a geodesic in @, I mean a geodesic of any left-invariant connection on

@: that is, a left translate of a continuous one-parameter subgroup (which is,
therefore, a geodesic of any right-invariant connection too). A minimising path
between points x, y e © is a rectifiable path of length d(x, y) between these
points; a minimising geodesic between x and y is a geodesic which is a
minimising path between x and y. These definitions do not presuppose any
explicit relation between the connections and the Finsler structure.

A geodesic in © is automatically parametrised proportionally to arc length,
and any rectifiable path may be so reparametrised; then we shall describe it as
uniformly parametrised.

3. Spectral theory

(3.1) Let T e L(£, / ) be normal (see (1.6)). We write a{T) for the spectrum of
T, and o'{T) for the essential spectrum of T: that is, the set of points of a(T)
which are either cluster points of o(T), or are isolated in a(T) but are eigenvalues
of infinite multiplicity. Evidently a'(T) is null if E is of finite dimension.

(3.2) LEMMA. Let E be of infinite dimension; let T be a bounded normal operator
on E, with associated spectral measure PT. Then

(a) a'(T) is nonnull and compact;
(b) ( ieo ' (T) if and only if, for every positive fi, the spectral projection

Pr({z e C: \z - n\ < /?}) is of infinite rank.

PROOF, (b) is clear, and a'(T) is manifestly a closed subset of the compact set
a(T). If a'(T) = 0 , then a(T) consists only of isolated points which are
eigenvalues of finite multiplicity, and, by compactness, there are at most finitely
many. Therefore E is of finite dimension, which contradicts the hypothesis.

(3.3) The following notations will be standard: 5 will denote the unit circle
{z e C: \z\ = 1}. The metric 8 on S will be the Finsler metric of U(C, / ) (see
(2.2)), which is given explicitly by

5(exp(/0),exp(/<p)) = min{|0 - <p + 2nir\: n e Z}.

If T e L(£, / ) is normal, then the associated spectral measure will be denoted
by PT, unless some other symbol is specially introduced. If T e U(£, / ) (and, in
particular, if T belongs to any of the groups © of (2.2)), then a(T) c S. Define,
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in that case,

N(T) = sup{|0|: 0eR,|0|<*r,exp(/0) ^o(T)},

N'(T) = sup{|0|: 0 e R , |0 |< w.exp(ifl) e o ' ( r ) } .

For z e S, denote by log z that value of the logarithm which lies in the interval
(-in, i-n] of the imaginary axis. Thus cos(logz) = Rez for any z e X .

(3.4) LEMMA. Let T e U(£, / ) , and suppose that F is a T-invariant subspace of
E (so that F1- is also T-invariant). Then

N(T) = max(N(T\F),N(T\F1))

and

N'(T) = mzx(N'(T\F),N'(T\F±)).

PROOF. Indeed, a(T) = a(T | F) U a(T | F^-) and a'(T) = a'(T \ F) U

4. Transformations of the sphere

(4.1) The Hilbert space E over C becomes a Hilbert space over R if one takes
the real (Euclidean) inner product to be the real part of the complex (Hermitian)
inner product given in E. The unit sphere 2 of E, which is the same with respect
to either inner product, is a closed C submanifold of E, and so inherits a C"
Riemannian structure from the real inner product in E. The Riemannian mani-
fold 2 has the following properties, all of which are intuitively obvious and
straightforward to prove in an ad hoc fashion.

(a) If x, y G 2, then the Riemannian distance D(x, y) between x and y in 2
is cos"1(Re(x, y)) e [0, IT].

(b) All geodesies in 2 are uniformly parametrised great circles (intersections of
2 with real two-dimensional subspaces of E). In particular, they are all periodic.

(c) All uniformly parametrised minimising paths in 2 are geodesies.
(d) If x, j e 2, and if x + y =t 0 (that is, x and y are not diametrically

opposite), then x and y may be joined, except for linear changes of parameter, by
exactly two geodesic arcs (injective geodesies), of which one and one only is
minimising. If x + y = 0, there are infinitely many geodesic arcs (not identifiable
by change of parameter) from x to y in 2, unless E is of complex dimension 1;
and all of them are minimising.

The notations 2 and D will be maintained.
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201 Geometry of groups of isometries [ 61

(4.2) LEMMA. Suppose T G U(£, / ) , n e S, and y ^ 0; let H denote the image
of Pr({z G S: 8(z,n) *£ y}). Then

(a) ifxeH±D'2, D(Tx,nx) > y;
(b)ifx<=HC\ 2, D(7x, JUX) < y.

Furthermore, equality holds if and only if x lies in the image of. PT({z G 5:

PROOF. If y > w, then H = E and there is nothing to prove. So assume that
y < m. By (4.1)(a),

(1) cosD(7x,/j,.x) = Re(7x,/ix) = ReJ z(Pr(dz)x, jux)

/

since (PT(dz)x, x) is a nonnegative real-valued measure. It is also of total mass 1,
and, in case (a), is concentrated on {z G S: S(Z, ft) > y), where Re(zjil) < cosy.
Hence, in case (a),

cosD(7!x;, JWX) < cosy.

But y < m by assumption, and D{Tx,\ix) < m by (4.1)(a). Thus (a) follows.
Similarly, in case (b), the measure of (1) is concentrated on { z e S: 8(z, n) < y},
where Re(z/Z) > cos y. So cos D(Tx, px) > cos y; equality will occur if and only if
the measure is concentrated on the set where the integrand of (1) takes the value
cosy, namely the set {z e S: S(z,n) = y). This is equivalent to saying that x
lies in the image of Pr({z e S: S(z,ii) = y}). The remaining assertions now
follow, as (a) did previously.

By the same method (or by taking m — y in place of y and orthogonal
complements) one obtains

(4.3) LEMMA. Suppose T e U(£, / ) , ( i £ i , and y > 0; let H denote the image
ofPT({z<ES:8(z,n)<y}).Then

(a) ifx&HH 2, D(Tx, /xx) < y;
(b) ifx G H± n 2 , D(Tx,(ix) > y.

Furthermore, equality holds if and only if x lies in the image of Pr({z e S:

(4.4) LEMMA. Let T G U(£, / ) . Then (see (3.3))

N(T) = sup{D(Tx,x): x e 2}.
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/ / j e S , then N(T) = D(Ty, y) if and only if y lies in the image of
PT«exp(iN(T)), cxp(-iN(T))}).

PROOF. By definition (3.3), o(T) c {z e S: S(z,l) < N(T)}, so PT({z e S:
S(z, 1) < N(T)}) = / . Take n = 1, y = N(T) in (4.2)(b); hence, for any x e 2,

(i) D(rx, jc)<jv(r) ,

with equality if and only if x lies in the image of Pr({z e S: S(z,l) = N(T)}),
which is as asserted.

