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Abstract

We propose a discrete state-space model for storage of urban stormwater in two connected
dams using an optimal pump-to-fill policy to transfer water from the capture dam to
the holding dam. We assume stochastic supply to the capture dam and independent
stochastic demand from the holding dam. We find new analytic formulae to calculate
steady-state probabilities for the contents of each dam and thereby enable operators to
better understand system behaviour. We illustrate our methods by considering some
particular examples and discuss extension of our analysis to a series of three connected
dams.
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1. Introduction

For much of the 20th century urban drainage systems were designed to remove stormwater
from cities and suburbs as quickly as possible. Water was captured from houses and roadsides in
underground pipes and large concrete-lined drains which emptied directly into local rivers and
streams. Smaller urban streams were often modified to substantially increase flow rates. The
enhanced run-off resulted in widespread pollution of urban waterways with waste materials,
flooding of low-lying areas when drains became blocked with debris, and damage to adjoining
marine environments by repeated incursion of large volumes of freshwater. While society gener-
ally has been content to tolerate massive wastage of urban stormwater it has become increasingly
obvious in recent times that traditional and existing urban water supply systems are often
grossly inadequate. This is particularly true in semi-arid mediterranean climate regions where
water-usage restrictions in large cities have now become routine during the hot, dry summer
season. See https://www.ladwp.com/ladwp/faces/ladwp/aboutus/a-water/a-w-conservation/a-
w-c-ordinanceandcodes and www.sawater.com.au/SAWater/Environment/WWM/ for details of
typical restrictions. Consequently, community attitudes are changing and progressive local
government organisations have established a multitude of small-scale stormwater capture and re-
tention schemes. Underground pipes and concrete drains have been replaced by lakes and reed-
beds fed by open watercourses lined with re-introduced endemic vegetation. By incorporating
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natural cleaning mechanisms and slowing down run-off both pollution and flooding have
decreased. Some specific results are reported in [4]. Reclaimed stormwater is used by local
communities for environmental purposes and by local industry.

1.1. The Parafield stormwater storage and supply system

The City of Salisbury in South Australia is a world-leader in the development of urban water
resources. The Parafield stormwater management system is one such scheme. Stormwater from
an urban waterway is diverted to a 50 ML capture dam and then pumped to a 50 ML holding
dam where impurities are removed. A controlled gravitational release allows the holding dam
to empty in around two weeks. The usual policy has been to allow water to drain continually
at the maximum rate. Subsequently, the water flows to a small wetland for further purification
and is then supplied directly to consumers or pumped into an underground aquifer for longer
term storage. Reclaimed water is used by local industry to replace more expensive mains water.
The City of Salisbury supplies prescribed annual volumes to each of their clients. There is no
guarantee that water will be available on any given day and no particular problem if the holding
dam is emptied from time to time. Information about environmental policies and practices
in the City of Salisbury can be found at www.salisbury.sa.gov.au/Our_City/Environment. For
a full discussion of the Parafield system we refer to Piantadosi [16]. Piantadosi constructed
a computer simulation of the system using Monte Carlo methods to generate realistic daily
rainfall [18] and a pump-to-fill policy to move water from the capture dam to the holding dam.
Piantadosi postulated that the pump-to-fill policy would minimise overflow and maximise the
volume supplied to consumers. Piantadosi also described a modified Parafield system with
constant demand in which water was pumped directly from the holding dam to consumers.

1.2. A mathematical model for water storage in two connected dams

We present a discrete state-space model of an urban water storage system consisting of two
connected dams—a holding dam with capacity m units and a capture dam with capacity n units.
We assume that m ≤ n. A similar analysis applies for m > n. The state of the system is the
content of the two dams. We assume stochastic supply and independent stochastic demand
and use a pump-to-fill policy to transfer water from the capture dam to the holding dam. We
also assume that pumping capacity is sufficient to ensure that the desired daily transfers are
feasible. Our aim is to find new analytic formulae for the invariant state probabilities. Numerical
calculation is not straightforward because the (m+1)(n+1)× (m+1)(n+1) transition matrix
may be very large. We present a typical example with m = n = 50. We use the terms supply
and demand throughout but we may also think of inflow and outflow. Note that supply = inflow
+ overflow and demand = outflow + shortfall.

