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Constructing Galois Representations with
Very Large Image

Ravi Ramakrishna

Abstract. Starting with a 2-dimensional mod p Galois representation, we construct a deformation to

a power series ring in infinitely many variables over the p-adics. The image of this representation is

full in the sense that it contains SL2 of this power series ring. Furthermore, all Zp specializations of

this deformation are potentially semistable at p.

1 Introduction

The main theorem of this paper is the following.

Theorem 1.1 Let p ≥ 7 be a prime and ρ̄ : Gal(Q̄/Q) → GL2(Z/pZ) be a con-

tinuous representation whose image contains SL2(Z/pZ). There exists a deformation

ρ : Gal(Q̄/Q) → GL2(Zp[[T1, . . . ,Td, . . . ]]) of ρ̄ with Z∗
p-valued determinant all of

whose Zp specialisations are potentially semistable at p and whose image is full, that is,

the image contains SL2(Zp[[T1, . . . ,Td, . . . ]]).

This result is independent of the parity of ρ̄. We remark that if p ≥ 7 and

ρ̄ : Gal(Q̄/Q)→ SL2(Z/pZ)

is surjective, then after a suitable twist one gets from the proof a surjective

ρ : Gal(Q̄/Q)→ SL2(Zp[[T1, . . . ,Td, . . . ]]).

The representations of the theorem are ramified at infinitely many places. One ex-

pects this condition is necessary. Indeed, for ρ̄ odd the work of Wiles and others
suggests that such deformation rings which include the conditions of finite ramifi-
cation, fixed determinant and potential semistability are always finite and flat over
Zp. Since the representations constructed here are mainly of interest as curiosities,

we have not sought maximal generality. We expect, with some added technical work,
that similar results could be obtained for any residual representations of the absolute
Galois group of an arbitrary number field.

We sketch the proof. We fix determinants of all deformations considered in this
paper to be φχr where φ is a finite order Z∗

p-valued character, χ is the cyclotomic
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character, and r is a suitable nonnegative integer. Let S be the union of {p} and
the set of places at which ρ̄ is ramified. For a place v let Gv be a decomposition

group in Gal(Q̄/Q) at v. In [R2, T] a class Cv of deformations of ρ̄|Gv
to Artinian

rings was chosen. A subspace Nv ⊂ H1(Gv,Ad0 ρ̄) was chosen that preserved the
class via the action of H1(Gv,Ad0 ρ̄) on deformations. In this paper we choose for
each v ∈ S any single deformation of ρ̄|Gv

to Zp that has determinant φχr|Gv
and

is potentially semistable. This forces Nv = 0. We use the ideas of [R2, T] to add
new primes at which we will allow ramification to achieve a trivial tangent space to
the global deformation problem. Starting from this point, we successively construct
a sequence of deformation problems ramified at more and more (but only finitely

many) primes. We impose nontrivial deformation conditions (Nv,Cv) at these ram-
ified primes. The corresponding deformation rings will be Rn = Zp[[T1, . . . ,Tn]]/ Jn

where Jn ⊆ (p,T1, . . . ,Tn)n. Let mRn
be the maximal ideal of Rn. The deformation

ρn : Gal(Q̄/Q) → GL2(Rn/mn
Rn

) will satisfy all the deformation conditions of the

(n + 1)st deformation ring. Thus we will have surjections Rn+1/mn+1
Rn+1

։ Rn/mn
Rn

.
Taking the inverse limit will give us our ρ. Fullness (that the image contains SL2) at
each stage will follow from a criterion of Boston. Fullness in the limit follows from
fullness at each stage.

This work was in part motivated by Rohrlich’s study of Galois representations with
big image [Ro1, Ro2].

Many of the technical ingredients of this paper involve computation of local de-
formation rings. The local results we need are in [B, R1, R2, T]. For the most part

they are suppressed here, being apparent only in the choices of various subspaces Nv

of the local Galois cohomology groups H1(Gv,Ad0 ρ̄).

2 Recollections

We briefly recall Mazur’s deformation theory in the general setting. Let F be a finite
field, W (F) its ring of Witt vectors and H a profinite group. Let γ̄ : H → GLn(F) be
a continuous representation. Let Ad γ̄ denote the set of n× n matrices over F with H

action via γ̄ and conjugation. We suppose that m = dim H1(H,Ad γ̄) is finite. Mazur
has shown [M1] (see also [M2]) that there exists a ring Rver

= W (F)[[T1, . . . ,Tm]]/I

and a continuous homomorphism γver : H → GLn(Rver) whose reduction mod the
maximal ideal mRver of Rver is γ̄. Furthermore any continuous lifting of γ̄ to GLn(R)

where R is a complete local Noetherian ring with residue field F factors through γver.
(To be precise, we should consider strict equivalence classes of continuous liftings
called deformations). If the centraliser of the image of γ̄ is exactly the scalar matrices,
then the pair (γver,Rver) is universal and any such lifting factors through γver in a

unique way.
Let R be a complete local Noetherian ring with residue field F and maximal ideal

mR. Suppose we are given a continuous homomorphism γt : H → GLn(R/mt
R)

with reduction γ̄. The obstruction to deforming γt to a continuous homomorphism

γt+1 : H → GLn(R/mt+1
R ) lies in H2(H,Ad γ̄⊗mt

R /mt+1
R ). If two such deformations

exist, say γt+1,1 and γt+1,2, then there is an element α ∈ H1(H,Ad γ̄ ⊗ mt
R /mt+1

R )
such that γt+1,1 = (I + α)γt+1,2.

