
ANZIAM J. 55(2013), 109–128
doi:10.1017/S1446181113000412

A CARTOPT METHOD FOR BOUND-CONSTRAINED
GLOBAL OPTIMIZATION

B. L. ROBERTSON) 1, C. J. PRICE2 and M. REALE2

(Received 5 March, 2012; revised 8 August, 2013)

Abstract

A stochastic algorithm for bound-constrained global optimization is described. The
method can be applied to objective functions that are nonsmooth or even discontinuous.
The algorithm forms a partition on the search region using classification and regression
trees (CART), which defines a region where the objective function is relatively low.
Further points are drawn directly from the low region before a new partition is formed.
Alternating between partition and sampling phases provides an effective method for
nonsmooth global optimization. The sequence of iterates generated by the algorithm
is shown to converge to an essential global minimizer with probability one under mild
conditions. Nonprobabilistic results are also given when random sampling is replaced
with points taken from the Halton sequence. Numerical results are presented for both
smooth and nonsmooth problems and show that the method is effective and competitive
in practice.

2010 Mathematics subject classification: 90C26.

Keywords and phrases: CART, Halton sequence, numerical results, random search,
stochastic global optimization.

1. Introduction

The bound-constrained global optimization problem is of the form

min f (x) subject to x ∈ Ω, (1.1)

where the search region Ω is defined by an n-dimensional box of the form

Ω = {x ∈ Rn : li ≤ xi ≤ ui for all i = 1, . . . , n}.

The objective function f maps Ω into R ∪ {+∞} and is assumed to be lower
semicontinuous. The inclusion of {+∞} means that the objective can be assigned the

1Department of Statistics, University of Wyoming, Laramie, Wyoming, USA;
e-mail: brober25@uwyo.edu.
2Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch,
New Zealand; e-mail: chrisj.price@canterbury.ac.nz, marco.reale@canterbury.ac.nz.
c© Australian Mathematical Society 2014, Serial-fee code 1446-1811/2014 $16.00

109

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

mailto:brober25@uwyo.edu
mailto:chrisj.price@canterbury.ac.nz
mailto:marco.reale@canterbury.ac.nz
https://doi.org/10.1017/S1446181113000412

110 B. L. Robertson et al. [2]

value +∞ at points or regions where it cannot be evaluated. Problems with general
constraints can be handled using the extreme barrier approach [4], which defines
f (x) = +∞ at infeasible points. Under appropriate scaling, Ω can be simplified to a
box of the form Ω = [−1, 1]n, and without loss of generality this is used hereafter.

Designing a global optimization algorithm to find a global minimum is usually very
difficult because there is often no way to tell if a local minimum is indeed a global
minimum. Nevertheless, an assortment of deterministic and random search methods
have been proposed to solve a variety of global optimization problems. Random
search methods have an element of randomness or probability in their design and
deterministic methods do not. In the literature, random search methods may also be
called Monte Carlo methods or stochastic algorithms.

Deterministic methods (such as branch and bound, interval analysis, and tunnelling
methods [12, 13]) typically guarantee asymptotic convergence to the global minimum.
Random search methods (such as simulated annealing, genetic algorithms, multi-start,
and clustering algorithms [24, 26]) ensure convergence in probability. The trade-off

between deterministic and random search methods is in terms of computational effort
and the type of convergence [24, 25]. Random search methods are typically fast, but
only offer convergence in terms of probability.

Random search algorithms are popular amongst practitioners for several reasons.
First, they can provide a relatively good solution quickly and easily [25]. Second, they
are relatively easy to implement (and program) on complex problems with “black box”
function evaluations because they typically rely on function evaluations, rather than
gradient or Hessian information [25]. This also makes random search methods useful
for ill-conditioned global optimization problems where the objective function may be
nonconvex, nonsmooth, and possibly discontinuous over the search region. Third,
random search algorithms have been shown to be effective in solving some large-scale
optimization problems for which deterministic methods struggle [24]. For example,
Dyer and Frieze [7, 8] showed that estimating the volume of a convex body takes an
exponential number of function evaluations for any deterministic algorithm, but if a
random search algorithm is used then the volume can be estimated in polynomial time
with a high probability of being correct [24].

Arguably the simplest method for solving (1.1) is the pure random search (PRS)
algorithm. PRS evaluates f at a number of randomly generated points over Ω and uses
the best function value as an estimate of the global minimum. However, PRS often
performs poorly in practice and many authors have developed algorithms to improve its
numerical performance. There is an extensive literature on increasing the performance
of PRS [26]. The remainder of this section reviews several random search methods
that are used for comparison in Section 8.

Controlled random search (CRS) [18] uses a set S of 35n randomly generated points
over Ω. At each iteration, n + 1 points are randomly selected from S and one of these
points is reflected through the centroid of the remaining n points. If the reflected point
has f value lower than max f (x) : x ∈ S , it is retained and the point with the greatest
f value is removed from S ; otherwise the reflected point is ignored. In any case, the

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

[3] A CARTopt method for bound-constrained global optimization 111

method repeats until stopping conditions are satisfied. A new version of CRS uses a
weighted centroid and weighted reflection, and forms a quadratic approximation using
the 2n + 1 points with the best f values under certain conditions [5]. Although effective
in practice, both CRS algorithms have no formal convergence theory.

Accelerated random search (ARS) [3] randomly samples a finite sequence of
contracting subregions (initially Ω) centred on the best iterate. If a point with a
lower f value is found, or the sequence is exhausted, the search returns to Ω. This
counterintuitive approach allows the algorithm to focus its search in the neighbourhood
of its best point and can produce high-accuracy approximate solutions.

Another technique that is used to increase the efficiency of PRS is to partition Ω

into a collection of subregions. The sample intensity can then be varied over Ω by
selecting more points from subregions of the partition where f is presumed or known
to be low (see, for example, stratified random search [9]).

An adaptive partitioning strategy can also be employed so that the partition is
formed iteratively. The interested reader is referred to Zabinsky’s book [24] for a
full review on adaptive methods. Tilecutter [17] is in the spirit of the deterministic
algorithm DIRECT [14] and forms a sequence of nested subregions called tiles. At
each iteration, certain tiles are cut into smaller tiles and points are randomly drawn
from the new tiles. The method continues cutting and sampling tiles until stopping
conditions are satisfied.

In this paper, a random search method which produces a sequence of non-nested
partitions is proposed. Each partition is used to iteratively update the sample intensity
over Ω so that more points are selected from where f is presumed to be low. We begin
by introducing the partitioning strategy that is used in our algorithm, called global
CARTopt. The algorithm is described in Section 3, and particular steps are described in
detail in Sections 4 and 5. A parallel implementation of the global CARTopt algorithm
is given in Section 6. A global convergence proof for the algorithm is given in
Section 7. Numerical results on a selection of bound-constrained global optimization
problems are presented in Section 8, and Section 9 concludes the paper.