Now suppose that e > 0, and set

Z = { z e X : 8(z,l)> N(T)-e}.

Then Pr(Z) ¥= 0 by the definition (3.3) of W(r), and

P r (Z )£ = (Pr({z e 5: 5(z,l) < N(T) - E))E)X .

Take y e S n Pr(Z)£\ For this y, (4.2)(a) gives

(2) D(2>,^) > JV(r) - e.

Together, (1) and (2) prove the lemma's first assertion.

(4.5) COROLLARY. For any T,U& V(E, I),

N(TU) ^N(T) + N(U).

PROOF. For any x e 2,

D(TUx,x) < D(TUx,Ux) + D(Ux,x),

and the result follows from (4.4).

(4.6) LEMMA. Let % be as in (2.3), and suppose that p is a rectifiable path in ©.
For any x e E, define a path px in E by setting px(t) = p(t)x for all t in the
domain of p. Then px is a rectifiable path in E whose length S(px) does not exceed
\\x\\ • /(/>).

PROOF. The proof is mechanical.

(4.7) PROPOSITION. Suppose n e S and ft > 0. Let p be a rectifiable path from T
to U in V(E, I). Denote by K the image of Pr({z e S: S(z, n) < 0}), and by L
the image of P[/({ z e 5: S(z, n) < 0 + «f(/>)). Then K C\ Lx = 0.

PROOF. If possible, suppose that x G S n ^ n L 1 . From (4.2)(b), D(Tx,fix)
< /3, and from (4.2)(a), D(Ux,p.x) > fi + t{p). However, from (4.6), D(Tx, Ux)

)- These three inequalities are clearly contradictory.
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203 Geometry of groups of isometries 181

(4.8) PROPOSITION. The statement of (4.7) remains valid if each weak inequality
(< or > ) is replaced by the corresponding strong inequality (< or >).

PROOF. This follows as before, with (4.3) in place of (4.2).

(4.9) COROLLARY. In each of (4.7), (4.8), the dimension of K cannot exceed the
dimension of L.

PROOF. If it did, then K n Lx would be nonzero.

5. One-parameter subgroups

(5.1) For T e V(E, J), define, recalling (3.3),

= f \ogzPT{dz).JcJc
Then logT is a bounded skew-adjoint complex-linear operator in E, that is, an
element of u(2s, / ) ; it is compact if and only if T e UC(£ , / ) ; and, most
importantly,

exp(logT) = T.

(5.2) For any spectral measure P, define the conjugate spectral measure P by
setting, for each Borel set Q in C,

where Q = {z: z e Q). If T e U(£, J), where J is a conjugate-isometry, then

T = J-XTJ= ( zJ-1PT(dz)j,

so that, by the uniqueness of spectral decomposition,

Therefore,

= j (logz)-J-1PT(dz)J

= f (\ogzypT(dz)

and, as log z = (log 2) for all z e S except - 1 , it follows that

/ ^ ( l o g r ) / - logr = -2wiPT({-l}).

Consequently, log T e u(£, / ) if and only if -1 is not an eigenvalue of T.
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(5.3) Suppose next that J2 = -I, which is the quaternionic case (see (1.2)).
Then -F=ker(r + / ) and F^ are both subspaces (see (1.4)). Construct a
quaternionic orthonormal basis in F, and define F e L ( £ , / ) tobe log(T \F±)
on F± , and right-multiplication (with respect to the chosen basis) by a pure
imaginary quaternion of length m on F. As -1 is not an eigenvalue of T | FL , it
follows by (5.2) that F G L(£, J). It is evidently bounded and skew-adjoint;
moreover, if T e UC(£, 7), then F is finite-dimensional, and so V is compact
(since log(r | F x) is). Also, exp V = T.

(5.4) Finally, suppose that J2 = + / , the real case. Let F = ker(T + / ) as
before. If JF is of infinite or even finite dimension, construct a real orthonormal
basis (that is, one consisting of /-invariant vectors) {ev, /„: v G A} in F, for some
index set A. Define F G L(£, / ) to be lo%(T\Fx) o n F 1 , and, on F, extend
from Vev = mfv, Vfv = —irer. Then, as in (5.3), V is skew-adjoint, bounded, and
exponentiates to T. In addition, when T G UC(£, / ) , then V is compact.

(5.5) If J2 = / # J and ker(7 + / ) is of odd finite dimension, then T cannot
be the exponential of any element of L( E,J). Indeed, if T = expK, where
V e L(£, J), then det(r|ker(r + /)) = exp(tr(F|ker(7 + /)), which must be
real and positive.

(5.6) Let J2 = I # J and let T e U(£, J).
(a) Suppose that -1 is isolated and of finite multiplicity in a(T) (see (3.1)), and

let e > 0 be such that

{z e S: S(z,-\) < 2e} na(T) = (-1).

If U <= U(£, / ) and d(T, U) < e (see (2.2)), then there is a rectifiable path p in
U(£, / ) from T ioU such that <f(p) < e, and so, by (4.9),

rankPr({-l}) < rankP[/({z <= 5: S(z , - l ) < S(p)})

<rankP t / ( {ze 5: « ( z , - l ) < e } )

< mnkPT({z G S: 8(z , - l ) < £(p) + e})

= rankPr({-l}), bychoiceofe.

Thus (z G S: 8(z, -1) < e} n a(C/) contains only finitely many points of o(U),
all eigenvalues of finite multiplicity, and their multiplicities sum to the multiplic-
ity of -1 in a(T). Apart from - 1 , these eigenvalues of U appear in distinct
conjugate complex pairs of equal multiplicity; so the parities of dimker(T + / )
and of dimker(l/ + / ) must be the same. In particular, if -1 is isolated and of
odd finite multiplicity in a(T), then it is isolated and of odd finite multiplicity in
o(U).

(b) On the other hand, suppose that F = ker(T + / ) is of odd finite dimension,
but that - 1 is not isolated in a(T). Then (T + I) \ Fx is one-one, but not onto
F-1; however, its image is dense in F 1 . Let j e f and y e F 1 be real unit
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205 Geometry of groups of isometries [ l o ]

vectors, with y £ (T + I^F-1). Given S G R , define an operator M(0) by linear
extension from M(0) \{x,y}±=0, M(0)x = By, M(B)y = -6x. Then M(0) <=

L(£, J); M(B) is skew-adjoint; and the operator-norm of M{0) is 6. Now
assume that 6 ¥= 0. Then (/ + M{B)Y\l - M(0))T£ = - | if and only if
M(0)(7 - T)£ = - ( / + r)£; but (T+ 7 )£e ( 7 + / ) F ± , which meets the
image of M(0),namely the span of {x, >>},only in {0}. Hence both (7" + /)£ = 0
and M(0)(I - T ) | = 0, and so 2M(0)£ = 0. Thus £ e {x, y}x , and | e f.
Since the argument clearly reverses, and since j e f 1 by construction,
ker{(/ + MCe) ) -^ / - Af(0))r + 7} = F f\ {x,y}±= FD {x}x , which has
even finite dimension dim(F) - 1. As 0 may be arbitrarily small, this proves that
T may be approximated arbitrarily closely by elements of U(E, J) which are
exponentials of elements of u(E, J).