We return to the setting of Theorem 1.1. Since we will always be fixing the de-
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terminants of our deformations, we work with the cohomology of Ad0 ρ̄, the set of
trace zero matrices. For v ∈ S, the (possibly versal) deformation rings Rv of ρ̄|Gv

were

worked out in [B, R2]. In most cases a “large enough” smooth quotient Rv,sm of the
deformation ring Rv was found in [R2]. The quotient map Rv → Rv,sm induced a
subspace Nv of H1(Gv,Ad0 ρ̄), the mod p dual tangent space of Rv. Here we need not
concern ourselves with these smooth quotients. We will simply choose for all v ∈ S

any potentially semistable deformation of ρ̄|Gv
to Zp that we like with our chosen de-

terminant. Potential semistability is automatic for v 6= p. For v = p we can always
choose a potentially semistable lift. See [R2]. The maps Rv → Zp induce the trivial

subspace of H1(Gv,Ad0 ρ̄). For v ∈ S we define Nv ⊂ H1(Gv,Ad0 ρ̄) to be trivial.

Definition 2.1 Suppose ρ̄ : Gal(Q̄/Q) → GL2(Z/pZ) is given as in Theorem 1.1.
We say a prime q is nice (for ρ̄) if

• q is not±1 mod p;
• ρ̄ is unramified at q;
• the eigenvalues of ρ̄(σq) (where σq is Frobenius at q) have ratio q.

Let R be a complete Noetherian local ring with residue field Z/pZ and let J be an ideal
of finite index in R. Let ρR/ J be a deformation of ρ̄ to GL2(R/ J). We say a prime q is
ρR/ J-nice if

• q is nice for ρ̄;
• ρR/ J is unramified at q, and the eigenvalues of ρR/ J(σq) have ratio q;
• ρR/ J(σq) has the same (prime to p) order as ρ̄R/ J(σq).

Note that since q is nice, the characteristic polynomial of ρR/ J(σq) has distinct roots

that are units, so the eigenvalues of ρR/ J(σq) are well defined in R/ J.

Proposition 2.2 For a given ρR/ J deforming ρ̄ there is a conjugacy class C in the image

of ρR/ J such that the primes with Frobenius in C are ρR/ J-nice.

Proof For a representation ρ, let Pρ denote the corresponding projective represen-
tation. We know nice primes exist, the key point being [R1, Lemma 18]. Their

existence comes from the fact that Q(Pρ̄) ∩ Q(µp) is at most a degree 2 exten-
sion of Q . Consider Kernel(Pρ̄)/Kernel(PρR/ J). The fact that the image of ρ̄ con-

tains SL2(Z/pZ) implies that, when considered as Gal(Q(Ad0 ρ̄)/Q)-modules, the
Jordan–Hölder constituents of this quotient are all copies of the irreducible module
Ad0 ρ̄. Thus Q(PρR/ J) ∩ Q(µp∞) is at most degree 2 over Q . We can lift the image
under ρ̄ of Frobenius of a nice prime q to an element of the image of ρR/ J. Raising it

to a large enough power of p gives an element whose order is that of ρ̄(σq) and there-
fore prime to p. Then we use the above field disjointness properties to get a class of
ρR/ J-nice primes with Frobenius in the conjugacy class of this element.

Ramification at a nice q in any deformation of ρ̄|Gq
will be pro-p and thus tame.

Since the Galois group over Qq of the maximal tamely ramified extension is gen-
erated by Frobenius σq and a generator of tame inertia τq subject to the relation
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σqτqσ
−1
q = τ

q
q , a versal deformation is specified by the images of σq and τq. See [R1,

§3] for the local deformation theory of nice primes.

Let (Ad0 ρ̄)∗ := Hom(Ad0 ρ̄, µp) be the Gm-dual of Ad0 ρ̄. Since the eigenvalues

of ρ̄(σq) have ratio q, the eigenvalues of σq acting on Ad0 ρ̄ are q, 1 and q−1 so

Ad0 ρ̄ ≃ Z/pZ⊕ Z/pZ(1)⊕ Z/pZ(−1),

(Ad0 ρ̄)∗ ≃ Z/pZ(1)⊕ Z/pZ⊕ Z/pZ(2).

As q 6≡ ±1 mod p we have that q, 1 and q−1 are distinct elements of Z/pZ. Thus in
each of the above decompositions the three terms are distinct. The proof of Fact 2.3

below can be found in [R1, §3]. See also [KLR1, §2].

Fact 2.3 Let q be a nice prime for ρ̄. Then H1(Gq,Z/pZ(r)) = 0 for r 6= 0, 1. Fur-

thermore Hi(Gq,Ad0 ρ̄) and Hi(Gq, (Ad0 ρ̄)∗) are both isomorphic to Hi(Gq,Z/pZ)⊕
Hi(Gq,Z/pZ(1)) for i = 0, 1, 2 and have dimensions 1, 2 and 1, respectively. Let τq be a

generator of tame inertia. The local deformation ring Rq has a smooth one dimensional

quotient Zp[[T]] the deformation to which, up to twist, is given by

σq 7→

(

q 0
0 1

)

, τq 7→

(

1 T

0 1

)

.

This quotient induces a one dimensional subspace

Nq = H1(Gq,Z/pZ(1)) ⊂ H1(Gq,Ad0 ρ̄)

and by local duality its annihilator is the one dimensional subspace

N
⊥
q = H1(Gq,Z/pZ(1)) ⊂ H1(Gq, (Ad0 ρ̄)∗).

We recall a proposition of Wiles [W, Proposition 1.6]. See also [NSW, Theorem

8.6.20].

Fact 2.4 Let T ⊃ S be a finite set of places. For v ∈ T let Lv ⊂ H1(Gv,Ad0 ρ̄)

be a subspace with annihilator L
⊥
v ⊂ H1(Gv, (Ad0 ρ̄)∗). Define H1

L
(GT ,Ad0 ρ̄) and

H1
L⊥(GT , (Ad0 ρ̄)∗) to be, respectively, the kernels of the restriction maps

H1(GT ,Ad0 ρ̄)→
⊕

v∈T

H1(Gv,Ad0 ρ̄)

Lv

,

H1(GT , (Ad0 ρ̄)∗)→
⊕

v∈T

H1(Gv, (Ad0 ρ̄)∗)

L⊥
v

.