2. The partitions

To illustrate the advantages of forming a partition in a random search algorithm,
consider minimizing an objective function f over Ω using the following two
approaches:

(i) applying PRS on Ω using N points; and
(ii) partitioning Ω into N subregions Ai of equal positive Lebesgue measure and

drawing one point randomly from each, where 1 ≤ i ≤ N.

Let F(y) and Fi(y) be the cumulative distribution functions of objective function values
induced from uniform sampling over Ω and each Ai, respectively, so that

F(y) =
1
N

N∑
i=1

Fi(y).

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

112 B. L. Robertson et al. [4]

Let Y be a random variable for the best function value obtained out of N draws over
Ω. Then for approaches (i) and (ii), after N draws we have

Pr(Y ≤ y | approach (i)) = 1 −
(1

N

N∑
i=1

(1 − Fi(y))
)N
, (2.1)

Pr(Y ≤ y | approach (ii)) = 1 −
N∏

i=1

(1 − Fi(y)). (2.2)

Noting that 1 − Fi(y) is nonnegative for all i, the inequality of the arithmetic and
geometric means,

1
N

N∑
i=1

(1 − Fi(y)) ≥
[N∏

i=1

(1 − Fi(y))
]1/N

,

can be applied to (2.1) and (2.2), giving

Pr(Y ≤ y | approach (i)) = 1 −
(1

N

N∑
i=1

(1 − Fi(y))
)N

≤ 1 −
N∏

i=1

(1 − Fi(y)) = Pr(Y ≤ y | approach (ii)).

Therefore, the probability of generating a lower f value using approach (ii) is greater
than or equal to that using PRS. Hence, simply by partitioning Ω into a set of equally
sized subregions and drawing a sample from each, we would expect to obtain a lower f
value. Rather than having a fixed partition as in this example, we propose a partitioning
strategy that uses observed function values to form the partition.

2.1. The CART partition In this paper we use classification and regression trees
(CART) [6] to partition Ω. Of particular interest is a partition that divides Ω into sets
where the objective function is relatively low and high. To construct a CART partition
of this form, a training data set T consisting of points with observed low and high
function values is required. In this section we assume that there exists a set T of
distinct points distributed over Ω with observed function values. The set of points is
classified into two mutually exclusive and exhaustive groups as follows.

Definition 2.1 (Low points). The 0 < φ < |T | elements of T with the least function
values are classified as low points and form the set ωL.

Definition 2.2 (High points). The set of points T \ ωL are classified as high points and
form the set ωH .

Using the high and low points, a CART partition on Ω can be formed.
The CART partitioning algorithm begins by dividing Ω into two hyper-rectangular

subregions A1 and A2 such that A1 ∪ A2 = Ω and Ao
1 ∩ Ao

2 = ∅, where Ao denotes the

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

[5] A CARTopt method for bound-constrained global optimization 113

interior of A. To find the boundary that separates A1 and A2, a series of hyperplane
splits of the form

x j + z j

2
, x ∈ ωL and z ∈ ωH , (2.3)

are considered, where x j denotes the jth coordinate of x and the splitting hyperplane
is orthogonal to the jth coordinate axis. The method exhaustively searches over each
coordinate to find the hyperplane split that maximizes the change in impurity [6], that
is, the split that makes A1 (or A2) contain mostly points from ωL or ωH . For the next
iteration, A1 is divided further by considering splits of the form (2.3) using the points
in T ∩ A1. The method continues splitting until each subregion contains points from
ωL or ωH , but not from both.

The CART partition on Ω is a collection of nonempty hyper-rectangular subregions
Ai aligned with the coordinate axes. The subsets where the objective function is
presumed to be low and high can now be defined.

Definition 2.3 (Low region). The low region of the CART partition is the union of all
the subregions Ai that contain an element from ωL, namely⋃

i

{Ai : Ai ∩ ωL , ∅}.

Definition 2.4 (High region). The high region of the CART partition is Ω itself.

Our primary goal is to define the low region so that the sample intensity can be
increased where the objective is presumed to be low. Therefore, rather than setting
the high region as the union of all the high subregions, Ω is set as a single high
region. This simplification does not affect the convergence properties of our method,
is computationally cheaper, and dramatically simplifies the algorithm.

The hyper-rectangular partition structure is aligned with the coordinate axes. To
remove this restrictive alignment, T can be reflected using a Householder matrix so
that the partition structure does not have to be aligned with the original coordinate
system. The authors found that reflecting T with respect to the principal axis of the
cloud of points in ωL performed well [20, 21].

The training data set is reflected so that the x1-axis is set parallel to the principal
axis of the cloud of points in ωL. Using ω(i)

L to denote the ith point in ωL, expressed as
a row vector, the scatter matrix is defined by

M =

|ωL |∑
i=1

[ω(i)
L − ω̄L]T[ω(i)

L − ω̄L],

where ω̄L is the sample mean of the points in ωL. The dominant eigenvector d of
the scatter matrix M is the direction vector for the principal axis of points in ωL.
Premultiplying each point in T with the Householder matrix

H = I − 2uuT,

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

114 B. L. Robertson et al. [6]

where
u =

e1 − d
‖e1 − d‖

, (2.4)

gives the desired reflection.
To ensure that the reflected points are elements of [−1, 1]n, each point is multiplied

by the scalar 1/ϕ, defined as follows. The Householder matrix H reflects points
in the hyperplane given by (2.4) and preserves the length of vectors, ‖Hx‖2 = ‖x‖2.
Therefore, ‖Hx‖ is maximized at point(s) that maximize ‖x‖. This occurs at the vertices
of Ω, given by the set

V = {z ∈ [−1, 1]n : ‖z‖ =
√

n}.

Therefore, the maximum coordinate value that Hx can take for all x ∈ Ω is given by

ϕ = max
z∈V
‖Hz‖∞ = max

i=1,...,n

n∑
j=1

|Hi j|.

The scalar ϕ takes values 1 ≤ ϕ ≤
√

n and gives the minimal scaling such that
(1/ϕ)Hx ∈ [−1, 1]n for all x ∈ Ω.

The notation Ω̄ = {(1/ϕ)Hx : x ∈ Ω} is used to denote the transformed search region,
and Āi denotes a low subregion in Ω̄. A CART partition performed on Ω̄ defines a
collection of hyper-rectangular subregions that partition Ω̄. It is possible that some Āi

may have subsets that are not in Ω. The feasible subset of each low subregion in Ω̄

defines the low subregion in Ω,

Ai = {ϕHx : x ∈ Āi ∩Ω}.

To reflect a point x ∈ Ω̄ back to Ω, the reflection ϕHx is made.

3. The algorithm

The global CARTopt algorithm is a random search method that alternates between
partition and sampling phases. The basic structure of the algorithm is given in
Algorithm 3.1, and each step is described below. Here dae denotes the ceiling function,
defined by dae = min{b ∈ Z : b ≥ a}.

Algorithm 3.1 (Global CARTopt algorithm).