(5.7) For T e UC(£, J), with J2 = I # / as before, a(T) can contain -1 only
as an isolated point of finite multiplicity, and (5.6)(a) in effect shows that the
parity of dimker(T + / ) , as a function of T, is locally constant on UC(£, / ) . If
ker(T + / ) is even-dimensional, then, by (5.4), T = exp V for some V e uc(£, / ) ;
thus the path exp(tV), 0 < t < 1, joins T to / in \JC(E, J). So the principal
component of UC(£, J), the 'special Fredholm orthogonal group' SUC(£, J), is
precisely the subset of UC(£, / ) consisting of operators T for which ker(T + / )
is of even dimension. It is possible to show, also by operator-theoretic methods,
that SUC(£, / ) is of index 2 in UC(£, J). These results are usually proved by
finite-dimensional approximation: see, for instance, [6].

(5.8) Henceforth, © will denote the full unitary, orthogonal, or symplectic
group U(£, / ) (with J = /, J2 = I # / , or J2 = - / , respectively), or the Fred-
holm unitary or symplectic group UC(£, J) (with J = I or J2 = -I, respectively),
or the special Fredholm orthogonal group SUC(£, / ) (with J2 = I ¥= J). All of
these groups except the full orthogonal group will be described as 'exponential',
since in them every element is the exponential of some element of the Lie algebra.
In the full orthogonal group, an element is an exponential if and only if it is a
square.

6. The Finsler metric

(6.1) LEMMA. For any T e ©, d(I, T) > N(T).

PROOF. Take any e > 0. By (4.4), there is x e 2 such that D(Tx,x) >
N(T) - e. Suppose that p is any piecewise C1 (or merely rectifiable) path from I
to T in @. Then, by (4.6), f{Px) < •(/>). However, <{px) > D(px(l), px(0)) =
D(Tx, x) > N(T) - £. Hence /(/>) > N(T) - e. As p was arbitrary, we deduce
that d(I, T) > N(T) - e; and since e is arbitrary, the result follows.
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(6.2) LEMMA. Suppose I e ® . Then there is a geodesic of length N(T) joining I
to T in @, unless © = U(£, J), where (E, J) is real, and ker(T + / ) is of odd
finite dimension; except in those circumstances, d(I, T) < N(T).

PROOF. First, suppose that N(T) < IT. Then -1 <£ a(T), and, by (5.2), logT
belongs to Q (see (1.6)). In this case set F=logT. Secondly, suppose that
N(T) = m, so that -1 G a(T). With the exception specified in the statement, one
of (5.2), (5.3), or (5.4) will yield F e « such that expF= T. (For the special
Fredholm orthogonal group, ker(T + / ) is always of even finite dimension, by
(5.7); so (5.4) applies.) In either case, V is skew-adjoint, and therefore has norm
equal to its spectral radius. In the first case, the spectral radius is N(T) from the
definition (3.3), whilst in the second, the spectral radius is w, which remains equal
to N(T).

Consider now the path q{t) = exp(fF), 0 < / < 1. For each /, q(t) =
TjL^ • V (see (2.1)), and it follows that ||<jr(f)IU(0 = W\\ = N(T). Hence t(q)
= N(T), and, as q joins / to T, this proves that d(I, T) < N(T), as asserted.

(6.3) THEOREM. Let © be exponential (see (5.8)). Then, for any T, U e ©,
d(T,U) = N(U~lT).

PROOF. Both sides are left-invariant (see (2.2)), so it suffices to prove the
equality when U = I. As © is exponential, both (6.1) and (6.2) apply.

(6.4) LEMMA. Let T, U e © and ja e a'(U). Then

{z e S: 8(z,n) < d(T,U)} n a'{T) * 0 .

PROOF. Suppose not. Then, by the compactness of a'(T), there exists /? > 0
such that

(z eS: S(z,n)^d(T,U) + 2^} no'(T)= 0.

Choose a rectifiable path p from T to U in © such that f(p) < d(T,U) + 0.
Now (z G S: 8(z,n) < f(p) + {1} can contain at most finitely many points of
a(T), all isolated and of finite multiplicity (see (3.1), and compare (3.2)); thus
Pr({z e S: 8(z, ju) < <?(/>) + 0}) is of finite rank. By (4.9), so also is P[/({z e S:
S(z, [i) < 0}). But, as n G a'(U), this contradicts (3.2)(b).

(6.5) THEOREM. Let (£, J) be a real Hilbert space of infinite dimension, and let
= U(£, J). Then for T,U&%,

d{T,U) = N(U~lT),
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unless -1 is an isolated point of o(U~lT) of odd finite multiplicity, in which case

d(T,U) = 2n- N'{U~lT).

NOTE. If (E, J) is real and of finite dimension, then U(£, J) = UC(£, / ) ;
thus, if T and U belong to different components of U(£, / ) (see (5.7)), then
d(T,U) = 2TT, by (2.2); otherwise, d(T, U) = NiU^T), by (6.3).

PROOF. AS in (6.3), we may take U = I. The proof occupies (6.6)-(6.10).
(6.6) If ker(r + / ) is not of finite odd dimension, then (6.1) and (6.2) both

hold, and d(I, T) = N(T\ as before. If ker(T + / ) is of finite odd dimension,
but -1 is not isolated in a(T), then (5.6)(b) approximates T by elements of @
whose distance from / does not exceed m (by (6.2)); consequently, d(I, T) < m in
this case also, and, from (6.1), d(I, T) = v = N(T). In particular, if N(T) < IT,
then -1 <£ a(T) and d(I, T) = N(T) < IT.

