A NOTE ON SPACES $C_p(X)$ K-ANALYTIC-FRAMED IN \mathbb{R}^X

J. C. FERRANDO and J. KAKOL

(Received 1 October 2007)

Abstract

This paper characterizes the K-analyticity-framedness in \mathbb{R}^X for $C_p(X)$ (the space of real-valued continuous functions on X with pointwise topology) in terms of $C_p(X)$. This is used to extend Tkachuk’s result about the K-analyticity of spaces $C_p(X)$ and to supplement the Arkhangel’skii–Calbrix characterization of σ-compact cosmic spaces. A partial answer to an Arkhangel’skii–Calbrix problem is also provided.

Keywords and phrases: \mathcal{P}-framed space, cosmic space, K-analytic space, Lindelöf Σ-space, angelic space.

1. Preliminaries

Christensen [12] proved that a metric and separable space X is σ-compact if and only if $C_p(X)$ is analytic, that is, a continuous image of the Polish space $\mathbb{N}^{\mathbb{N}}$. Calbrix [11] showed that a completely regular Hausdorff space X is σ-compact if $C_p(X)$ is analytic. The converse does not hold in general; for if $\xi \in \beta\mathbb{N} \setminus \mathbb{N}$ and $X = \mathbb{N} \cup \{\xi\}$, where the set of natural numbers \mathbb{N} is considered with the discrete topology, then $C_p(X)$ is a metrizable Baire space [17] but not even K-analytic by [22, p. 64]. A closely related result is given in [4]: A regular cosmic space X is σ-compact if and only if $C_p(X)$ is K-analytic-framed in \mathbb{R}^X, that is, there exists a K-analytic space Y such that $C_p(X) \subseteq Y \subseteq \mathbb{R}^X$, although it was already known [18] that if X is σ-bounded (that is, a countable union of functionally bounded sets), then $C_p(X)$ is $K_{\sigma\delta}$-framed in \mathbb{R}^X.

In this note we prove: (a) that $C_p(X)$ is K-analytic-framed in \mathbb{R}^X if and only if $C_p(X)$ has a bounded resolution, that is a family $\{A_\alpha \mid \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of sets covering $C_p(X)$ with $A_\alpha \subseteq A_\beta$ for $\alpha \leq \beta$ such that each A_α is pointwise bounded; and (b) $C_p(X)$ with
a bounded resolution is an angelic space. Then [4, Theorem 3.4] combined with (a) yields that a regular cosmic space \(X\) (that is, a continuous image of a metric separable space) is \(\sigma\)-compact if and only if \(C_p(X)\) has a bounded resolution. Hence, for metric separable \(X\) the space \(C_p(X)\) is analytic if and only if it has a bounded resolution. Part (b) implies that for any topology \(\xi\) on \(C(X)\) stronger than the pointwise one the space \((C(X), \xi)\) is \(K\)-analytic if and only if it is quasi-Souslin if and only if it admits a (relatively countably) compact resolution. This extends a recent result of Tkachuk [21] and answers a question of Bierstedt (personal communication): What about Tkachuk’s theorem for topologies on \(C(X)\) different from the pointwise one? We apply Proposition 1 (and Corollary 2) to give a partial answer to [4, Problem 1].

A topological Hausdorff space (or space for short) \(X\) is called:

(i) analytic, if \(X\) is a continuous image of the space \(\mathbb{N}^\mathbb{N}\);

(ii) \(K\)-analytic, if there is an upper semi-continuous (usc) set-valued map from \(\mathbb{N}^\mathbb{N}\) with compact values in \(X\) whose union is \(X\);

(iii) quasi-Souslin, if there exists a set-valued map \(T\) from \(\mathbb{N}^\mathbb{N}\) covering \(X\) such that if \((\alpha_n)_n\) is a sequence in \(\mathbb{N}^\mathbb{N}\) which converges to \(\alpha\) in \(\mathbb{N}^\mathbb{N}\) and \(x_n \in T(\alpha_n)\) for all \(n \in \mathbb{N}\), then the sequence \((x_n)_n\) has an adherent point in \(X\) belonging to \(T(\alpha)\);

(iv) Lindelöf \(\Sigma\) (also called \(K\)-countably determined) if there exists a usc set-valued map from a subspace of \(\mathbb{N}^\mathbb{N}\) with compact values in \(X\) covering \(X\).