(1) Initialize. Choose N ≥ 2, Tmax > 0 and 1/N ≤ σ ≤ (N − 1)/N. Generate a batch
of 2N points X1 ⊂ Ω, and let x1 be the best known point. Set k = 1 and T1 = X1.

(2) Classification. Set ωL as the d0.8Ne points in Tk with the least f values and ωH

as Tk \ ωL.
(3) Partition. Form a CART partition on the transformed search region Ω̄ using the

reflected training data set to define the low region in Ω̄.
(4) Sample. Generate dσNe points from Ω and N − dσNe feasible points from the

low region in Ω̄. Reflect the feasible points from Ω̄ back to Ω and call the new
batch of points Xk.

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

[7] A CARTopt method for bound-constrained global optimization 115

(5) Update T . Let xk+1 be the best known point. If a restart is used, set Tk+1 ⊂

Tk ∪ Xk such that xk+1 ∈ Tk+1; otherwise set Tk+1 = Tk ∪ Xk. If |Tk+1| > Tmax, the
|Tk+1| − Tmax points with largest f values are discarded. If stopping conditions
are not met, increment k and go to Step 2.

At Step 1, the user chooses a batch size N ≥ 2, an upper bound Tmax and a parameter
σ. The upper bound Tmax is the maximum number of points that are retained in T
to form the CART partition. The parameter σ specifies the number of points to be
selected from a uniform distribution over Ω (high region). A large σ value focuses
the search effort globally and a small value increases the search intensity in the low
region. To complete Step 1, an initial batch of 2N points are selected from Ω and f is
evaluated at each point. The best point x1 is set as the point with the best f value.

At Step 2, the batch of points are classified into the sets ωL and ωH using
Definitions 2.1 and 2.2, respectively. The value φ = d0.8Ne is chosen here although
other choices are possible. Choosing φ = d0.8Ne keeps the size of ωL fixed for all
iterations. As more points are added to T in Step 5, ωL tends to cluster. This allows
successive partitions to focus down in promising subregions.

A CART partition on the transformed search region Ω̄ is then formed at Step 3 using
the reflected training data set. The CART partition is used to vary the sample intensity
over Ω by selecting a batch of points from subregions of the partition on Ω̄. The newly
generated points are then reflected back to points in Ω. The sampling phase at Step 4
is described in detail in Section 4.

The training data set is updated at Step 5 using the newly generated points. Because
the algorithm is stochastic, it is possible to restart the algorithm from time to time. The
restart feature is discussed in detail in Section 5. Discarding points with the largest f
values ensures that |T | remains bounded. It is necessary that |T | remains bounded for
all k to establish convergence to a global minimizer of f . If stopping conditions are
not met, the training data is reclassified at Step 2 and the method repeats.

4. The sampling phase

At each pass of the main loop, a batch of N points is drawn from Ω. Rather than
drawing all N points from the low region, a fraction

1
N
≤ σ ≤

N − 1
N

(4.1)

of points are drawn from Ω (high region). Drawing points from each region provides a
way to vary the sample intensity over Ω. Choosing σ < 0.5, for example, concentrates
search effort where f is presumed to be low. The bounds given by (4.1) ensure that at
least one point is drawn from the low region (dσNe ≤ N − 1) and at least one from the
high region (dσNe ≥ 1) at each iteration.

Drawing dσNe points from the high region, Ω, is straightforward. The high region is
sampled to ensure that the global minimum is not missed and is necessary to establish
convergence.

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

116 B. L. Robertson et al. [8]

To draw points uniformly from the low region in Ω, the following method is used.
Consider drawing a point uniformly from the low region in Ω̄ with the following
structure:

Ā1 ∪ Ā2 ∪ · · · ∪ Ā j,

where each Āi is a low subregion in Ω̄. Firstly, an Āi is selected using a simple
discrete inverse transform method [15] and then a point is drawn uniformly from Āi.
A particular Āi is selected by choosing i using

i = min{α ∈ N : U ≤ F(Āα) and 0 < α ≤ j},

where U ∈ [0, 1] is a random variable and F is the cumulative distribution function
given by

F(Āi) =
m({Ā1 ∪ Ā2 ∪ · · · ∪ Āi})
m({Ā1 ∪ Ā2 ∪ · · · ∪ Ā j})

,

where m(·) denotes the Lebesgue measure. A point x is then drawn from a uniform
distribution over the hyper-rectangular low subregion Āi.

Because the CART partition is on Ω̄, it is possible that the newly generated x may
not be an element of Ω. If

x ∈ Āi such that ‖ϕHk x‖∞ > 1,

the point is rejected (x < Ω) and the method repeats. This acceptance/rejection
sampling method is an effective technique to use here because m({Āi \ Ω}) tends to
be small, if it exists at all. Furthermore, the method generates the required number of
points almost surely (see Proposition 4.1).

Once N − dσNe points have been accepted, the points are reflected back to Ω to
give the sample over the low region in Ω. The N − dσNe reflected points and the dσNe
points drawn uniformly from Ω complete the batch of N points.

Proposition 4.1. The sampling method described above generates N points in the low
region of Ω with probability 1.

Proof. If the low region in Ω̄ is a subset of Ω, each point drawn is feasible and the
result follows.

Otherwise, m({Ā1 ∪ Ā2 ∪ · · · ∪ Ā j} \ Ω) > 0 and acceptance/rejection sampling is
required to reject infeasible points. Generating a feasible point is a Bernoulli trial—a
feasible point is either generated or not—and the probability of success is given by

P =
1

m({Ā1 ∪ Ā2 ∪ · · · ∪ Ā j})

j∑
i=1

m(Āi ∩Ω),

where j is the number of low subregions. For any x ∈ ωL and ε < 2, m(B(x, ε) ∩ Ω) ≥
m(B(x, ε)) · 2−n > 0, where B(x, ε) is an open ball of radius ε > 0. In most cases,
B(x, ε) ⊂ Ω for small ε. Hence P is nonzero for all iterations.

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

[9] A CARTopt method for bound-constrained global optimization 117

Noting that repeated trials are independent with constant probability of success P,
the number of points generated in the low region after k trials is a binomial random
variable. The probability that at least N feasible points are drawn after k > N trials is

Pr(number of feasible points ≥ N) = 1 −
N−1∑
q=0

k!
q!(k − q)!

Pq(1 − P)k−q. (4.2)

The proposed sampling method draws points indefinitely until N are obtained.
Therefore, considering the limit of each term of the summation in (4.2) as k tends
to infinity,

Pq

q!
lim
k→∞

k!
(k − q)!

(1 − P)k−q,

allows the limit of (4.2) to be calculated. Noting that 0 < P ≤ 1 for all k, in the limit
as k tends to infinity (1 − P)k−q approaches zero. Hence, each term of the summation
in (4.2) approaches zero in the limit as k tends to infinity and N points are drawn from
the low region in Ω almost surely. �

In practice, the global CARTopt algorithm does generate N points in reasonable
time because random number generators satisfy various dispersion conditions. To
ensure that N points are drawn, one could, for example, divide the low region into
N subregions of equal measure and draw one sample from each. If N feasible points
are not obtained, continue dividing the low region into a set of nested subregions and
draw one sample from each until N points are obtained. This would ensure that N
points are drawn. The following assumption can be made to ensure that the required
number of low points are drawn from the low region in finite time.