(6.7) Suppose now that d(I,T) = IT. Given e > 0, take a piecewise C1 path p:
[0,1] -» © such that /?(0) = /, p(t) = T, and /(p) < -n + e/2. Since d(I, p{t))
is continuous in t, there is a point T e [0,1] such that d(I, p(r)) — IT — e/2.
Ergo,

f \\p(t)\\p{l)dt>7T-e/2

(the length of the path between parameters 0 and T), and

(the length remaining). Hence, d{I, p(r)) < IT and d(p(r),T) < e. Therefore, T
may be approximated in © by elements closer than IT to /, for which, by (6.1),
the spectrum cannot contain - 1 . In view of (5.6)(a), this cannot occur when -1 is
an isolated point of o(T) of odd finite multiplicity. In that case, then, d(I,T)> m
(indeed, (6.1) ensures that d(I, T) ̂  w, and the supposition of equality has led to
a contradiction).

(6.8) Together, (6.6) and (6.7) prove that d{I, T) > m if and only if -1 is an
isolated point of a(T) of odd finite multiplicity, and that otherwise d(I,T) =
N(T). Suppose, therefore, that -1 is isolated in a(T) and of odd finite multiplic-
ity. Let q{t), 0 < / < 1, be any piecewise C1 (or merely rectifiable) path from /
to T in ©, and set

p = sup{/: 0 < / < l,d(q(t),l) < TT).

By continuity, d(q(p), I) = IT, and so -1 e a(q(p)). If -1 € o'(q(p)), then -1 is
isolated and of finite multiplicity in a(q(p)) (see (3.1)), and, by (5.6)(a),
dimker(<7(f) + / ) is finite and of constant parity for all t sufficiently close to p.
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For t = p, the parity is even, as d(q(p), I) = ir; but for t > p, the parity is odd,
since d(q(t), I) > ir. Hence -1 e a'(q(p)), in fact.

Now take p. = -1 and U = q(p) in (6.4). The 5-distance in S from -1 to a'(T)
is ir - N'(T); it follows that

So the segment of q between the parameters 0 and p has length not less than ir,
whilst the remaining segment has length at least TT — N'(T). In sum, therefore,

f(q)>2ir-N'(T),

and, as q was any piecewise C1 path from / to T, this shows that

(1) d(l,T)>2ir - N'(T).

(6.9) It remains to prove the opposite inequality to (6.8)(1) for the same
operator T. For (6.9), I shall write P instead of P r and N' in place of N'(T). As
-1 £ o'(T) by hypothesis, certainly N' < IT. Define

Z + = {z e S:Imz > 0and6(z , l ) > N'},

Z = (z G 5: Imz < 0and6(z , l ) > N'} = {z: z G Z + } ,

z = z+u z_.
(a) The first case occurs when N' > 0 and P(Z+), P(Z_) are of infinite rank; in

other words, exp( + iN') are either eigenvalues of infinite multiplicity or limits of
sequences of points further to the left in a(T). Set V+= fz (iir — logz)P(Jz),
and V_= fz (-iir - logz)P(Jz). Imitating (5.2), one finds that

J1V+J=[ (-iTT-(log z)')j-lP(dz)J

= f (-iir - logz)P(dz) (as -1 € Z+)
Jz+

= ( {-in-log z)V(dz)= V ,
Jz_

and symmetrically (as J1 = I), V+= J'lVJ. Hence V = V++ V_ commutes with
/ , and is skew-adjoint, since both V+ and V_ are. Ergo, V e u(£, / ) (see (1.6)).
Also a(V) = [iir - logz: z e Z+C\ a(T)} U {-iir - logz: z G Z_n a(T)},
where, by definition, logZ+c [iN', in], and exp(iN') e a(T). Therefore the
spectral radius and the norm of F are ir — N'.

Consider the Cu path in U(£, / ) defined by

r(t)=Texp(tV), 0 < / < 1.

As in (6.2), | |r(0|| = ||K|| = ir - N', for each .̂ Thus

t(r) = ir - N'.
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It is clear from the construction that

ker(r(l) + / ) = P({- l}UZ)(2s) ,

which is of infinite dimension, by hypothesis.
(b) The second case occurs when P(Z) is of odd finite dimension. Then N' > 0

necessarily, and exp( + iN') lie in a'{T) only because they are limits of sequences
of points further to the right in a(T). Set T = -ir/N' - 1 and

f logzP(dz).

as in (a), V e u(£, / ) and ||F|| = N'. For 0 < t < 1, define
r(t) = Texp(rtV).

Then <f(r) = | |TF|| = <n — N', and r(l) may be written as an integral with respect
to P. From this expression of r(l), it is clear that -1 is not isolated in a(r(l)).

(c) The third case occurs when N' = 0, but when 1 is not an eigenvalue of T of
infinite multiplicity. Since Z+, Z_, as defined, do not contain 1, the formulae and
arguments of (a) work in this case without alteration.

(d) Finally, suppose that N' = 0 and that F = ker(T - / ) is of infinite
dimension. By (6.2), there is a Ca path s(t), 0 < / < 1, which joins I\F to -I\F
in U(F, /1) and which is of length IT. Define the path r in U(E, J) by

r(t)\F±=T\F\ r(t)\F=s(t).

Then r is also C" of length m, r(0) = T, and r(l) has -1 as an eigenvalue of
infinite multiplicity.

(6.10) In each case of (6.9), I have found a path r of length -n — N'(T) which
joins T to a point of © at distance IT from / i n © (by (6.6)). Hence

d(I,T)<2v-N'(T),

which, with (6.8)(1), completes the proof of (6.5).
(6.11) REMARK. (4.4) and (6.3) show that, when © is exponential, and when T,

U e ®, then d(T, U) = sup{D(Tx, Ux): x e 2} . However, (6.5) asserts that this
is false for the full orthogonal group. Thus the group of all isometries of the unit
sphere in infinite-dimensional Hilbert space has two distinct naturally defined
invariant metrics.

7. Minimising paths and geodesies

(7.1) THEOREM. The points T, U 6 © may be joined by a minimising geodesic in
© if and only if they may be joined by a geodesic, and, specifically, they may be so
joined unless © = U(£, / ) , where (E,J) is real, and ker(T + U) is of odd finite
dimension.
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PROOF. Notice that ker(T + U) = ker(J + U~XT), and that U'xp(t) is a
minimising geodesic from / to U'XT if and only if p(t) is a minimising geodesic
from U to T. Thus it suffices to take U = I, as in (6.3), (6.5). The result follows
from (6.2), (6.1), (5.5), (5.7).

(7.2) NOTE. If T and U may be joined by a geodesic, then, by (5.5) and (6.2),
d(T,U)€:iT. Equally, if d(T,U)<ir, then T and U may be joined by a
minimising geodesic, by (6.3), (6.5) and (7.1).

(7.3) PROPOSITION. Suppose that p{t) and q(t) (for 0 < / < 1) are both
minimising geodesies from U to T in ©. Then, for each t,

p(t)\(ker(T + U)) = q(t) | (ker(r + U)).