Then

dim H1
L(GT ,Ad0 ρ̄)− dim H1

L⊥(GT , (Ad0 ρ̄)∗)

= dim H0(GT ,Ad0 ρ̄)− dim H0(GT , (Ad0 ρ̄)∗)

+
∑

v∈T

(

dim(Lv)− dim H0(Gv,Ad0 ρ̄)
)

.
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The above groups are called the Selmer and dual Selmer groups for the set T and
deformation conditions Lv and L⊥

v , respectively. The formula shows the difference

in dimension between the Selmer and dual Selmer groups for a set of places T and
deformation conditions Lv and L⊥

v can be readily computed.

3 The Setup

Fact 3.1 below follows from [KLR1, Lemmas 7 and 8].

Fact 3.1 We may enlarge S (to a set we also denote by S) by adding nice primes to

it so that for any set T ⊇ S both X
2
T(Ad0 ρ̄) and its dual X

1
T((Ad0 ρ̄)∗) are trivial.

For any nice prime q /∈ T the inflation map H1(GT ,Ad0 ρ̄) → H1(GT∪{q},Ad0 ρ̄) has

one-dimensional cokernel.

Henceforth we will assume that S is as in Fact 3.1, T ⊇ S and T\S consists of nice
primes.

Recall by global duality [NSW, 8.6.13] that the images of the restriction maps

ΨT : H1(GT ,Ad0 ρ̄)→
⊕

v∈T

H1(Gv,Ad0 ρ̄),

Ψ
∗
T : H1(GT , (Ad0 ρ̄)∗)→

⊕

v∈T

H1(Gv, (Ad0 ρ̄)∗)

are exact annihilators of one another under the pairing of summing the invariants of
local cup products.

Proposition 3.2 Let (zv)v∈T ∈
⊕

v∈T H1(Gv,Ad0 ρ̄) be given such that

(zv)v∈T /∈ ΨT(H1(GT ,Ad0 ρ̄)).

Then there exists a ζ ∈ H1(GT , (Ad0 ρ̄)∗) such that Ψ
∗
T(ζ) does not annihilate (zv)v∈T .

Proof Since (zv)v∈T /∈ ΨT(H1(GT ,Ad0 ρ̄)) we see the annihilator of (zv)v∈T does
not contain Ψ

∗
T(H1(GT , (Ad0 ρ̄)∗)). So there exists a nonzero ζ ∈ H1(GT , (Ad0 ρ̄)∗)

such that Ψ
∗
T(ζ) does not annihilate (zv)v∈T .

Definition 3.3 Let (zv)v∈T as in Proposition 3.2. For q nice we call

h(q) ∈ H1(GT∪{q},Ad0 ρ̄)

a solution to the local condition problem (zv)v∈T if h(q)|Gv
= zv for all v ∈ T.

For ζ ∈ H1(Gal(Q̄/Q), (Ad0 ρ̄)∗) and zv ∈ H1(Gv,Ad0 ρ̄) we will write ζ ∪ zv for

ζ|Gv
∪ zv.

Proposition 3.4 Assume some ρR/ J is given as in Definition 2.1. Let (zv)v∈T and ζ be

as in Proposition 3.2. Let {ζ1, . . . , ζs} be a basis of Ψ
∗
T
−1(Ann((zv)v∈T)). Let Q be the

Chebotarev set of ρR/ J-nice primes q such that
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(i) ζi|Gq
= 0 for i = 1, . . . , s,

(ii) ζ|Gq
6= 0,

(iii) for all f ∈ H1(GT ,Ad0 ρ̄) we have f |Gq
= 0.

Then for any q ∈ Q there is an h(q) ∈ H1(GT∪{q},Ad0 ρ̄) that is a solution to the local

condition problem (zv)v∈T .

Proof That Q comes from a Chebotarev condition follows from [R1, Lemma 10]
which gives that the splitting conditions of Proposition 2.2 are independent of those
imposed by ζ and the ζi . See also [KLR1, Lemma 6].

As (zv)v∈T spans a line, its annihilator in
⊕

v∈T H1(Gv, (Ad0 ρ̄)∗) is codimen-

sion one. Proposition 3.2 implies Ψ
∗
T
−1(Ann((zv)v∈T)) 6= H1(GT , (Ad0 ρ̄)∗), so

Ψ
∗
T
−1(Ann((zv)v∈T)) is codimension one in H1(GT , (Ad0 ρ̄)∗). Clearly {ζ1, . . . , ζs, ζ}

is a basis of H1(GT , (Ad0 ρ̄)∗).

For v ∈ T put Lv = 0 and Lq = H1(Gq,Ad0 ρ̄). We have the Selmer group map

(3.1) H1(GT∪{q},Ad0 ρ̄)→
⊕

v∈T

( H1(Gv,Ad0 ρ̄)

0

)

⊕
( H1(Gq,Ad0 ρ̄)

H1(Gq,Ad0 ρ̄)

)

and the dual Selmer group map

H1(GT∪{q}, (Ad0 ρ̄)∗)→
(

⊕

v∈T

H1(Gv, (Ad0 ρ̄)∗)

H1(Gv, (Ad0 ρ̄)∗)

)

⊕
( H1(Gq, (Ad0 ρ̄)∗)

0

)

for the set T ∪ {q}. There are similar maps for T.

By Fact 2.3, dim H0(Gq,Ad0 ρ̄) = 1 and dim(H1(Gq,Ad0 ρ̄)) = 2. Fact 2.4 implies

(3.2) dim(H1
L(GT ,Ad0 ρ̄))− dim H1

L(GT∪{q},Ad0 ρ̄)

= dim H1
L⊥(GT , (Ad0 ρ̄)∗)− dim H1

L⊥(GT∪{q}, (Ad0 ρ̄)∗)− 1.