Assumption 4.2. Let N − dσNe points be drawn from the low region using a finite
number of rejections.

4.1. The Halton sequence Setting Ω as the high region, rather than the collection
of high subregions defined by CART, makes computational sense. Furthermore,
it allows the algorithm to search Ω using efficient quasi-random sequences. The
Halton sequence [10] is of particular interest here because it is known to quickly
distribute points evenly over [0,1]n in low dimensions. Exploring Ω using these evenly
distributed points reduces the risk of CARTopt becoming trapped at a local minimizer.
The Halton sequence also allows us to develop a nonprobabilistic convergence proof,
which makes use of the following proposition.

Proposition 4.3. The Halton sequence {ut}
∞
t=1 is dense in [0, 1]n.

Proof. A simple proof is given by Abramson et al. [1] and a detailed proof is given by
Halton [10]. �

The Halton sequence gives the algorithm deterministic and stochastic layers. The
stochastic layer directs the search where f is presumed to be low based on the CART

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

118 B. L. Robertson et al. [10]

partition, and the deterministic layer searches Ω in a highly uniform manner to reduce
the risk of missing the global minimizer.

5. Restarts

The Global CARTopt algorithm is stochastic and so restarting the algorithm from
time to time can produce different results. Restarting can increase the computational
efficiency of the method and reduce the risk of becoming trapped at a local solution.
Requiring xk ∈ Tk+1 ensures that the sequence { f (xk)} is monotonically decreasing.
The restart feature does not affect the convergence properties of the algorithm (see
Theorem 7.6) and is not required to establish global convergence.

A simple restarting method is to set Tk+1 = xk when Tmax is reached or if user
conditions are met. This essentially clears the training data set and allows a new
sequence of partitions to be formed. However, given that the training data set contains
useful information about f , it can be reused. If the sample points with the least f values
are reused, the resulting partitions tend to direct the search back to areas previously
explored. Reusing points that were drawn from the high region (Ω) gives an unbiased
indication of where f is low and potentially directs the search to new areas.

There are many possible heuristics that could be used to restart the algorithm and
two are considered in this paper. First, the algorithm restarts if there is a subregion Ai at
iteration k such that ‖Ai‖1 ≤ τ. The notation ‖Ai‖1 is used for the 1-norm of subregion
Ai’s main diagonal (the diagonal that passes through the centre of Ai). Initially
τ = 10−6 is used, and is then replaced by τ← τ3/2 after each restart. Decreasing τ after
each restart allows the algorithm to refine its current iterate, producing high accuracy
approximate solutions.

Second, the algorithm restarts if there is a subregion Ai at iteration k such that
‖Ai‖−∞ ≤10−16, where ‖Ai‖−∞ is the smallest (absolute) vector component of subregion
Ai’s main diagonal. This restarts the algorithm if a particular subregion has become
numerically degenerate in at least one dimension.

6. Parallel implementation

It is possible to implement various processes of the global CARTopt algorithm in
parallel. Two processes that could benefit from parallelization are forming the CART
partition and evaluating the objective function.

It is not necessary to evaluate the objective function sequentially in Step 1 or 5 of
the global CARTopt algorithm. Rather, the function values at a batch of points need
to be calculated. Therefore, if the objective function is computationally expensive to
calculate, each evaluation can be performed in parallel.

The CART partition described in Section 2.1 can be parallelized in several ways.
A detailed analysis of parallel CART formulations is beyond the scope of the current
paper, but the interested reader is referred to the work of Srivastava et al. [22] and
Yıldız and Dikmen [23] for further details. In this section we mention two simple
forms of parallelization. Feature-based parallelization [23] searches for the best

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

[11] A CARTopt method for bound-constrained global optimization 119

hyperplane split (see (2.3)) in subregion Ai on n slave processors. Each slave processor
searches for the best split in one of the n dimensions and the host processor selects the
best overall split.

Node-based parallelization [23] considers each subregion on a slave processor.
Initially an optimal hyperplane split is found to divide Ω into two subregions A1
and A2. Rather than splitting A1 and A2 further on the host processor, TA = T ∩ A1
and TB = T ∩ A2 are sent to slave processors for splitting. Further subregions that are
formed and require splitting (contain a mix of points from ωL and ωH) can be handled
in this way to complete the partition.

7. Convergence

The convergence properties of the global CARTopt algorithm are analysed with the
stopping conditions removed. This allows us to examine the asymptotic properties of
the sequence of iterates generated by the algorithm. The convergence results show
that every cluster point of the sequence {xk} is an essential global minimizer of f with
probability one.

Definition 7.1 (Essential global minimizer). An essential global minimizer x∗ is a
point for which the set

L(x∗) = {x ∈ Ω : f (x) < f (x∗)}

has Lebesgue measure zero.

If the objective function is continuous then f (x∗) is also a global minimum in the
classical sense.

Assumption 7.2. Let the following conditions hold.

(a) The sequence of function values { f (xk)} is bounded below.
(b) The objective function f is lower semicontinuous.

The first condition of Assumption 7.2 ensures that f (xk) 9 −∞ in the limit as
k→∞. The second condition precludes the existence of a sequence {xk} converging to
a point x∗ for which f (x∗) − δ > f (xk) for some δ > 0 when ‖xk − x∗‖ < ε, where ε > 0
and sufficiently small.

Theorem 7.3. The sequence of iterates {xk} generated by the global CARTopt
algorithm is an infinite sequence almost surely.

Proof. For {xk} to be an infinite sequence, the main loop of the algorithm (Steps 2–5)
must be a finite process. The cardinality of the training data set Tk is bounded above
by Tmax and so Steps 2 and 5 are finite processes. The partition phase uses a finite
training data set and the classification method is a finite process, so Step 3 is a finite
process. Step 4 draws N points from Ω almost surely. Thus, Step 4 is a finite process
almost surely. �

Corollary 7.4. Let Assumption 4.2 hold. The sequence of iterates {xk} generated by
the global CARTopt algorithm is an infinite sequence.

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

120 B. L. Robertson et al. [12]

Proof. The proof is similar to that of Theorem 7.3. Assumption 4.2 ensures that Step 4
is a finite process. �

Theorem 7.5. Let Assumption 7.2 hold. Each cluster point x∗ of the sequence {xk}

generated by the global CARTopt algorithm is an essential global minimizer of f with
probability one.

Proof. Theorem 7.3 and the fact that Ω is bounded ensure the existence of cluster
points in {xk} almost surely.