Moreover, there is exactly one minimising geodesic joining U to T and parametrised
by [0,1] if and only if ker(T + U) = 0.

PROOF. Take U = I, as in (7.1). If K e g and expF = T, then

T= [ zPT(dz) = f exp(z)Pv(dz).
Js Js

By the uniqueness of spectral decompositions, this gives

(1) PAQ) = P^exp-HG))
for any Borel set Q in S. If exp(f F), 0 < f < 1, is to be a minimising geodesic, its
length, which is the spectral radius of V (see (6.2)), cannot exceed -n, by (7.2); so
Pv is supported on the segment [-im, iw] of the imaginary axis, and (1) de-
termines Py(Q), unless Q contains -i-n or i-n. Of Py({iir}) and PK({-/TT}), (1)
shows only that their sum must be Pr({-1}). In any case, K|(ker(/ + T))1 is
uniquely fixed, which proves the first assertion of the proposition. For the second,
note that the constructions (5.2), (5.3), (5.4) of a minimising geodesic (see (6.2))
are all non-unique when ker(T + 7 ) ^ 0 . In (5.2), one might take log(-l) to mean
-im (compare (3.3)); in (5.3), one may choose a different basis or a different pure
imaginary quaternion; in (5.4), one has a choice of bases.

(7.4) Apart from trivial exceptions when E is of low finite dimension, the
operator-norm in Q is not uniformly convex, and one cannot, therefore, reasona-
bly expect general uniqueness theorems for minimising paths.

Suppose F G Q , ||F|| < 7r, and 7"=expF; let F be a K-invariant closed
nonzero subspace of (E, J) with N(T\F) = \\V\F\\ < \\V\\ = N(T), and, in the
real case, dim/7 > 2. Take X e (0,1) and write U = exp(XF). By construction,
N(U) = \N(T) > XN(T | F) = N(U | F), and N(U \F±) = N(T \ F1). Hence, by
(3.4),
(1) N(U) = max(N(U\F),N{U\F±)) = N(U\FX).
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N o w s u p p o s e t h a t W & %,W\Fi~= I\FX ( so .F is W- inva r i an t ) a n d

(2 ) N{W\F) < (N(T) - N(T\F)) • min(X,l - X).

Then, by (4.5), (2), and (3.4) in turn,

(3) N{UW\F)*N(U\F) + N{W\F)<\N(T),

and

N(UW) = max(N{UW\F),N(UW\F±))

= max(N(UW\F),N(U\F±))

= N(U\FX) = \N(T), from (3).

By the same sort of argument,

N(W~lU-lT) = (1 - X)N(T).

Consequently, both UW and W~lU'lT may be joined to / by minimising
geodesies (see (7.1)) p(t) and q{t), respectively, for 0 < / < 1. Define

r{t)= p{t/\) f o r O < / < X ,

r(t) = UWq((t - X)/(l - X)) for X < / < 1.

Then, clearly, r is a rectifiable path from / to T in ©, and / ( r ) = /(/>) + t(q)
= XN(T) + (1 - X)N(T) = N(T) = d(I, T). However, the minimising path r
between / and T cannot be a geodesic, unless W = I. For F is invariant under
both T and T* — exp(-K), and so, from the spectral decomposition of T, it
follows that FQ (ker(7 + I))± (since N(T\F) < w); but r has been con-
structed to differ from exp(*F) on F. See (7.3).

Provided that a subspace F may be found, this argument provides many
minimising paths that are not geodesies. For each of the groups ©, many choices
of W are possible, and in addition X may be arbitrarily selected in (0,1). The
construction may also, in suitable circumstances, be repeated for each of the
geodesic segments making up r. In sum, there are very many possible minimising
paths between / and a typical point T to which it may be geodesically joined. (An
alternative construction is as follows. Suppose that r = ( / + 5 ) " 1 ( / - 5 ) , where
5 e 0 . Then

s(t) = (I + tSY\l - tS), 0 < r < l ,

is a minimising path (in general not uniformly parametrised) which cannot

usually be reparametrised to a geodesic. This construction would suffice for (7.6).)

(7.5) LEMMA. Suppose T e @, d(I, T) = N(T). Let p(t), 0 < / < N(T), be a
uniformly parametrised minimising path from I to T in ©, and x e 2 an eigenvec-
tor of T with corresponding eigenvalue exp(iN(T)) (or exp(-iN(T))). Then px (see
(4.6)) is a uniformly parametrised minimising path from x to Tx in 2.
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PROOF. By (4.1)(a), D(Tx,x) = N(T); so {(px) > N(T). By (4.6), t(Px) <
S(p) = N(T). Hence t(px) = N(T). If 0 < T < N(T), then the length of px

between the values 0 and T of the parameter cannot exceed the corresponding
length T of p, nor can its length between r and N(T) exceed N(T) - r, by (4.6);
hence, in both cases, strict equality is needed to ensure that the total length is
N(T).

(7.6) THEOREM. Suppose that T, U e © may be joined in © by a minimising
geodesic. Then every uniformly parametrised minimising path from T to U in % is a
geodesic if and only if, in the complex and quaternionic cases, all elements of
o(U~lT) have the same real part; or, in the real case, all elements other than 1 of
o(U~lT) have the same real part, and 1, if it belongs to o(U~lT), is an eigenvalue
of multiplicity at most 1.

PROOF. AS usual, take U = I, and let K e g be as in (7.4). If the stated
condition is not satisfied, then, for at least some a e [0, ||F||), the image of
Pv({ix: x G R, |*| < a}) will be a closed nonzero subspace Fof (E, J) such that
N(T\F) < a < N(T); in the real case the dimension of F must be at least 2.
Thus (7.4) ensures that not all uniformly parametrised minimising paths from /
to T in © are geodesies.

Now suppose the stated condition holds, and set E+= ker(T - exp(iN(T))I),
E~= ker(r - exp(-iN(T))I), and D = E++ E~. Let p(t), 0 < t < N(T), be a
uniformly parametrised minimising path from / to T. Suppose A: £ £ + n I By
(7.5) and (4.1)(c), px is a geodesic in 2, and, by (4.1)(b),

(1) Px0) = (cosO/^O) +(sin0&(0)
for all t. The same argument applies when x e E~ n 2, and so, by linearity, (1)
holds for any x e D. In particular, px(0), the right derivative of px at 0, exists for
each x e D. Thus p(t)\D is differentiable on the right at 0 in the strong
operator topology; the derivative A: D -* E is a bounded linear operator (by the
Banach-Steinhaus theorem), and A(J \ D) = JA.

Rewrite (1), recalling that />(0) = / , as

(2) p{t)\D = {cost)l\D+{sxnt)A.