It is known that a space \(X\) is Lindelöf \(\Sigma\) if and only if it has a countable network modulo some compact cover of \(X\); see [1]. Recall that analytic \(\Rightarrow\) \(K\)-analytic \(\Rightarrow\) quasi-Souslin and \(K\)-analytic \(\Rightarrow\) Lindelöf \(\Sigma\).

By Talagrand [20] every \(K\)-analytic space admits a compact resolution, although the converse does not hold in general. Talagrand [20] showed that for a compact space \(X\) the space \(C_p(X)\) is \(K\)-analytic if and only if \(C_p(X)\) has a compact resolution. Canela [5] extended this result to paracompact and locally compact spaces \(X\). Finally, Tkachuk [21] extended Talagrand’s result to any completely regular Hausdorff space \(X\).

A space \(X\) is angelic if every relatively countably compact set \(A\) in \(X\) is relatively compact and each \(x \in A\) is the limit of a sequence of \(A\). In angelic spaces (relative) compact sets, (relative) countable compact sets and (relative) sequential compact sets are the same; see [16].

2. Bounded resolutions in \(C_p(X)\) and \(K\)-analytic-framedness of \(C_p(X)\) in \(\mathbb{R}^X\)

We start with the following, where \(\overline{B}^{\mathbb{R}^X}\) denotes the closure of \(B\) in the space \(\mathbb{R}^X\).

Lemma 1. Let \(X\) be a nonempty set and let \(Z\) be a subspace of \(\mathbb{R}^X\). If \(Z\) has a countable network modulo a cover \(\mathcal{B}\) of \(Z\) by pointwise bounded subsets, then \(Y = \bigcup\{\overline{B}^{\mathbb{R}^X} \mid B \in \mathcal{B}\}\) is a Lindelöf \(\Sigma\)-space such that \(Z \subseteq Y \subseteq \mathbb{R}^X\).

Proof. Let \(\mathcal{N} = \{T_n \mid n \in \mathbb{N}\}\) be a countable network modulo a cover \(\mathcal{B}\) of \(Z\) consisting of pointwise bounded sets. Set \(\mathcal{N}_1 = \{\overline{T_n}^{\mathbb{R}^X} \mid n \in \mathbb{N}\}\), \(B_1 = \{\overline{B}^{\mathbb{R}^X} \mid B \in \mathcal{B}\}\)
and $Y = \bigcup B_1$. Clearly every element of B_1 is a compact subset of \mathbb{R}^X. We show that \mathcal{N}_1 is a network in Y modulo the compact cover B_1 of Y. In fact, if U is a neighborhood in \mathbb{R}^X of \overline{B}^X, the regularity of \mathbb{R}^X and compactness of \overline{B}^X are used to obtain a closed neighborhood V of \overline{B}^X in \mathbb{R}^X contained in U. Since \mathcal{N} is a network modulo B in Z, there exists $n \in \mathbb{N}$ with $B \subseteq T_n \subseteq V \cap Z$, which implies that $\overline{B}^X \subseteq \overline{T}_n^X \subseteq U$. According to Nagami’s criterion [1, Proposition IV.9.1], Y is a Lindelöf Σ-space which clearly satisfies $Z \subseteq Y \subseteq \mathbb{R}^X$. □

Proposition 1. The following are equivalent:

(i) $C_p(X)$ admits a bounded resolution.

(ii) $C_p(X)$ is K-analytic-framed in \mathbb{R}^X and $C_p(X)$ is angelic.

(iii) $C_p(X)$ is K-analytic-framed in \mathbb{R}^X.

(iv) For any topological vector space (tvs) Y containing $C_p(X)$ there exists a space Z such that $C_p(X) \subseteq Z \subseteq Y$ and Z admits a resolution consisting of Y-bounded sets.

Proof. (i) implies (ii). Let $\{A_\alpha \mid \alpha \in \mathbb{N}^\omega\}$ be a bounded resolution for $C_p(X)$. Denote by B_α the closure of A_α in \mathbb{R}^X and put $Z = \bigcup \{B_\alpha \mid \alpha \in \mathbb{N}^\omega\}$. Clearly each B_α is a compact subset of \mathbb{R}^X and Z is a quasi-Souslin space (see [6, Proposition 1]) such that $C_p(X) \subseteq Z \subseteq \mathbb{R}^X$.