Let x∗ be any cluster point of {xk} and assume, by contradiction, that x∗ is not an
essential global minimizer of f . Then there exists a subset L(x∗) = {z ∈ Ω : f (z) <
f (x∗)} with positive Lebesgue measure. Because N ≥ 2 for all k, at least one point is
drawn from a uniform distribution over the high region Ω. The probability that L is
sampled at each iteration is bounded below by the probability that L is sampled in a
single draw, given by

Pr(x ∈ L | single draw over Ω) =
m(L)
m(Ω)

> 0.

Thus, the probability that L is sampled after k iterations is bounded below by

Pr(x ∈ L | k draws over Ω) = 1 −
(
1 −

m(L)
m(Ω)

)k
. (7.1)

Since there is an infinite number of iterations, in the limit as k tends to infinity
expression (7.1) approaches 1 and L is sampled almost surely. Hence, in the limit as
k→∞, f (xk) < f (x∗) almost surely, contradicting Assumption 7.2(b). Thus, x∗ must
be an essential global minimizer of f almost surely. �

The next theorem shows that restarting the algorithm does not affect its convergence
properties.

Theorem 7.6. Let Assumption 7.2 hold. If restarts are used, each cluster point x∗ of
the sequence {xk} generated by the global CARTopt algorithm is an essential global
minimizer of f with probability 1.

Proof. At each restart, xk ∈ Tk (see Step 5) and hence xk remains an element of the
training data set for all iterations. Thus, Theorem 7.3 and the fact that Ω is bounded
ensure the existence of cluster points in {xk}. The remainder of the proof follows
directly from Theorem 7.5. �

The following theorem gives the proof for the instance when the Halton sequence
is used to sample Ω, called the Halton global CARTopt algorithm. This instance is
shown to converge to an open set essential global minimizer.

Definition 7.7 (Open set essential global minimizer). An open set essential global
minimizer x# is a point whose function value f# is not more than the supremum of

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

[13] A CARTopt method for bound-constrained global optimization 121

the values f0 ∈ R for which the level set

L(f0) = {x ∈ Ω : f (x) < f0}

contains no open ball of positive radius.

The definition of x# means that there is a dense set in Ω on which the objective
function is not less than f#. We now show that the Halton global CARTopt algorithm’s
sequence of iterates is dense in Ω.

Theorem 7.8. Let Assumptions 4.2 and 7.2 hold. Each cluster point x∗ of the sequence
{xk} generated by the Halton global CARTopt algorithm is an open set essential global
minimizer of f .

Proof. Assumption 4.2, Corollary 7.4, and the fact that Ω is bounded ensure the
existence of cluster points in {xk}.

Let x∗ be any cluster point of {xk} and assume, by contradiction, that x∗ is not an
open set essential global minimizer of f . Then for some z ∈ Ω there exists a set

B(z, ε) = {‖z − x‖ < ε : x ∈ Ω} (7.2)

such that f (x) < f (x∗) for all x ∈ B(z, ε) for all sufficiently small ε > 0. Because
N ≥ 2, at least one Halton point is drawn from Ω at each iteration. Noting that
there is an infinite number of iterations and that the Halton sequence is dense in Ω

(Proposition 4.3), it follows from the definition of a dense set that there exists a Halton
point in (7.2) for all ε > 0, contradicting Assumption 7.2(b). Thus, x∗ must be an open
set essential global minimizer of f . �

Theorem 7.6 is easily extended to accommodate restarts if the Halton sequence is
not restarted from the same seed point at each restart.

8. Numerical results and discussion

The global CARTopt algorithm was tested on two sets of problems. The first are
smooth global optimization problems from papers of Ali et al. [2] and Rinnooy Kan
and Timmer [19]. The second set of problems are chosen from papers of Ali et al.
[2] and Moré et al. [16], and are expressed as a sum of squares

∑
i f 2

i with a global
minimum of zero. These problems are easily made nonsmooth by replacing the sum
of squares with absolute values

∑
i | fi|. The nonsmooth versions share the same global

minimizer(s) as their smooth counterparts because fi = 0 for all i at the solution.
However, these modified functions can make the results seem deceptively poor. A
final function value of 10−5 on the nonsmooth function, for example, corresponds to a
function value of approximately 10−10 on the original problem.

Numerical results were generated using a batch size N = 20 and Tmax = 10 000.
A post-partition modification [20, 21] was also applied to the CART partition. This
modification replaces any low subregion that only contains one point with a hypercube

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

122 B. L. Robertson et al. [14]

whose volume occupies approximately 1/|ωL| of the volume of the low region [20, 21].
All the algorithms considered in this section are stochastic and so each reported value
was averaged over 10 runs. A maximum number of 50 000 function evaluations was
also used for all the algorithms considered. If a particular algorithm failed to obtain
the desired accuracy within 50 000 function evaluations on a particular problem, the
run was considered a failure. If a method failed at least once over the ten runs, the
number of failures was reported.

Comparisons with the stochastic algorithms Tilecutter, ARS and CRS were also
made. Tilecutter was implemented as in an earlier paper [17], with the tile cutting
parameter A = 3/2 and restarts if the smallest 1-norm tile size (τacc) is 10−8. ARS was
implemented with a contraction factor of

√
2 and restarts if the smallest subregion size

is 10−8. CRS was implemented with its stopping rule removed and used an initial
batch of 35n points as per Brachetti et al. [5]. We removed the stopping rule from
CRS so we could make comparisons between the methods using the same stopping
rule, details of which follow.

8.1. Smooth problems The high region sampling parameter σ changes how the
global CARTopt algorithm operates. Selecting large values ofσmeans that the method
performs more like PRS, directing its search globally. Choosing a small value turns
the algorithm into a greedy method which directs its search locally. For small values
of σ there is a greater risk of missing the global solution, but for large values the
method becomes inefficient. In Tables 1–3 the rate of progress of the global CARTopt
algorithm on the smooth problems is shown for the values σ = 0.2, 0.5, 0.8. The
results from using the Halton sequence to sample the high region are not presented
here because there was little difference between the two instances.

The rate of convergence was approximately sublinear for each choice of σ and
the algorithm performed best with σ = 0.2. Although σ = 0.2 focuses the search
effort locally, the global minimum was not missed on the problems considered. More
function evaluations were required to solve each problem for the larger σ values.

Seven of the smooth test problems are reported in an earlier paper [17] for
C-GRASP [11] and Tilecutter. These papers [11, 17] list the average number of
function evaluations taken by each method to satisfy

| f (xk) − f∗| < 10−6 + 10−4| f∗|, (8.1)

where f∗ is the global minimum. Table 4 lists the averages (over ten runs) for
CARTopt, CRS and ARS using the stopping criterion given by (8.1). The global
CARTopt algorithm was implemented with σ = 0.2 and the high region was sampled
using either random or Halton points.

With the exception of one problem (Goldstein), C-GRASP was considerably slower
than all the other methods. All the methods solved the Goldstein problem, but
C-GRASP was extremely fast. Tilecutter and CRS performed similarly on the smooth
problems. ARS failed at least twice on four of the smooth problems. On the Shekel
problems, ARS became trapped at a local minimizer for many iterations. ARS focused

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

[15] A CARTopt method for bound-constrained global optimization 123

Table 1. Rate of progress of the global CARTopt algorithm with σ = 0.2. This σ value concentrates most
of the search effort in areas identified as low. f scores in bold show when the average function value over
ten runs reached the global minimum to four decimal places.