We show H1
L⊥(GT∪{q}, (Ad0 ρ̄)∗) is spanned by (the inflations of) {ζ1, . . . , ζs}. Ob-

serve that H1(GT , (Ad0 ρ̄)∗) = H1
L⊥(GT , (Ad0 ρ̄)∗) has basis {ζ1 . . . , ζs, ζ}. As

ζi|Gq
= 0, (the inflations of) these elements are in H1

L⊥(GT∪{q}, (Ad0 ρ̄)∗). Any ele-

ment of H1
L⊥(GT∪{q}, (Ad0 ρ̄)∗) is trivial at q and thus unramified at q and therefore

inflates from H1
L⊥(GT , (Ad0 ρ̄)∗). It remains to consider ζ . Since ζ|Gq

6= 0 and

L⊥
q = 0, we see (the inflation of) ζ is not in H1

L⊥(GT∪{q}, (Ad0 ρ̄)∗). Thus

dim H1
L⊥(GT∪{q}, (Ad0 ρ̄)∗) = dim H1

L⊥(GT , (Ad0 ρ̄)∗)− 1,

so both sides of equation (3.2) are 0. The choice of Lq = H1(Gq,Ad0 ρ̄) implies that

H1
L

(GT ,Ad0 ρ̄) ⊆ H1
L

(GT∪{q},Ad0 ρ̄), so we have

H1
L(GT ,Ad0 ρ̄) = H1

L(GT∪{q},Ad0 ρ̄).
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We have shown that the map of equation (3.1) and

(3.3) H1(GT ,Ad0 ρ̄)→
⊕

v∈T

( H1(Gv,Ad0 ρ̄)

0

)

have identical kernels. By Fact 3.1 we see that the image of the map of equation (3.1)
is one dimension bigger than image of the map in equation (3.3). Thus there is a
g ∈ H1(GT∪{q},Ad0 ρ̄) such that (g|Gv

)v∈T 6∈ Image(ΨT). Recall {ζ1, . . . , ζs} is a

basis of Ψ
∗
T
−1(Ann((zv)v∈T)) and ζi|Gq

= 0 by the choice of q. Then for i = 1, . . . , s
we see that for any c

(3.4) 0 =

∑

v∈T∪{q}

invv(ζi ∪ g) =

∑

v∈T

invv(ζi ∪ g) =

∑

v∈T

invv

(

ζi ∪ (g − czv)
)

,

where the first equality is the global reciprocity law. Consider
∑

v∈T invv(ζ∪g). If this
sum were zero, we would have that all the ζi and ζ annihilate g. As the annihilator of

Ψ
∗
T(H1(GT , (Ad0 ρ̄)∗) is exactly ΨT(H1(GT ,Ad0 ρ̄)), we would have that (g|Gv

)v∈T is
in the image of ΨT , a contradiction. Thus

∑

v∈T invv(ζ∪g) = a 6= 0. Proposition 3.2
implies

∑

v∈T invv(ζ ∪ zv) = b 6= 0 for some b, so
∑

v∈T invv(ζ ∪ (g − a
b
zv))= 0.

Setting c = a/b in equation (3.4)), every element of the basis {ζ1, . . . , ζs, ζ} of

H1(GT , (Ad0 ρ̄)∗) annihilates (g − a
b
zv)v∈T . Thus there is a k ∈ H1(GT ,Ad0 ρ̄) such

that ΨT(k) = (g − a
b
zv)v∈T . Then, bearing in mind a 6= 0, we set h(q)

=
b
a
(g − k) ∈

H1(GT∪{q},Ad0 ρ̄) and have h(q)|Gv
= zv for v ∈ T.

Proposition 3.5 We retain the notations of Proposition 3.4. Let Pv = 0 for all v ∈ T

(so P⊥
v = H1(Gv, (Ad0 ρ̄)∗) for v ∈ T) and let Pq = Nq as in Fact 2.3. Then

dim H1
P⊥(GT , (Ad0 ρ̄)∗) = dim H1

P⊥(GT∪{q}, (Ad0 ρ̄)∗)

and the intersection H1
P⊥(GT , (Ad0 ρ̄)∗) ∩H1

P⊥(GT∪{q}, (Ad0 ρ̄)∗) is codimension one

in each of the spaces. There is an element ψ(q) ∈ H1
P⊥(GT∪{q}, (Ad0 ρ̄)∗) such that

ψ(q) /∈ H1
P⊥(GT , (Ad0 ρ̄)∗). The sum

∑

v∈T invv(ψ(q)∪h(q)) is well defined in the sense

that it only depends on the image of ψ(q) in the one dimensional space

(3.5)
H1

P⊥(GT∪{q}, (Ad0 ρ̄)∗)

H1
P⊥(GT∪{q}, (Ad0 ρ̄)∗) ∩H1

P⊥(GT , (Ad0 ρ̄)∗)
.

If h(q)|Gq
/∈ Pq, we can scale ψ(q) such that

invq(ψ(q) ∪ h(q)) = −
∑

v∈T

invv(ψ(q) ∪ h(q)) = 1/p.

Proof Since q was chosen as in Proposition 3.4, we have f |Gq
= 0 for all f ∈

H1(GT ,Ad0 ρ̄). (The inflation of) H1
P

(GT ,Ad0 ρ̄) is contained in H1
P

(GT∪{q},Ad0 ρ̄).
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We establish equality. A typical element of H1(GT∪{q},Ad0 ρ̄) is of the form j +αh(q)

with j ∈ H1(GT ,Ad0 ρ̄). Suppose j + αh(q) ∈ H1
P

(GT∪{q},Ad0 ρ̄). As h(q) solves a

local condition problem at T which is not solvable by elements of H1(GT ,Ad0 ρ̄), we
immediately see α = 0 and j ∈ H1

P
(GT ,Ad0 ρ̄). Thus

H1
P(GT ,Ad0 ρ̄) = H1

P(GT∪{q},Ad0 ρ̄).