When N(T) = 0, there is nothing to prove. Otherwise, the right-hand side of (2)
is isometric on D for each / e [0, N(T)] if and only if, for every x, y £ D,

(3) (Ax,Ay) = (x,y), (Ax, y) = -(x,Ay).

Suppose first that A{D)Q D. Consider A as an operator in the closed subspace
D; by (3), A* A = I\D, A* = -A, and therefore A2 = -I \ D and A is a bijection
of D with itself. Substituting A2 = -I \ D in (2), one finds

(4) p(t)\D = exp(tA)\D for0 < t < N(T).

https://doi.org/10.1017/S1446788700028202 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028202


213 Geometry of groups of isometries [ 18 ]

In the complex and quaternionic cases, D = E by hypothesis and (4) completes
the proof. In the real case, it is also possible that D be of codimension 1; in that
case, let £ denote a real unit vector perpendicular to D.

If A(D) c D, (4) shows p(t)D = D for each t. Since p(t) is real and
orthogonal, it must follow that, for each t, p(t)i- = + £ . But p{t) is continuous
and p(0) = I; hence p{t)£ = £ for all t. Define A1 by Al | D = A, A£ = 0; then
Al is real skew-adjoint (by (3)), and, in view of (4), p(t) = exp^tA^ for all t.

Finally, suppose that A{D) £ D. Then A(D) + D — E necessarily. Choose
real elements a, b e D such that £ = Aa + b, and define A2\D = A, A2£ =
Ab — a. It now follows trivially from (3) that, for all x, y e E,

(5) (A2x,A2y) = (x,y), (A2x, y) = -<x, A2y).

As before, it follows that A\ = -I and therefore that

(6) exp(r^2) = (cosr ) /+(s inO^ 2 for all?.

By (2), then, exp(t42) and p{t) agree on D. Both are orthogonal operators (by
(5), A2 is skew-adjoint), are continuous in t, and are the identity for / = 0. Thus
they must agree on £ as well, for all t. This completes the proof. (Notice that (6)
now shows D = E, so that this last case cannot in fact occur. This is assumed
below.)

(7.7) COROLLARY. If T, U G © may be joined by a geodesic, then every
uniformly parametrised minimising path from T to U in © is a geodesic if and only
if, in the complex and quaternionic cases, -T e © and U lies on a minimising
geodesic from T to -T; in the real case, there is the additional possibility that there
exist a real subspace D of codimension 1 in E and that U lies on a minimising
geodesic p from T to Tx, where TX\D = -T\D and T^\D = T\D = p(t) | D for
0 < t < IT.

(7.8) If © = UC(£, J), where E is infinite-dimensional, the conditions of (7.7)
cannot hold for any T, U e ©.

8. Minimising paths in the orthogonal group

(8.1) THEOREM. Let © = U(£ , J), where (E,J) is a real Hilbert space of
infinite dimension. The points T, U e © cannot be joined by any minimising path in
© if and only if - 1 is a non-isolated point of o(U~lT) which is an eigenvalue of odd
finite multiplicity. In all other cases there is a minimising path between T and U in
© which consists of at most two geodesic segments.
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PROOF. Take U = / as usual. Then (7.1) settles the case when -1 is not an
eigenvalue of T of odd finite multiplicity. If -1 is isolated and of odd finite
multiplicity in a(T), but if PT({z e S: 8(z,l) > N'(T)} is not of finite rank,
then one of (6.9)(a), (c), or (d) will construct a minimising path from / to T which
consists of two geodesic segments.

The two remaining cases are discussed below. In (8.2) we prove that, when -1 is
not isolated in a{T) but is an eigenvalue of odd finite multiplicity, then there is
no minimising path joining T to / in ©. In (8.3)-(8.12), on the other hand, we
construct minimising paths from T to I when PT({z e S: 8(z, 1) > N'(T)}) is of
finite odd rank and N'(T) < IT. Certainly, then, N'(T) > 0, so that these paths
are of length less than 2w (by (6.5)). Now, if p(t), 0 < t < d(T, I), is a
minimising path from I to T which is uniformly parametrised by length, then by
(7.2), there are minimising geodesies between / and p(d(T, I)/2), and from
p{d{T, 7)/2) to T; so our construction will complete the proof.

(8.2) Assume first that F = ker(7 + / ) # 0, d(T, I) = it. Let p(t), 0 < t < it,
be (if possible) a uniformly parametrised minimising path from / to T in @. By
(6.6),

(1) d(p(t),I) = t = N(p(t)) forO</<77.

Now take x e F n 2. By (7.5), px is uniformly parametrised in 2, so that

(2) D(p(t)x,x) = t = d(p(t),l) f o r O < / < 7 7 ,

and px is a minimising path from x to Tx = -x in 2. Applying (4.1)(c), (b), we
find that, for 0 < t < w,

px(t) = (cost)Px(0) + (sin 0^(0),

where px(0) = x and px(0), the derivative on the right at zero, must exist. Since
this is so for each x e F n 2, it holds, by linearity, for all j e F ; moreover,
py(0) = Ay, where A: F -* E is a real linear map such that A(J\F) = JA. Thus,
for all y e F, and for 0 < t < IT,

(3) p{t)y = {cos t)y+{sin t) Ay.

Now suppose that x e F O 2 is real, Jx = x. From (1) and (2), D(p(t)x, x)
= N{p(t)); so, if we set n = 1, T = p{t), y = N{p{t)) in (4.2)(b) (where, in view
of the definition (3.3) of N(p{t)), H = E), then we deduce that

(4) jeeP,(O({exp(i7),exp(-i0})£ forO«f<77.

If M, = Pp0)({exp{it)})E, then J{Mt) = Pp(l){{exp{-it)})E, and (4) may be
rewritten as x e M, + J(Mt). However, x is real; so there exists y{t) e Mt +
J{Mt), also real, such that x + iy{t) e Mr (Explicitly, if a{t) e M, and x = a(0
+ Ja{t), take *>(?) = a{t) - Ja{t).) Thus

(5) p{t){x + i>(/)) = exp(/0 •(* + *>(/)).
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As p(t) G U(£, J), it preserves real and imaginary parts. Therefore, equality of
the real parts in (5) yields

(6) p(t)x = {cos t)x - (sin t)y(t).

Comparison of (6) and (3) demonstrates that

y(t) = -Ax for 0 < / < w.

(Note, however, that (6) and (3) do not determine ^(0) or y(ir).) Now substitute
back into (5) and take the imaginary parts to obtain:

(7) p(t)Ax = (cost)Ax -(sin?)*,

for 0 < / < m. Let t T ir, then (7) shows that in the limit

TAx = -Ax, or Ax e F.
Since F is spanned by real unit vectors, it follows that in fact A(F) c F, and
therefore, by (3), that F is />(/)-invariant for 0 < f < w.