Problem n f∗ Number of function evaluations

200 400 800 1600 3200 6400

Brannin 2 0.3979 0.4436 0.3980 0.3979 0.3979 0.3979 0.3979

Camel 6 2 −1.0316 −1.0074 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Cosine Mix. 8 −0.8000 0.1759 −0.0026 −0.5067 −0.7867 −0.8000 −0.8000

Exponential 15 −1 −0.5244 −0.6936 −0.8322 −0.9797 −0.9989 −1.0000
Goldstein 2 3 3.4448 3.0013 3.0000 3.0000 3.0000 3.0000

Hartmann 3 3 −3.8628 −3.8341 −3.8625 −3.8628 −3.8628 −3.8268 −3.8268

Hartmann 6 6 −3.3224 −2.8095 −3.1287 −3.3068 −3.3222 −3.3224 −3.3224

Neumaier 3 10 −210 4439 1918 298.26 −171.65 −209.53 −210
Paviani 10 −45.7785 −23.766 −32.905 −42.127 −45.344 −45.7785 −45.7785

Rastrigan 2 −2 −1.8237 −1.9321 −1.9395 −1.9758 −2.0000 −2.0000

Shekel 5 4 −10.1532 −2.0528 −5.9979 −10.0704 −10.1532 −10.1532 −10.1532

Shekel 7 4 −10.4029 −2.3158 −5.8392 −10.3378 −10.4029 −10.4029 −10.4029

Shekel 10 4 −10.5364 −1.9761 −5.4970 −10.4797 −10.5364 −10.5364 −10.5364

Table 2. Rate of progress of the global CARTopt algorithm with σ = 0.5. This σ value concentrates the
search effort equally between areas identified as low and high.

Problem n f∗ Number of function evaluations

200 400 800 1600 3200 6400

Brannin 2 0.3979 0.3992 0.3979 0.3979 0.3979 0.3979 0.3979

Camel 6 2 −1.0316 −1.0298 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Cosine Mix. 8 −0.8000 0.3101 −0.0333 −0.3024 −0.6678 −0.7998 −0.8000
Exponential 15 −1 −0.5355 −0.7193 −0.8675 −0.9652 −0.9985 −1.0000
Goldstein 2 3 3.0188 3.0000 3.0000 3.0000 3.0000 3.0000

Hartmann 3 3 −3.8628 −3.8606 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628

Hartmann 6 6 −3.3224 −2.8504 −3.0713 −3.2492 −3.2974 −3.3224 −3.3224

Neumaier 3 10 −210 3113 1981 310.96 −154.74 −207.87 −210
Paviani 10 −45.7785 −24.623 −31.510 −42.046 −45.237 −45.768 −45.7785
Rastrigan 2 −2 −1.8216 −1.9349 −1.9757 −1.9876 −2.0000 −2.0000

Shekel 5 4 −10.1532 −2.0424 −4.1129 −9.4007 −10.1527 −10.1532 −10.1532

Shekel 7 4 −10.4029 −1.5601 −3.3229 −8.7804 −9.7344 −10.3997 −10.4029
Shekel 10 4 −10.5364 −1.9476 −2.8647 −7.4682 −8.2879 −10.5310 −10.5364

its search effort around the local minimizer, rather than searching globally, and in these
cases missed the global minimum. On the Hartman 6 problem, ARS also converged to
a local minimum on two runs. The CARTopt algorithm was fast on all of the problems
considered, requiring the fewest function evaluations on five of the seven problems.
There was little difference between searching Ω with the Halton sequence or using
random sampling: both were effective.

8.2. Nonsmooth problems The global CARTopt algorithm with σ = 0.2 was
also compared with Tilecutter, CRS and ARS on a set of nonsmooth problems,

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

124 B. L. Robertson et al. [16]

Table 3. Rate of progress of the global CARTopt algorithm with σ = 0.8. This σ value concentrates most
of the search effort in the high region.

Problem n f∗ Number of function evaluations

200 400 800 1600 3200 6400

Brannin 2 0.3979 0.5852 0.4300 0.4012 0.3979 0.3979 0.3979

Camel 6 2 −0.408 −0.8742 −0.9673 −1.0298 −1.0316 −1.0316 −1.0316

Cosine Mix. 8 −0.8000 0.6543 0.0045 −0.2367 −0.6879 −0.7965 −0.8000
Exponential 15 −1 −0.4538 −0.6969 −0.8460 −0.9706 −0.9982 −1.0000
Goldstein 2 3.0000 8.7839 4.0393 3.0320 3.0002 3.0000 3.0000

Hartmann 3 3 −3.8628 −3.7290 −3.8267 −3.8595 −3.8627 −3.8628 −3.8628

Hartmann 6 6 −3.3224 −2.5667 −3.0128 −3.2341 −3.3013 −3.3103 −3.3224
Neumaier 3 10 −210 5990 2091 587.63 −78.796 −200.53 −209.983

Paviani 10 −45.7785 −21.777 −29.275 −39.237 −31.463 −45.763 −45.7785
Rastrigan 2 −2 −1.7463 −1.8957 −1.9345 −1.9865 −1.9879 −2.0000
Shekel 5 4 −10.1532 −1.1685 −2.0408 −4.5301 −8.5904 −9.6388 −10.1532
Shekel 7 4 −10.4029 −1.5801 −2.3577 −3.6461 −8.6504 −9.8712 −10.4029
Shekel 10 4 −10.5364 −1.6977 −2.2051 −4.1761 −8.3667 −9.2225 −10.5364

Table 4. The average number of function evaluations required to satisfy the stopping criterion in (8.1).
Figures in bold show the method which took the fewest function evaluations. CARTopt used σ = 0.2.

Problem n C-GRASP Tilecutter CRS ARS CARTopt CARTopt

(Random) (Halton)

Brannin 2 59 857 717 1287 267 425 436

Goldstein 2 29 771 1251 240 428 412

Hartmann 3 3 20 743 1205 1474 1095 381 378
Hartmann 6 6 79 685 12 504 12 673 2 fails 1787 1774
Shekel 5 4 5 545 982 5449 6952 2 fails 1285 1275
Shekel 7 4 4 052 800 4475 6038 2 fails 1096 1075
Shekel 10 4 4 701 358 6295 6345 3 fails 1130 1255

where f (x∗) = 0 for each problem. The average (over ten runs) number of function
evaluations to obtain an approximate solution of low (10−2), moderate (10−4), and high
(10−6) accuracy are reported in Tables 5–7. The least number of function evaluations
required to satisfy each condition is shown in bold.