The equality of dimensions of dual Selmer groups follows from that of the Selmer
groups, that q is nice and Facts 2.3 and 2.4.

Since ζ is unramified at q and ζ|Gq
6= 0, we see ζ /∈ Nq = Pq, so

ζ /∈ H1
P⊥(GT∪{q}, (Ad0 ρ̄)∗).

The equality of dimensions of the dual Selmer groups for T and T∪{q} implies some

ψ(q) must exist. A basis for the denominator of (3.5) is given by {ζ1, . . . , ζs}. This
establishes the codimension one statement. Proposition 3.4 and its proof imply that
∑

v∈T invv(ζi∪g) = 0 for i = 1, . . . , s. As ζ ∈ H1(GT , (Ad0 ρ̄)∗) and the k of Proposi-

tion 3.4 is in H1(GT ,Ad0 ρ̄), the global reciprocity law implies
∑

v∈T invv (ζ ∪ k) = 0.

As h(q)
=

b
a
(g − k), we see

∑

v∈T invv(ζi ∪ h(q)) = 0. The well-definedness of
∑

v∈T invv(ψ(q) ∪ h(q)) is established.

The global reciprocity law implies
∑

v∈T invv(ψ(q) ∪ h(q)) = − invq(ψ(q) ∪ h(q)).

Suppose h(q)|Gq
/∈ Pq. By the definition of H1

P⊥(GT∪{q}, (Ad0 ρ̄)∗) we have ψ(q)|Gq
∈

P⊥
q and is ramified at q. By Fact 2.3 we know Pq and P⊥

q are one-dimensional in

underlying two-dimensional spaces so invq(h(q) ∪ ψ(q)) 6= 0. Note h(q) is uniquely
determined but ψ(q) is only determined up to scalar multiple. Now scale ψ(q) so that

invq(ψ(q) ∪ h(q)) = 1/p.

Let R be given with ideals J̃ ⊃ J satisfying [ J̃ : J] = p. Let ρR/ J̃ : GT → GL2(R/ J̃)
be given and let ρR/ J be a deformation of ρR/ J̃. For v ∈ T we choose local deforma-

tions δv of ρ̄|Gv
to R/ J such that δv ≡ ρR/ J mod J̃. Then for every v ∈ T there will be

a cohomology class zv ∈ H1(Gv,Ad0 ρ̄⊗ J̃/ J) such that (I + zv)ρR/ J|Gv
= δv. We will

find a ρR/ J-nice prime q such that

h(q)|Gq
∈ H1(GT∪{q},Ad0 ρ̄⊗ J̃/ J) ≃ H1(GT∪{q},Ad0 ρ̄)

solves the local condition problem (zv)v∈T . If h(q)|Gq
∈ Nq, then (I+h(q))ρR/ J|Gq

∈ Cq.

Of course, h(q)|Gq
may not be in Nq. (Deciding this seems to be a very hard problem).

If h(q)|Gq
6∈ Nq, then by allowing ramification at two ρR/ J-nice primes q1, q2 we can

find a linear combination h = α1h(q1) + α2h(q2) such that h|Gv
= zv for v ∈ T,

h|Gqi
∈ Nqi

and (I + h)ρR/ J|Gqi
∈ Cq for i = 1, 2. Proposition 3.6 below and its proof

are minor variations of [KLR1, Proposition 10] and its proof there.

Proposition 3.6 Let ρR/ J and a local condition problem (zv)v∈T be given. Let Q be a

Chebotarev collection of ρR/ J-nice primes for T as in Proposition 3.4. For each q ∈ Q
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let h(q) be the cohomology class of Proposition 3.4 that solves the local condition problem

(zv)v∈T . Then either there exists a q such that h(q)|Gq
∈ Nq or there are two primes

q1, q2 ∈ Q and a linear combination h = α1h(q1) + α2h(q2) such that h solves the local

condition problem (zv)v∈T and h|Gqi
∈ Nqi

for i = 1, 2.

Proof Recall from Fact 2.3 that

H1(Gq,Ad0 ρ̄) ≃ H1(Gq,Z/pZ)⊕H1(Gq,Z/pZ(1)).

We will write h(q)(σq) for the evaluation of the projection of h(q) to H1(Gq,Z/pZ) at
σq. Note h(q)|Gq

∈ Nq exactly when h(q)(σq) = 0. If there is a q ∈ Q with h(q)(σq) = 0,
then we are done.

Now assume for all primes q ∈ Q as in Proposition 3.4 that h(q)(σq) 6= 0. We

will now find two primes q1, q2 ∈ Q such that a linear combination of h(q1) and h(q2)

will suffice to remove all local obstructions at places of v and ensure that there are no
obstructions at q1 and q2.

Consider the 2× 2 matrix (h(qi )(σq j
))1≤i, j≤2. By assumption it has nonzero diag-

onal entries.

σq1
σq2

h(q1) a b

h(q2) c d

We want a linear combination h := α1h(q1) + α2h(q2) for αi ∈ Z/pZ such that

h(σqi
) = 0 for i = 1, 2 and α1 + α2 = 1. The sum being 1 implies that h solves

the local condition problem (zv)v∈T as h(q1) and h(q2) solve it. Showing that α1 and
α2 exist as required is equivalent to guaranteeing the matrix above has unequal rows
and zero determinant.

Let y be the (necessarily nonzero) value of h(q)(σq) that occurs most often, that is,
with maximal upper density. Let Y = {q ∈ Q | h(q)(σq) = y}. Then Y may not have
a density, but it has a positive upper density.