To complete the argument, suppose that F is of finite dimension. Then
p(t) IF, 0 < t < m, is a path joining / 1 F to - / 1 F in UC(F, J1F); by (5.7), or by
determinants, the dimension of F must be even. We conclude that, if F is of odd
finite dimension, but if -1 is not isolated in a(T) (so that, by (6.5), d(I, T) = IT)
then there cannot be any minimising path from / to T in G.

(8.3) We shall construct a minimising path in the remaining case of (8.1) in
three steps: some technical lemmas, (8.4)-(8.7); a minimising path in a special
situation, (8.8)-(8.10); and the general construction, (8.11)-(8.12).

The following notation will be used: (/n)£L0 denotes a real orthonormal
sequence in E (so that Jfn = /„ for each n), whose closed span is F; (an)f_1 and
(A,)*_o denote bounded sequences of nonnegative real numbers; a denotes a
positive real number; a0 = /?_x = 0; and A and B denote the skew-adjoint
elements oth(E, J) defined by

A\F^=O,

(1)

B\FX=O,

(2)

4/o =

and,

0, and,

Af2n = -«

for n > 0,

*/2n = A

for n ;

, / 2 n + 1,

Ahn-

Bf2n + l

i = «n/ 2 n;

(8.4) LEMMA. Suppose that, for all n > 0,

(1) A? + "I + «„+!&

(2) i8n
2 + «n

2
+1

yl + 5 | | < a.
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PROOF. Let x = L?.0£mfm e F. Then

(A + B)x = -ft^
n - l

oo

n - 0

\\(A + B)xf = ^ 1 ^ 1 + f \t2n_lUn - Pn£2n

oo

E ( 2l ti I

I CL £2 — 1

00

E (K\tlA +

n-0

As (A + B) | .Fx = 0, the result follows.

(8.5) LEMMA. Suppose that a > ax > 0, and, /or a//« > 1,

i + i

i + 2

e? TJM = a — an

(a) the sequence (2"r)n) is bounded above and away from 0;
(b) if, for all n > 0, ft < 7,n+1, /Aen M + 5 | | = |M|| = a.
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PROOF. Induction on (1) proves that, for n > 1,

" < «n + 1 < 2 - O l +(1 - 2 - ) a ,

and, trivially, (a2""1^)2" > a /{l + 2~"(a/a1 - 1)}. Hence (a) follows. For (b),
notice that (an) is strictly increasing, by (1), and therefore, for each « > 1,

V2
n + i + a2, + an+ii?n+i + «„?]„ = a2 - an+1a + ana < a2.

On the other hand,

vl + i + a*+i + «n + ii7M+2 + <V)n + i

= 2 a 2
+ 1 + a n a - an + 1(a + an + 1 + an + 2) + a2

< 3a2
+1 - 3an+1an + 2 + a2 (by (1))

< a 2 .
Thus, if 0 < /}„ < Tjn+1 for each n > 0, then (8.4) applies, and consequently
P + B|| < a. However,

\\(A + B)f2n+1\\ = \\an + lf2n + 2 - pJ2J> an + 1 - /8B - a
as « -» 00. Hence \\A + B\\ > a also. If we take all the fln to be zero, it follows
that p | | = a.

(8.6) Let (yn)n>i be any strictly increasing sequence of positive real numbers
converging to m\ set cn = cosyn, and sn = sinyn. Thus, for each n, sn > 0 and
cn + sn ~ 1; moreover, as n -* 00, cn -* -1 and sn -» 0. Define To G U(£, / ) by
the formulae

(1) 7 0 |F- L =/ | f - L , r o / o = - / o , and, f o r « > l ,

Tofln-l = Cnfln-l + ^nAn'

^oAn = ~Snfln~\ + Cn/2«-
(Thus, by (6.5) and (8.2), To cannot be joined to / by a minimising path in

(8.7) LEMMA. Suppose that, in (8.3), /}„ > 0 /or a// n > 0, and tfie
product n^=1{/3n(l - cn + 1 ) / i n + 1} converges {to a nonzero limit). Then -1 is not
an eigenvalue of (I - B)'\l + B)T0 | F.

PROOF. Let x = E"_olB/n
 G F satisfy (/ - By^I + B)Tox = -x, or equiva-

lently

(1) B(I - T0)x = (I + T0)x

(compare (5.6)(b)). Substituting in (1) and equating coefficients of /0 , of fv of f2n

(for n > 1), and of / 2 n + 1 (for n > 1) in turn, we obtain, respectively,

(2) - A ) ( * i € 2 + ( 1 - ^ ) 0 = 0,

(3) 2 j 8 0 € 0 = - ^ 2 + ( l + c1){i,

https://doi.org/10.1017/S1446788700028202 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028202


[2 3) C. J. Atkin 218

(4) -fin(s,+it2.+2 +(1 - cm+1)Z2ll + l) = (1 + c j£ 2 n + snt2n_u

(5) fiH((l - cn)i2n - s£lH_x) = -sn + 1H2n+2 + ( 1 + cn + 1 ) | 2 n + 1 .

As /?0 > 0, (2) and (3) yield readily that

(6) €i = A,*o. sJ2+(l-Cl)^ = 0.

Suppose inductively that, for some n > 1,

(7) ^ 2 , , + ( 1 - 0 * 2 . - 1 = 0

(the case n = 1 is (6)). Then, as 1 - c2
n = si ¥= 0,

(1 + CH)t2n + Sni2n_x = -(1 + C,){(1 - C,)A}{2,-1 + ^ 2 , - 1 = 0.

Since /?„ > 0, it follows from (4) that

Ergo, equality (7) holds for all n > 1. Use it to substitute for the odd suffixes in
(5), and simplify (recalling that sj; = I — c%). Thus, for M > 1,

This equality also holds for n = 0, by (6). Now the formulae (8) and (7) express
all the coefficients £„ as nonzero scalar multiples of £0. If £0 # 0, then the
convergence of T\fins~Xi0- — cn+1) implies that | | 2 n | has a positive limit as
n -> oo, by (8). This is absurd, and therefore | 0 = 0, and so £„ = 0 for all n; that
is, x = 0. (Convergence of the infinite product is not really needed; it suffices
that the partial products should not form a square-summable sequence.)