Tilecutter performed well on most of the problems, but performed poorly on the
variably dimensioned problem and failed to reduce the Schaffer 2 problem below
10−4. Tilecutter was converging to the global minimum on the variably dimensioned
problem, but required more than 50 000 function evaluations to satisfy the stopping
criterion. The search region for the Schaffer 2 problem is given by Ω = [−100, 100]2.
Tilecutter scales the search region to [0, 1]2 and so τacc = 10−8 scales to τacc = 10−6.
The first author decreased τacc from 10−8 to 10−10 and then Tilecutter was able
to reduce the Schaffer 2 function below 10−4 using an average of 18 000 function
evaluations. However, the first author could not find a value of τacc to reduce f below
10−6 within 50 000 function evaluations. Tilecutter performed the best on the Weka 3

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

[17] A CARTopt method for bound-constrained global optimization 125

Table 5. Average number of function evaluations required to reduce f below 10−2 on the nonsmooth
problems.

Problem n Tilecutter CRS ARS CARTopt CARTopt

(Random) (Halton)

Becker & Lago 2 609 1273 184 439 393

Bohachevsky 1 2 1461 1609 669 517 507
Bohachevsky 2 2 1496 1509 310 516 533

Levy & Montalvo 1 3 2345 2309 5782 606 571
Levy & Montalvo 2 3 2083 2711 3 fails 639 624
Mod. Rosenbrock 2 1976 12 441 4293 1165 2200

Periodic (Price) 2 719 1239 835 1118 657
Schaffer 2 2 4541 2479 865 893 882

Trigonometric 5 4320 11 982 2482 1306 1315

Variably dimensioned 4 23 577 3641 1097 1221 1202

Variably dimensioned 8 10 fails 22 610 8 fails 4982 5027

Weka 1 2 124 256 52 130 111

Weka 2 2 383 807 4695 1320 1458

Weka 3 2 5983 3 fails 10 fails 3 fails 10 fails

Table 6. Average number of function evaluations required to reduce f below 10−4 on the nonsmooth
problems.

Problem n Tilecutter CRS ARS CARTopt CARTopt

(Random) (Halton)

Becker & Lago 2 3014 2455 400 723 767

Bohachevsky 1 2 4908 2414 1015 831 825
Bohachevsky 2 2 4523 2351 945 812 802
Levy & Montalvo 1 3 4744 4097 6203 932 930
Levy & Montalvo 2 3 10 153 4523 8 fails 1094 1095

Mod. Rosenbrock 2 6119 13 437 10478 1143 1676

Periodic (Price) 2 1825 2722 1712 1341 909
Schaffer 2 2 10 fails 4132 10 fails 2429 2590

Trigonometric 5 17 655 17 617 4797 2747 3162

Variably dimensioned 4 6 fails 6751 2592 1990 2003

Variably dimensioned 8 10 fails 29 268 10 fails 8825 8705
Weka 1 2 922 582 188 289 275

Weka 2 2 1456 1663 6456 1321 2271

Weka 3 2 6022 3 fails 10 fails 4 fails 10 fails

problem (only failing once). This function has many local minima, and Tilecutter’s
success is largely due to its search being focused globally rather than locally.

CRS solved all but one of the nonsmooth problems, failing several times on the
Weka 3 problem. For most of the other problems, the method was faster than Tilecutter
to obtain approximate solutions of moderate and high accuracy, but slower at obtaining
low-accuracy solutions.

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

126 B. L. Robertson et al. [18]

Table 7. Average number of function evaluations required to reduce f below 10−6 on the nonsmooth
problems.

Problem n Tilecutter CRS ARS CARTopt CARTopt

(Random) (Halton)

Becker & Lago 2 8915 3628 968 1365 1111

Bohachevsky 1 2 12 020 3415 1645 2050 2082

Bohachevsky 2 2 11 099 3298 1242 1123 1116
Levy & Montalvo 1 3 12 524 5417 6586 1281 1299

Levy & Montalvo 2 3 35 508 6286 10 fails 1580 1730

Mod. Rosenbrock 2 14 815 16 483 5 fails 1844 2354

Periodic (Price) 2 5936 3692 3450 2394 1680
Schaffer 2 2 10 fails 5790 10 fails 4370 4301
Trigonometric 5 45 917 22 319 14903 4505 4266
Variably dimensioned 4 9 fails 10 162 5368 2958 2960

Variably dimensioned 8 10 fails 37 049 10 fails 16 820 21 773

Weka 1 2 2804 963 327 436 422

Weka 2 2 3400 2546 10319 2009 2099

Weka 3 2 1 fail 5 fails 10 fails 6 fails 10 fails

The ARS algorithm focused its search locally and in doing so failed on a number of
problems. The method failed to reduce f below 10−4 on four problems. ARS failed in
a similar way to Tilecutter on the Schaffer 2 problem because the smallest subregion
size was too large. Setting this parameter to 10−10 allowed the algorithm to reduce
f below 10−4 using approximately 2500 function evaluations. Choosing a smallest
subregion size of 10−14 allowed the algorithm to reduce f below 10−6 using an average
of 4500 function evaluations. It should be noted that these choices performed poorly
on the other nonsmooth problems considered and that ARS is extremely sensitive to
this parameter. Choosing the smallest subregion size too large resulted in low-accuracy
approximate solutions and choosing it too small promoted local convergence, missing
the global solution altogether.

The global CARTopt algorithm performed well on all but one of the problems,
failing many times on the Weka 3 problem. The first author also produced results
using σ = 0.5. For this choice of σ, the random instance of the global CARTopt
algorithm only once failed to reduce the Weka 3 problem below 10−6. An average
of 13 822 and 17 245 function evaluations were required to reduce f below 10−2 and
10−4, respectively, and no failures were observed. However, the Halton instance still
failed every time, converging to local minima. This suggests that reusing the Halton
points at each restart produced similar partitions that led to local, rather than global,
convergence. A better approach would be to continue with new Halton points only.

On all of the other problems, the global CARTopt algorithm performed well. There
was little difference between the Halton and the random instances. The method was the
fastest to obtain low-accuracy solutions on seven of the problems, moderate accuracy
solutions on 11, and high accuracy solutions on ten of the problems.

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000412

[19] A CARTopt method for bound-constrained global optimization 127

9. Conclusion

A random search algorithm for bound-constrained global optimization of
nonsmooth functions is presented, called global CARTopt. The method alternates
between partition and sampling phases. At each partition phase, a CART partition
is formed on the search region Ω to locate low and high regions with respect to
the objective function. The sampling phase selects a batch of points from Ω using
the partition to increase the sample intensity in the low region. Alternating between
partition and sampling phases provides an effective method for global optimization.
Convergence to an essential global minimizer with probability one is demonstrated
under mild conditions. If the high region is sampled using the Halton sequence, each
cluster point is an open set essential global minimizer. Numerical results show that
theoretical convergence is achieved in practice.