1.3. More general models

There are some factors we have not considered. In a realistic simulation water losses occur
by evaporation and seepage. The simulation described in [19] has now been extended—as
suggested in the concluding remarks—to include water loss at a rate given by an empirically
defined seasonal constant multiplied by the exposed surface area. In a mathematical model such
extensions may preclude analytic solutions and thereby obscure key insights. We have assumed
that pumping capacity is sufficient to allow all desired daily transfers. This is certainly true in
the Parafield system where the maximum pumping rate is 800 L/s. Nevertheless, development
of a model with limited pumping capacity could be a worthwhile exercise. Correlation between
supply and demand is likely in practice. We might expect demand to rise during dry spells when
supply decreases. It may be possible to model correlation by considering joint probabilities for
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all possible transitions. It is difficult to allow seasonal variation in a theoretical model because
the steady states are replaced by limit cycles. Alternatively, separate seasonal models could be
used. See [7] for some examples.

2. Previous research

The mathematical literature on water storage in a single dam has developed largely from
the work of Moran [10], [11] and his school. In particular, we cite Gani [5] and Yeo [20],
[21]. For a system with two dams—a capture dam and a holding dam—a more complex model
is required. For technical reasons we consider a discretised version of the problem which is
formulated as a Markov decision process using a bivariate state space. The first state variable
is the content of the holding dam—the level—and the second state variable is the content of the
capture dam—the phase.

The pump-to-fill policy defines a Markov chain in which the transition matrix takes a
characteristic regular block structure. For a system of two dams with stochastic supply and
constant demand Howlett and Piantadosi [7] used Gaussian elimination (GE) and elementary
matrix analytic methods (MAMs) to find elegant analytic formulae for the invariant level and
phase probabilities. Although the derivations are complicated these formulae can be used
conveniently in MATLAB® for numerical computations. It has been shown (see [14] and [15])
in quite general circumstances, that the pump-to-fill policy is optimal insofar as it minimises
both the volume of overflow and the volume of shortfall. The proof is constructed by showing
that the pump-to-fill policy is optimal for every possible event sequence. The MAMs developed
in [8], [12], and [13] are well-suited to Markov chains with large transition matrices and the work
in [6] and [9] is especially directed towards numerical calculations—an important component
of real-time management for a series of connected dams. In [17] MAMs and GE were used to
calculate numerical values for invariant probabilities in a series of three dams—a capture dam,
a holding dam, and a distribution dam—but the inherent algebraic complexity of the method
has prevented any extension to larger systems.

Management of multiply-connected reservoirs has also been considered but the complexity
of such systems generally precludes theoretical derivation of optimal solutions. Stochastic
dynamic programming has been used to find effective suboptimal management policies. See
[1], [2], and [3] for a comprehensive discussion.

3. The main results

The main results are developed for two connected dams with stochastic daily supply to the
system and independent stochastic daily demand. A pump-to-fill policy is used to transfer water
from the capture dam to the holding dam. Known results [7] are extended by exposing a much
simpler intrinsic structure. If the holding dam has capacity m units and the capture dam has
capacity n units then the Markov transition matrix is a large (m + 1)(n + 1) × (m + 1)(n + 1)

matrix.
We consider a censored process by observing only transitions at the top level—when the

holding dam is full—and show that the corresponding invariant probability can be expressed
as a linear combination of shifted supply probability vectors. We show that the block transition
matrix from any level other than the top level to any subsequent level is the product of a level-to-
level specific column vector and the supply probability row vector; see (5.2), below. Next, we
show that invariant probabilities at each level can be calculated separately using only matrices
of size (n + 1) × (n + 1) and that invariant probabilities for all levels other than the top level
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are scalar multiples of the supply probability vector. Numerical calculations are based on (5.1),
(5.4), (5.9), and (5.10), below. We also outline an extension of the theory to a system of three
dams

We present two examples for the modified Parafield system with stochastic supply V where
E[V ] = 2.099. The first has stochastic demand W with E[W ] = 2.000 and the second has
constant demand d = 2. The invariant probabilities are very similar but the system with constant
demand exhibits some characteristic oscillation in phase probabilities that are averaged out in
the fully stochastic model. The main advantage of the stochastic model is that it is possible to
set the average demand to a noninteger value and hence to design a balanced system.