(8.8) Suppose now that (en)"=1 is a strictly increasing sequence of positive
numbers with limit e < w such that the series E^=12"(e - £„) converges. Suppose
also that 7\ e V(E, J) satisfies the following conditions: NXTJ = e, TX(F) c F,
ker(7\ + / ) is of finite odd dimension, T /̂Q = —f0, and, for « > 1,

Tif2n = -sinen -/2n_i + cosen • f2n,

TJ2n-i = cosen-f2n_l + sinen • f2n.

Choose a strictly increasing sequence (<*„)„ > 0 with a0 = 0 and a = limn _ x an =
7T - e, satisfying (8.5)(1) (for instance, aM = a(l - 2"")). Define A as in (8.3)(1),
and i]n as in (8.5). Suppose, for each n, that pn e (0,1], and that n*_op«
converges; set ySn = pnTjn+1/2 for each n, and define B by (8.3)(2).

If we set yn = an + ent m, then the operator r0 of (8.6) is precisely 7\

(8.9) LEMMA. The Cu path in V(E, J) defined by

p(t) = (/ - IB)'1 (I + /5)7\exp(^), 0 < t < 1,

has length a = is — e.
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PROOF. Use (2.2) and differentiate in L(£, / ) to obtain

p(t) = (I - tB)-\l + tB){2B(I - t2B2Yl +A}T1ap(tA),

since ATX = TXA, and since all the expressions in B commute. To the left and
right of the bracket are isometries, so

However, for n > 0,

2B{I - t2B2)'lfln = 2/?n(l + t2PZ)~lf2n+1, and

whilst, for 0 < t < 1,

Zpnl 1 + t pn I ^ ^ p n ^ ^Jn+1

by construction. Hence, by (8.5) (mutatis mutandis), ||/»(OII = a> a nd the length
of p is a, as stated.

(8.10) LEMMA. 7\ may be joined to I by a minimising path.

PROOF. Clearly />(0) = Tx, p(Y) = (/ - fl)"1^ + B)T0, and />(1) | F-1 =
^(O)IF-1- (by definition of /I and B). Now, in the notation of (8.6), and with
0n = e — en for each n,

O({6n+1 + vn

By our hypotheses in (8.8), T\™=opn and £2"0n both converge, whilst, by (8.5)(a),
2"rjn is bounded away from 0. Hence rij8n5^+1(l — cn+l) converges; by (8.7),
p(l) | Fdoes not have -1 as an eigenvalue, and consequently

ker(/»(l) + / ) = F-1 nker(/>(l) + / ) = Fx nker(7\ + / )

has, because of /0, dimension less by one than that of ker(7\ + / ) . Thus p(l)
may be joined to / by a minimising path, and d(I, p(l)) < IT (by (7.1), (7.2)).
However, d(Tx, p(l)) < a by (8.9), and d(Tlt I) = 2m - e = m + a by (6.5).
Therefore d(Tv p(l)) = a and d(I, p(l)) = IT, and a minimising path between
Tx and I may be obtained by taking a minimising segment from p(l) to / and
adjoining it to p.
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NOTE. That N'(p(l)) = <n, which we have (in effect) proved by distances
(compare (6.8)), results also from perturbation theory, since B is compact and
N'(T0) = m.

(8.11) We can now complete the proof of (8.1). Suppose, then, that r e U ( £ , J ) ,
that N'(T) = v G (0, w), and that the projection PT({z e S: 8(z, 1) > N'(T)}) is
of odd finite rank. By the definition of N'(T), PT({z e S: a < S(z, 1) < i>}) is of
infinite rank for any a < v (see (3.2)). Using this fact, choose inductively a strictly
decreasing sequence (*„)„ > 0 of positive real numbers such that

(1) K0 < 2P(1 - v/m),

(2) t 2%, < oo,
n = 0

(for instance one might take Kn < 2~2"K0), and such that, for n 3= 0,

(3) P T ( { z e 5 : v - Kn < 8 { z , l ) < v - Kn + l } ) * 0 .

The choice of Kn+1, given Kn, is always possible, but the spectral decomposition of
T may make one of (2), (3) redundant. Now set vn = v — «„, and choose T such
that

(4) KO(* + VQ)'1 < T < -n/v - 1,

which is possible because of (1).
Define a function h: {-v, + y ) - * R a s follows: when 0 < £ < v0, set h(£) = 0.

For n > 0, vn < £ < Kn+1, set

(5)

Finally, set

(6)

By (4),

(7) -p^h(i)^p foraU^e {-v,

Set

(8) D=f ih{-i log z)PT(dz)
•/i'0<8(z,l)<i.

(recall (3.3)). Then D is skew-adjoint and real (by (6), cf. (6.9)(a)); by (7), a(D) is
included in the interval [-/>, +/>] of the imaginary axis, so that ||£>|| < v.
Furthermore, (5) gives h(vn) = vn for each n; hence ivn e a(D), and \\D\\ = v
exactly. Take the geodesic q in U(2s, / ) with

(9) ' q{t) = Texp(?i)), 0 < t < T.

As usual (for instance in (6.9)(a)),

(10)
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Write 7\ = q(r), and consider its spectral decomposition. If we write Fo for the
image of

P r ( { z e S : S(z,l)> v or 8(z,l) < v0}),

and, for n > 0, if we let Fn+1 denote the image of

PT{{zeS:vH<S(z,l)<vn+1}),

then 7\ | Fo = T \ Fo (as D \ Fo = 0), and, by (5), (8), (9),

So a(7\ \FO
X) consists only of eigenvalues exp( + ;(l + r)vn) and their cluster

points exp( + /(l + T)V). By (3.4), then,

N'(TX) = (1 + r)v,

and, by (4), (1 + r)v < m. Thus -1 remains an eigenvalue for Tx of the same odd
finite multiplicity as for T, and in fact with the same eigenvectors (all in Fo).
From (6.5),

(11) d{Tx,l) = 2m -(1 + r)v = d(T,I) - f(q),

in view of (10).
(8.12) Take a real unit vector / 0 e k e r ^ + / ) c Fo, and, for n ̂  1, let e2n

be a unit exp{/(I + r)vn)-eigenvector of Tl\Fn+1, so that Jeln is a unit
exp{-/(l + r)vn}-eigenvector. For n > 1, set

fm-x = (e2n + Je2n)/&, hn = (^2n - Je2n)/(ij2),

and let F be the closed linear span of (fn)n>0. Define en = (1 + T)vn, and
e = (1 + T)V. Then the data 7\, (/„), (en), e satisfy all the conditions of (8.8), by
virtue of (8.11)(2); by (8.10), there is a minimising path from Tx to / , and by
(8.11)(11) this path and q together will form a minimising path from T to / . This
completes the proof of (8.1). Note that not only were various numerical values to
some extent arbitrary, but also the forms of the path p and of the operator B
were chosen merely for simplicity.
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