For any nice prime q define ηq ∈ H1(Gq,Z/pZ) ⊂ H1(Gq, (Ad0 ρ̄)∗) by ηq(σq)= 1.

As h(q) is ramified at q, we have for all q ∈ Y that invq(ηq ∪ h(q)) is nonzero. Let z be
the value that occurs most often. Put Z = {q ∈ Y | invq(ηq ∪ h(q)) = z}. Then Z has
positive upper density.

Choose any q1 ∈ Z. We will try to choose q2 ∈ Z so the 2× 2 matrix

(h(qi )(σq j
))1≤i, j≤2

has unequal rows and determinant zero. As q1, q2 ∈ Z ⊆ Y , both diagonal entries

will be y. Choosing h(q1)(σq2
) to be what we want (say x 6= 0, y) is simply a Cheb-

otarev condition on q2 in the field extension of Q(Ad0 ρ̄) corresponding to h(q1). This
condition is independent of those determining the set Q. Choosing h(q2)(σq1

) as we
want (the nonzero value y2/x in this case) involves invoking the global reciprocity
law to make the choice a Chebotarev condition.
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Proposition 3.5 impliesψ(q1)|Gq1
∈ N⊥

q1
= H1(Gq1

,Z/pZ(1)) ⊂ H1(Gq1
, (Ad0 ρ̄)∗).

Thus for k ∈ H1(GT∪{q1,q2},Ad0 ρ̄) we see invq1
(ψ(q1) ∪ k) does not depend on the

component of k|Gq1
that lies in Nq1

= H1(Gq1
,Z/pZ(1)) ⊂ H1(Gq1

,Ad0 ρ̄). Thus for

q1 fixed invq1
(ψ(q1) ∪ k) depends only on k(σq1

). We have the equation in 1
p

Z/Z:

h(q2)(σq1
)

h(q1)(σq1
)
· 1/p =

h(q2)(σq1
)

h(q1)(σq1
)
· invq1

(ψ(q1) ∪ h(q1))

= invq1
(ψ(q1) ∪ h(q2))

= −
(

∑

v∈T

invv(ψ(q1) ∪ h(q2))
)

− invq2
(ψ(q1) ∪ h(q2))

= −
(

∑

v∈T

invv(ψ(q1) ∪ h(q1))
)

− invq2
(ψ(q1) ∪ h(q1))

= 1/p − invq2
(ψ(q1) ∪ h(q2))

= 1/p − ψ(q1)(σq2
) invq2

(ηq2
∪ h(q2)) = 1/p − ψ(q1)(σq2

)z.

The first equality uses Proposition 3.5 and the second the fact that invq1
(ψ(q1)∪k) de-

pends only on k(σq1
). The third equality is the global reciprocity law and the fourth

uses the fact that h(q2)|Gv
= h(q1)|Gv

for v ∈ T. The fifth equality follows from Propo-
sition 3.5, the sixth from the definition of ηq and the seventh from the definition of

the set Z. Finally

h(q2)(σq1
)

y
· 1/p = 1/p − ψ(q1)(σq2

)z.

So choosing h(q2)(σq1
) to be whatever value we like is equivalent to choosing

ψ(q1)(σq2
) to be whatever value we like.

Having chosen q1 ∈ Z, we need to choose q2 ∈ Z such that h(q1)(σq2
) and

ψ(q1)(σq2
) are whatever we wish. Then we will be able to choose h(q1)(σq2

) and
h(q2)(σq1

) to be a nonzero x 6= y and y2/x, respectively and we will be done. (By [R1,
Lemma 10], h(q1) and ψ(q1) give independent Chebotarev conditions). Suppose for
a given q1 there is no q2 ∈ Z with the above properties. Then the set Z\{q1} lies

in Chebotarev classes that are complementary to the Chebotarev conditions on σq2

imposed by choosing h(q1)(σq2
) = x where x 6= 0, y and choosing ζq1

(σq2
) to be what-

ever we like forces h(q2)(σq1
) = y2/x. Let D > 0 be the density of set Q. Then these

complementary Chebotarev classes form a set of density D(1− (p − 2)/p2).

Now replace q1 by a sequence of different primes li ∈ Z, and assume they also
allow no valid choice for the second prime. Then we see that Z\{li} also lies in the
complimentary Chebotarev classes associated to h(li ) and ψ(li ). But these classes, for
varying li , are all independent of one another (ψ(li ) and h(li ) being ramified at li),

so upon imposing n such conditions, the density of the complementary classes is
D(1− (p − 2)/p2)n. Thus we have that Z\{l1, . . . , ln} is contained in a set of density
D(1− (p − 2)/p2)n. Letting n get arbitrarily large we get that Z is contained in a set
of arbitrarily small density, so Z has upper density 0, a contradiction.
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We can choose ρR/ J-nice primes {q1, q2} so that our matrix has the desired prop-

erties. Thus there is an h := α1h(q1) + α2h(q2) that solves the local condition problem
(zv)v∈T and satisfies h|Gqi

∈ Nqi
for i = 1, 2.

4 The Main Results

In this section for any prime v at which we will allow ramification, we will choose
deformation conditions (Nv,Cv) where Cv is a class of deformations of ρ̄|Gv

and Nv ⊂
H1(Gv,Ad0 ρ̄) preserves Cv. See [R2, T]. Assume

• there is a ρ̄ : GS → GL2(Z/pZ) with p ≥ 5 such that the image of ρ̄ contains
SL2(Z/pZ) (contains GL2(Z/pZ) if p = 5);

• X
1
S((Ad0 ρ̄)∗) = 0 (see Fact 3.1);

• for each v ∈ S a potentially semistable deformation to Zp of ρ̄|Gv
that induces the

trivial subspace 0 = Nv ⊂ H1(Gv,Ad0 ρ̄).