4. A system of two dams with constant demand

We begin by describing a system of two dams with stochastic daily supply and constant daily
demand. We use a discrete state-space model in which the holding dam has capacity m and the
capture dam has capacity n where m ≤ n. The system is managed using a pump-to-fill policy
to transfer water from the capture dam to the holding dam. The system states are denoted by
Sij = (i, j) where i ∈ [0, m] is the content of the holding dam and j ∈ [0, n] is the content
of the capture dam. The states are ordered according to the following rules: (i1, j1) precedes
(i2, j2) if i1 < i2 or if i1 = i2 and j1 < j2. We write (i1, j1) ≺ (i2, j2). The state space

S = {(0, 0), . . . , (0, n); (1, 0), . . . , (1, n); . . . ; (m, 0), . . . , (m, n)}
contains h = (m + 1)(n + 1) elements and can be expressed as S = ⋃m

i=0 Li where the level
Li is defined as the collection of all states Li = {(i, 0), (i, 1), . . . , (i, n)}. The first component
(the content of the holding dam) refers to the level of the process and the second component
(the content of the capture dam) refers to the phase.

4.1. The pump-to-fill policy

The following rules describe the state transitions for the pump-to-fill policy. We assume
constant demand d units per day from the holding dam where d ≥ 0. The outflow from the
holding dam is defined by s = min(d, i) where i is the content of the holding dam. The supply
is a random variable V . For each r = 0, 1, . . . the probability that r units of water are supplied
to the capture dam on any given day is denoted by pr = P[V = r] and p+

r = P[V ≥ r]
denotes the probability that at least r units of water are supplied to the capture dam. The supply
probability vector is

p = [p0, p1, . . . , pn−1, p
+
n ] ∈ R

1×(n+1).

We assume that 0 < p0 < 1. The conditional probability that the following transitions will
occur is the probability pr that r units of water are supplied to the capture dam. Each day it
is necessary to establish the order in which key actions are deemed to occur. Firstly, we pump
water from the holding dam to users; secondly, we transfer water from the capture dam to the
holding dam; thirdly, we receive the random supply to the capture dam. The transitions for the
pump-to-fill policy are given here.

• For the state (i, j) where 0 ≤ i < d and j ≤ m, pump s = i units of water to users and
pump all the water from the capture dam to the holding dam. If r units of water enter the
capture dam then (i, j) → (j, min[r, n]). If r > n then the capture dam overflows and
r − n units of water are wasted.

• For the state (i, j) where 0 ≤ i < d and j > m, pump s = i units of water to users
and pump m units from the capture dam. If r units of water enter the capture dam then
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(i, j) → (m, min[j − m + r, n]). If r > n + m − j then the capture dam overflows and
r − n − m + j units of water are wasted.

• For the state (i, j) where i ≥ d and j ≤ m − i + d, pump s = d units of water to users
and pump all the water from the capture dam to the holding dam. If r units of water enter
the capture dam then (i, j) → (i − d + j, min[r, n]). If r > n then the capture dam
overflows and r − n units of water are wasted.

• For the state (i, j) where i ≥ d and j > m − i + d, pump s = d units of water to users
and pump m − i + d units of water to the holding dam. If r units of water enter the
capture dam then (i, j) → (m, min[j − m + i − d + r, n]). If r > n + m − i + d − j

then the capture dam overflows and r − n − m + i − d + j units of water are wasted.

4.2. The Markov model

This model was proposed by Piantadosi [16] and is fully described in [7]. Define the simple
substochastic matrix A ∈ R

(n+1)×(n+1) by

A =

⎡
⎢⎢⎢⎣

p0 p1 p2 · · · pn−1 p+
n

0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0

⎤
⎥⎥⎥⎦ ,

and substochastic matrices Ai ∈ R
(n+1)×(n+1) for each i = 0, . . . , m in which the first i rows

are zero in the general form

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 · · · 0 0
p0 p1 · · · pn−i · · · pn−1 p+

n

0 p0 · · · pn−i−1 · · · pn−2 p+
n−1

...
...