Since each quasi-Souslin space Z has a countable network modulo a resolution B of Z consisting of countably compact sets (see, for instance, [14, proof of Theorem 8]) and every countable compact subset of \mathbb{R}^X is pointwise bounded, then Lemma 1 ensures that $Y = \bigcup \{\overline{B}^X \mid B \in \mathcal{B}\}$ is a Lindelöf Σ-space, hence Lindelöf, such that $Z \subseteq Y \subseteq \mathbb{R}^X$. Given that every Lindelöf quasi-Souslin space Y is K-analytic and $C_p(X) \subseteq Y \subseteq \mathbb{R}^X$, then $C_p(X)$ is K-analytic-framed in \mathbb{R}^X. Hence, by [18] the space νX is Lindelöf Σ. Since each Lindelöf Σ space is web-compact in the sense of Orihuela, then [19, Theorem 3] is used to deduce that $C_p(\nu X)$ is angelic. Hence, $C_p(X)$ is also angelic [8, Note 4].

(iii) implies (iv). If L is a space with a compact resolution $\{A_\alpha \mid \alpha \in \mathbb{N}^\omega\}$ and $C_p(X) \subseteq L \subseteq \mathbb{R}^X$, then $\{A_\alpha \cap C_p(X) \mid \alpha \in \mathbb{N}^\omega\}$ is a bounded resolution in $Z := C_p(X)$ consisting of bounded sets in any tvs Y topologically containing $C_p(X)$.

That (iv) implies (i) is obvious. □

The next theorem extends the main result in Tkachuk [21] and answers the question of [14].

Theorem 1. Let ξ be a topology on $C(X)$ stronger than the pointwise one. The following assertions are equivalent.

(i) $(C(X), \xi)$ is K-analytic.

(ii) $(C(X), \xi)$ is quasi-Souslin.

(iii) $(C(X), \xi)$ admits a (relatively countably) compact resolution.
Any condition mentioned above implies (by Proposition 1) the angelicity of \(C_p(X) \). Therefore (by the angelic lemma; see [16, p. 29]) the space \((C(X), \xi)\) is angelic as well. But for angelic spaces all three conditions mentioned above are equivalent by [6, Corollary 1.1]. \(\Box \)

It is easy to see that if \(X \) is \(\sigma \)-bounded, then \(C_p(X) \) has a bounded resolution. Indeed, if \(X \) is covered by a sequence \((C_n)_n\) of functionally bounded sets, then \(\{A_\alpha \mid \alpha \in \mathbb{N}^\mathbb{N}\} \) with \(A_\alpha = \{f \in C(X) : \sup_{x \in C_n} |f(x)| \leq \alpha(n), n \in \mathbb{N}\} \) is a bounded resolution for \(C_p(X) \). If \(X \) is a locally compact group, then \(X \) is \(\sigma \)-compact if and only if \(C_p(X) \) has a bounded resolution. This easily follows from the fact that \(X \) is homeomorphic to the product \(\mathbb{R}^n \times D \times G \), where \(D \) is a discrete space and \(G \) is a compact subgroup of \(X \); see [13, Theorem 1 and Remark (ii)]. Proposition 1 combined with [4, Theorem 2.4] yields the following result.

Corollary 1. Let \(X \) be a regular cosmic space. Then \(X \) is \(\sigma \)-compact if and only if \(C_p(X) \) has a bounded resolution.

The corresponding variant of Corollary 1 for the weak* dual of Banach spaces does not hold in general. Let \(E \) be an infinite-dimensional separable non-reflexive Banach space. Then the weak topology \(\sigma(E, E') \) is cosmic and not \(\sigma \)-compact but the weak* dual \((E', \sigma(E', E))\) is even analytic.

If \(C_p(C_p(X)) \) has a bounded resolution, then \(X \) is angelic by Proposition 1. If \(C_p(C_p(X)) \) is \(K \)-analytic, then \(X \) is finite [1, IV.9.21]. We note the following result.

Corollary 2. For a realcompact space \(X \) the space \(C_p(C_p(X)) \) has a bounded resolution if and only if \(X \) is finite.