All primes q to be added to our ramification set will be nice and the deformation
conditions (Nq,Cq) will be as in [R2]. See also Fact 2.3.

For the Nv chosen in [T] one had dim H1
N

(GT ,Ad0 ρ̄) = dim H1
N⊥(GT , (Ad0 ρ̄)∗)

for any T ⊇ S for which T\S consisted only of nice primes. Our choice of Nv = 0 for
v ∈ S forces N⊥

v = H1(Gv, (Ad0 ρ̄)∗) for v ∈ S. Thus, in our setting

dim H1
N(GT ,Ad0 ρ̄) < dim H1

N⊥(GT , (Ad0 ρ̄)∗).

Using the results of [T], one can introduce nice primes q to the set S such that the
Selmer group for this larger set of ramification is trivial. We now use [KLR1, Corol-
lary 14] to find a set B of one or two nice primes such that the map H1

N
(GS,Ad0 ρ̄) →֒

H1
N

(GS∪B,Ad0 ρ̄) has cokernel of dimension one. (We remark that [KLR1, Corol-

lary 14] follows immediately from [KLR1, Proposition 10] of which Proposition 3.6
here is a variant suited for our purposes). Let S1 = S ∪ B.

We consider a sequence of deformation problems ramified at an increasing set
of places Sn with specified deformation conditions (Nv,Cv) and deformation rings
Rn = Zp[[T1, . . . ,Tn]]/ Jn such that Jn ⊆ (p,T1, . . . ,Tn)n. Note that Rn/mn

Rn
=

Zp[[T1, . . . ,Tn]]/(p,T1, . . . ,Tn)n. Furthermore, the deformation to Rn+1/mn+1
Rn+1

will

satisfy all the deformation conditions of places in Sn. Thus we will have maps

Rn+1 = Zp[[T1, . . . ,Tn+1]]/ Jn+1 ։ Rn+1/mn+1
Rn+1

։ Rn/mn
Rn

և Rn.

Taking the inverse limit of the deformations to GL2(Rn/mn
Rn

) gives a deformation to
GL2(Zp[[T1, . . . ,Td, . . . ]]).

We construct the sequence inductively, the base case of n = 1 being done. We may
suppose we have a map ρn : GSn

→ GL2(Rn/mn
Rn

) and dim H1
N

(GSn
,Ad0 ρ̄) = n.

Corollary 14 of [KLR1] provides a set B of one or two (ρn)Rn/mn
Rn

-nice primes such

that the map H1
N

(GSn
,Ad0 ρ̄) →֒ H1

N
(GSn∪B,Ad0 ρ̄) has cokernel of dimension one.

Let U be the deformation ring and ρU the deformation for the augmented problem
with deformation conditions (Nv,Cv) at v ∈ Sn ∪ B. Since the prime(s) of B are
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(ρn)Rn/mn
Rn

-nice, we see (ρn)Rn/mn
Rn
|Gq
∈ Cq for q ∈ B so U surjects onto Rn/mn

Rn
.

Thus U has

Z/pZ[[T1, . . . ,Tn+1]]/(T1, . . . ,Tn+1)2 and Zp[[T1, . . . ,Tn]]/(p,T1, . . . ,Tn)n

as quotients. Let J̃ be the intersection of the kernels of these quotient maps. Put
U0 = U/ J̃. If U0 has Zp[[T1, . . . ,Tn+1]]/(p,T1, . . . ,Tn+1)n+1 as a quotient, the in-
duction is complete.

If not, there is an inverse sequence of rings

U0 և U1 և · · ·և Zp[[T1, . . . ,Tn+1]]/(p,T1, . . . ,Tn+1)n+1

such that at each stage the kernel has order p. We will add more primes of ramifi-
cation to realise each of these intermediate rings as a suitable deformation ring. At

each stage the augmented local deformation conditions (Nv,Cv) will be satisfied by
the previous ring.

The deformation ρU0
to U0 induced by ρU satisfies ρU0

|Gv
∈ Cv for v ∈ Sn ∪ B.

Thus there are no local obstructions to deforming ρU0
to U1. By Fact 3.1, there is

no global obstruction to deforming ρU0
to U1. Let ρ̃U1

be such a deformation. If
ρ̃U1
|Gv
∈ Cv for v ∈ Sn ∪B, we can deform ρ̃U1

to U2. Henceforth we suppose that for
any deformation ρ̃U1

of ρU0
that ρ̃U1

|Gv
/∈ Cv for some v ∈ Sn ∪ B.

Let J be the (order p) kernel of the map U0 ← U1. Then there are cohomology

classes (zv)v∈Sn∪B with zv ∈ H1(Gv,Ad0 ρ̄ ⊗ J) such that (I + zv)ρ̃U1
|Gv
∈ Cv for

v ∈ Sn ∪ B. Recall that ΨSn∪B is the restriction map at all places of Sn ∪ B. We are
assuming that

(zv)v∈Sn∪B /∈
(

⊕

v∈SN∪B

Nv

)

⊕ΨSn∪B(H1(GSn∪B,Ad0 ρ̄)).

Otherwise there is an h ∈ H1(GSn∪B,Ad0 ρ̄ ⊗ J) such that (I + h)ρ̃U1
|Gv
∈ Cv for all

v ∈ Sn ∪ B.
We now apply Proposition 3.6 to get a set A of one or two primes and a cohomol-

ogy class h ∈ H1(GSn∪B∪A,Ad0 ρ̄) such that
• any q ∈ A is ρ̃U1

-nice,
• h|Gq

∈ Nq for q ∈ A,
• h|Gv

= (zv) for v ∈ Sn ∪ B.

Proposition 4.1 For A as above and

(zv)v∈Sn∪B /∈
(

⊕

v∈SN∪B

Nv

)

⊕ΨSn∪B(H1(GSn∪B,Ad0 ρ̄))

we have H1
N

(GSn∪B∪A,Ad0 ρ̄) = H1
N

(GSn∪B,Ad0 ρ̄).