Comparison with other random search methods shows that the global CARTopt
algorithm is competitive in practice. Some global optimization methods focus their
search locally (for example, ARS) and others focus their search globally (for example,
Tilecutter). If the user anticipates many local minimizers in their problem, an
algorithm with a global focus can be advantageous; if few minimizers are expected,
an algorithm with local focus can be more efficient. Global CARTopt has the ability
to vary its focus by changing a single parameter σ. Choosing σ ≈ 0.8 gives a global
focus and σ ≈ 0.2 gives a local focus, rather than choosing two different algorithms.

Acknowledgement

We thank the anonymous referee for many helpful comments, which have improved
this paper.

References

[1] M. A. Abramson, C. Audet, J. E. Dennis and S. Le Digabel, “OrthoMADS: a deterministic MADS
instance with orthogonal directions”, SIAM J. Optim. 20 (2008) 948–966;
doi:10.1137/080716980.

[2] M. M. Ali, C. Khompatraporn and Z. B. Zabinsky, “A numerical evaluation of several stochastic
algorithms on selected continuous global optimization problems”, J. Global Optim. 31 (2005)
635–672; doi:10.1007/s10898-004-9972-2.

[3] M. J. Appel, R. LaBarre and D. Radulovic, “On accelerated random search”, SIAM J. Optim. 14
(2003) 708–731; doi:10.1137/S105262340240063X.

[4] C. Audet and J. E. Dennis Jr, “Analysis of generalized pattern searches”, SIAM J. Optim. 13 (2003)
889–903; doi:10.1137/S1052623400378742.

[5] P. Brachetti, M. De Felice Ciccoli, G. Di Pillo and S. Lucidi, “A new version of the Price’s
algorithm for global optimization”, J. Global Optim. 10 (2010) 165–184;
doi:10.1023/A:1008250020656.

[6] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classification and regression trees
(Wadsworth International Group, Monterey, CA, 1984).

[7] M. E. Dyer and A. M. Frieze, “Computing the volume of convex bodies: a case where randomness
provably helps”, Proc. Sympos. Appl. Math. 44 (1991) 123–169;
doi:10.1090/psapm/044/1141926.

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

http://dx.doi.org/10.1137/080716980
http://dx.doi.org/10.1007/s10898-004-9972-2
http://dx.doi.org/10.1137/S105262340240063X
http://dx.doi.org/10.1137/S1052623400378742
http://dx.doi.org/10.1023/A:1008250020656
http://dx.doi.org/10.1090/psapm/044/1141926
https://doi.org/10.1017/S1446181113000412

128 B. L. Robertson et al. [20]

[8] M. Dyer, A. Frieze and R. Kannan, “A random polynomial-time algorithm for approximating the
volume of convex bodies”, J. ACM 38 (1991) 1–17; doi:10.1145/102782.102783.

[9] S. M. Ermakov, A. A. Zhigyavskii and M. V. Kondratovich, “Comparison of some random search
procedures for a global extremum”, USSR Comput. Math. Math. Phys. 29 (1989) 112–117;
doi:10.1016/0041-5553(89)90054-2.

[10] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals”, Numer. Math. 2 (1960) 84–90; doi:10.1007/BF01386213.

[11] M. J. Hirsch, C. N. Meneses, P. M. Pardalos and M. G. C. Resende, “Global optimization by
continuous GRASP”, Optim. Lett. 1 (2007) 201–212; doi:10.1007/s11590-006-0021-6.

[12] R. Horst and T. Hoang, Global optimization: deterministic approaches, 3rd edn. (Springer, Berlin,
1996).

[13] R. Horst and P. M. Pardalos, Handbook of global optimization (Kluwer, Dordrecht, 1995).
[14] D. Jones, C. D. Perttunen and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz

constant”, J. Optim. Theory Appl. 79 (1993) 157–181; doi:10.1007/BF00941892.
[15] W. L. Martinez and A. R. Martinez, Computational statistics handbook with Matlab (Chapman &

Hall/CRC, Boca Raton, FL, 2002).
[16] J. J. Moré, B. S. Garbow and K. E. Hillstrom, “Testing unconstrained optimization software”,

ACM Trans. Math. Softw. 7 (1981) 17–41; doi:10.1145/355934.355936.
[17] C. J. Price, M. Reale and B. L. Robertson, “A cover partitioning method for bound constrained

global optimization”, Optim. Meth. Softw. 27 (2012) 1059–1072;
doi:10.1080/10556788.2011.557726.

[18] W. L. Price, “A controlled random search procedure for global optimisation”, Comput. J. 4 (1977)
367–370; doi:10.1093/comjnl/20.4.367.

[19] A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part II: Multi
level methods”, Math. Program. 39 (1987) 57–78; doi:10.1007/BF02592071.

[20] B. L. Robertson, “Direct search methods for nonsmooth problems using global optimization
techniques”, Ph. D. Thesis, University of Canterbury, Christchurch, New Zealand, 2010.

[21] B. L. Robertson, C. J. Price and M. Reale, “CARTopt: a random search method for nonsmooth
unconstrained optimization”, Comput. Optim. Appl. 56 (2013) 291–315;
doi:10.1007/s10589-013-9560-9.

[22] A. Srivastava, E.-H. Han, V. Kumar and V. Singh, “Parallel formulations of decision-tree
classification algorithms”, High Performance Data Mining 3 (2002) 237–261;
doi:10.1007/0-306-47011-X 2.

[23] O. T. Yıldız and O. Dikmen, “Parallel univariate decision trees”, Pattern Recog. Lett. 28 (2007)
825–832; doi:10.1016/j.patrec.2006.11.009.

[24] Z. B. Zabinsky, Stochastic adaptive search for global optimization (Kluwer, Dordrecht, 2003).
[25] Z. B. Zabinsky et al., “Random search algorithms”, in: Wiley encyclopedia of operations research

and management science (ed. J. J. Cochran), (Wiley, Hoboken, NJ, 2010);
doi:10.1002/9780470400531.

[26] A. A. Zhigljavsky, Theory of global random search (Kluwer, Dordrecht, 1991).

https://doi.org/10.1017/S1446181113000412 Published online by Cambridge University Press

http://dx.doi.org/10.1145/102782.102783
http://dx.doi.org/10.1016/0041-5553(89)90054-2
http://dx.doi.org/10.1007/BF01386213
http://dx.doi.org/10.1007/s11590-006-0021-6
http://dx.doi.org/10.1007/BF00941892
http://dx.doi.org/10.1145/355934.355936
http://dx.doi.org/10.1080/10556788.2011.557726
http://dx.doi.org/10.1093/comjnl/20.4.367
http://dx.doi.org/10.1007/BF02592071
http://dx.doi.org/10.1007/s10589-013-9560-9
http://dx.doi.org/10.1007/0-306-47011-X{\char "02D9}2
http://dx.doi.org/10.1016/j.patrec.2006.11.009
http://dx.doi.org/10.1002/9780470400531
https://doi.org/10.1017/S1446181113000412

	Introduction
	The partitions
	The CART partition

	The algorithm
	The sampling phase
	The Halton sequence

	Restarts
	Parallel implementation
	Convergence
	Numerical results and discussion
	Smooth problems
	Nonsmooth problems

	Conclusion