Proof. If \(C_p(C_p(X)) \) has a bounded resolution, it is \(K \)-analytic-framed in \(\mathbb{R}^{C(X)} \). Consequently there is a \(K \)-analytic space \(Y \) such that \(C_p(C_p(X)) \subseteq Y \subseteq \mathbb{R}^{C(X)} \). By [4, Corollary 3.4] every compact subset of \(X \) is finite. Since \(X \subseteq Y \subseteq \mathbb{R}^{C(X)} \) and \(X \) is realcompact, then \(X \) is a closed subspace of \(Y \). Hence, \(X \) is a \(K \)-analytic space whose compact sets are finite; so it must be countable [1, Proposition IV.6.15]. Consequently, \(C_p(X) \) is a separable metric space, hence a cosmic space. Again [4, Theorem 2.4] is used to deduce that \(C_p(X) \) is \(\sigma \)-compact and [2, Theorem 6.1] concludes that \(X \) is finite. \(\Box \)

Remark 1. Corollary 2 does not hold in general. By [3, Proposition 9.31] (see also [4, Remark]) there exists an infinite space \(X \) such that \(C_p(X) \) is \(\sigma \)-bounded; hence \(C_p(C_p(X)) \) has a bounded resolution. Recall also that [4, Corollary 2.6] shows that \(C_p(\mathbb{N}^\mathbb{N}) \) is not \(K \)-analytic-framed in \(\mathbb{R}^X \). In [4, Problem 1] Arkhangel’skii and Calbrix ask if there exists a regular analytic space \(Z \) containing \(C_p(\mathbb{N}^\mathbb{N}) \) (\(C_p(C_p(\mathbb{N}^\mathbb{N})) \)). Proposition 1 (Corollary 2) provides a partial answer. Indeed, if \(Y \) is a tvs containing \(C_p(\mathbb{N}^\mathbb{N}) \) (\(C_p(C_p(\mathbb{N}^\mathbb{N})) \)), then there does not exist a space \(Z \) with \(C_p(\mathbb{N}^\mathbb{N}) \subseteq Z \subseteq Y \) (\(C_p(C_p(\mathbb{N}^\mathbb{N})) \subseteq Z \subseteq Y \)) admitting a resolution consisting of \(Y \)-bounded sets.
Remark 2. Cascales and Orihuela [8] introduced the class \mathcal{G} of locally convex spaces (lcs) E for which there is a family $\{A_\alpha \mid \alpha \in \mathbb{N}\}$ of subsets of the topological dual E' of E covering E' such that $A_\alpha \subseteq A_\beta$ if $\alpha \leq \beta$, and sequences are equicontinuous in each A_α. Class \mathcal{G} includes (DF)-spaces, (LM)-spaces (hence metrizable lcs), the space of distributions $D'($ and the space $A($ of real analytic functions for open $\Omega \subseteq \mathbb{R}^N$, and so on. From [7, Theorem 11] it follows that the weak topology $\sigma (E, E')$ of an lcs E in class \mathcal{G} is angelic. Now applying the argument used in the proof of Theorem 1 one concludes that if $E \in \mathcal{G}$ and ξ is a topology on E stronger than $\sigma (E, E')$, then (E, ξ) is quasi-Souslin if and only if it is K-analytic if and only if it admits a (relatively countably) compact resolution. A similar result fails to hold for the weak* topology $\sigma (E', E)$ of the dual E' of an lcs $E \in \mathcal{G}$. Indeed, in [15] we proved that $(E', \sigma (E', E))$ is quasi-Souslin for each $E \in \mathcal{G}$ but in [9] we provided spaces $E \in \mathcal{G}$ such that $(E', \sigma (E', E))$ is not K-analytic. On the other hand, by [10, Corollary 2.8] the space $C_p(X)$ belongs to class \mathcal{G} only if and only if X is countable; so the angelicity of $C_p(X)$ (which we used in Theorem 1) cannot be automatically deduced from Cascales and Orihuela’s result [7, Theorem 11] mentioned above.

References

[22] M. Valdivia, Topics in Locally Convex Spaces (North-Holland, Amsterdam, 1982).

J. C. FERRANDO, Centro de Investigación Operativa, Universidad Miguel Hernández, E-03202 Elche (Alicante), Spain
e-mail: jc.ferrando@umh.es

J. KĄKOL, Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614 Poznań, Poland
e-mail: kakol@math.amu.edu.pl