Proof By the third condition of Proposition 3.4 , elements of H1
N

(GSn∪B,Ad0 ρ̄) are
trivial at the places of B so H1

N
(GSn∪B,Ad0 ρ̄) ⊆ H1

N
(GSn∪B∪A,Ad0 ρ̄). It remains to

check equality. If A contains one prime, then any element of

H1
N(GSn∪B∪A,Ad0 ρ̄)\H1

N(GSn∪B,Ad0 ρ̄)
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is necessarily of the form f + αh(q) with f ∈ H1(GSn∪B,Ad0 ρ̄) and α 6= 0. Thus
αh(q)|Gv

= αzv ∈ − f + Nv for all v ∈ Sn ∪ B ∪ A. Our hypothesis on (zv)v∈Sn∪B

implies α = 0, which is a contradiction.
Suppose A contains two primes. An element of

H1
N(GSn∪B∪A,Ad0 ρ̄)\H1

N(GSn∪B,Ad0 ρ̄)

is necessarily of the form f + α1h(q1) + α2h(q2) with f ∈ H1(GSn∪B,Ad0 ρ̄). Thus

(α1h(q1) + α2h(q2))|Gv
= (α1 + α2)zv ∈ − f + Nv for all v ∈ Sn ∪ B ∪ A. Our

hypotheses imply α2 = −α1. Thus we must check whether f + α1(h(q1) − h(q2)) ∈
H1

N
(GSn∪B∪A,Ad0 ρ̄). But α1(h(q1) − h(q2))|Gv

= 0 for all v ∈ Sn ∪ B which implies
f |Gv
∈ Nv for all v ∈ Sn ∪ B so f ∈ H1

N
(GSn∪B,Ad0 ρ̄). By the third condition of

Proposition 3.4 we see f |Gqi
= 0 for i = 1, 2 so f ∈ H1

N
(GSn∪B∪A,Ad0 ρ̄). Thus

α1(h(q1) − h(q2)) ∈ H1
N

(GSn∪B∪A,Ad0 ρ̄) so α1(h(q1) − h(q2))|Gqi
∈ Nqi

for i = 1, 2.

This corresponds to the matrix in the proof of Proposition 3.6 having equal rows. The
matrix was constructed to have unequal rows, so α1 = 0 and f ∈ H1

N
(GSn∪B,Ad0 ρ̄),

which is a contradiction.
Thus H1

N
(GSn∪B∪A,Ad0 ρ̄) = H1

N
(GSn∪B,Ad0 ρ̄).

Put ρU1
= (I + h)ρ̃U1

|Gv
. Then ρU1

|Gv
∈ Cv for v ∈ Sn ∪ B ∪ A. We see that the

deformation ring with deformation conditions (Nv,Cv) at v ∈ Sn ∪B∪A has U1 as a
quotient. By Proposition 4.1 this ring has the same dual tangent space as U0. Iterating

this argument, we get, after allowing ramification at more primes, a deformation ring
that has Zp[[T1, . . . ,Tn+1]]/(p,T1, . . . ,Tn+1)n+1 as quotient. Let Sn+1 be the set of
ramified places of this deformation. We have completed the induction described at
the beginning of this section.

Taking the inverse limit of the representations ρn : GSn
→ GL2(Rn/mn

R), we ob-
tain a deformation ρ : Gal(Q̄/Q) → GL2(Zp[[T1, . . . ,Td, . . . ]]). All that remains is
to prove fullness of image.

Proposition 4.2 For n ≥ 2 we have that ρn is full.

Proof By [Bo, Proposition 2], we need to show that the mod (p,T1, . . . ,Tn)2 reduc-

tion of ρn is full. Observe that the kernel of the map SL2(Rn/m2
Rn

) → SL2(Z/pZ),
when viewed as a Z/pZ[Image(ρ̄)]-module, consists of n + 1 copies of the adjoint.
Since ρn is the solution of a deformation problem, there are n copies of Ad0 ρ̄ cor-
responding to basis elements of the dual tangent space of our deformation prob-

lem. These give rise to split extensions. Since n ≥ 2, there is also a deformation to
GL2(Z/p2Z). For p ≥ 5, a routine computation shows that an element of order p in
SL2(Z/pZ) deforms to an element of order p2 in SL2(Z/p2Z). Thus the deformation

to Z/p2Z provides a nonsplit extension which gives the last copy we need of Ad0 ρ̄.

We now complete the proof of the Theorem 1.1. Let

R = lim
←−

n

Rn/mn
Rn
≃ Zp[[T1, . . . ,Td, . . . ]].
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Clearly R ։ Rn/mn
Rn

. Let A ∈ SL2(R) have determinant 1 with image An ∈
SL2(Rn/mn

Rn
). Then A = lim

←−n
An. By Proposition 4.2 there is a gn ∈ Gal(Q̄/Q)

such that ρn(gn) = An.
Since Gal(Q̄/Q) is compact and Hausdorff, we see there is a subsequence {gnm

}
of {gn} that has a limit point g ∈ Gal(Q̄/Q). We have

ρ(g) = lim
←−

n

ρn(g) = lim
←−

n

ρn(lim
−→

m

gnm
) = lim
←−

n

lim
−→

m

ρn(gnm
)

where the last equality is by continuity of ρn. For nm > n we know ρnm
is a deforma-

tion of ρn so nm > n implies the image of Anm
= ρnm

(gnm
) in SL2(Rn/mn

Rn
) is An so

ρn(gnm
) = An. Thus

ρn(g) = lim
−→

m

ρn(gnm
) = lim
−→

m

An = An

ρ(g) = lim
←−

n

ρn(g) = lim
←−

n

An = A.
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