...
...

...

0 0 · · · p0 · · · pi−1 p+
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If we define the permutation matrix � ∈ R
(n+1)×(n+1) by

� =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

,

and if m ≤ n then the transition matrix for the system is given by

Qd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A �A · · · �m−d+1A · · · �m−1A Am

...
...

...
...

...

A �A · · · �m−d+1A · · · �m−1A Am

0 A · · · �m−dA · · · �m−2A Am−1
...

...
...

...
...

0 0 · · · A · · · �d−1A Ad

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qd,0
...

Qd,d

Qd,d+1
...

Qd,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
h×h.
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If the vector
x

(t)
d = [x(t)

d,0, x
(t)
d,1, . . . , x

(t)
d,m] ∈ R

1×h

denotes the probable state of the system at time t , where x(t)
d,i ∈ R

1×(n+1) is the probability that
the state is in level i, then evolution of the system is defined by

x
(t)
d Qd = x

(t+1)
d ⇐⇒ x

(t)
d,0Qd,0 + x

(t)
d,1Qd,1 + · · · + x

(t)
d,mQd,m = x

(t+1)
d .

If we denote the invariant probability by

πd = [πd,0,πd,1, · · · ,πd,m−1,πd,m] ∈ R
1×h,

where the vector component πd,i ∈ R
1×(n+1) for each i = 0, 1, . . . , m denotes the invariant

probability for level i, then the invariant probability satisfies the equation

πdQd = πd ⇐⇒ πd,0Qd,0 + πd,1Qd,1 + · · · + πd,mQd,m = πd . (4.1)

5. A system of two dams with independent stochastic demand

We extend the basic model with constant demand to a model with stochastic demand defined
by a probability vector

q = [q0, q1, . . . , qm−1, q
+
m ] ∈ R

1×(m+1),

where qs denotes the probability of demand d = s for each s = 0, 1, . . . and q+
s denotes the

probability of demand d ≥ s. The model with stochastic demand is a linear combination of the
models with constant demand, and so the transition matrix is

T = q0Q0 + q1Q1 + · · · + qm−1Qm−1 + q+
mQm ∈ R

h×h.

To emphasise the general structure of this transition matrix we introduce some new notation.
If we write T = [Ti,j ] where Ti,j ∈ R

(n+1)×(n+1) then we have

Ti,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q+
i �jA+

min(i,j)∑
k=1

qi−k�
j−kA for 0 ≤ j < m,

q+
i Am +

i∑
k=1

qi−kAm−k for j = m,

and 0 ≤ i ≤ m. Hence, if we define matrices �i,j ∈ R
(n+1)×(n+1) by the formulae

�i,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q+
i �j +

min(i,j)∑
k=1

qi−k�
j−k for 0 ≤ j < m,

q+
i Am +

i∑
k=1

qi−kAm−k for j = m,

and 0 ≤ i ≤ m, then we can write

T =

⎡
⎢⎢⎢⎣

�0,0A �0,1A · · · �0,m−1A �0,m

�1,0A �1,1A · · · �1,m−1A �1,m

...
...

. . .
...

...

�m,0A �m,1A · · · �m,m−1A �m,m

⎤
⎥⎥⎥⎦ .
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If we denote the invariant probability by

π = [π0,π1,π2, · · ·πm−1,πm] ∈ R
1×h,

where the vector component πi ∈ R
1×(n+1) for each i = 0, 1, . . . , m denotes the invariant

probability for level i, then the invariant probability satisfies the equation

πT = π ⇐⇒ π0�0,jA+ · · · + πm�m,jA = πj (for j = 0, . . . , m − 1)

and π0�0,m + · · · + πm�m,m = πm (for j = m).

5.1. The censored Markov process

We partition T as

T =
[
T1 T2
T3 �m,m

]
,

where T1 ∈ R
m(n+1)×m(n+1), T2 ∈ R

m(n+1)×(n+1), and T3 ∈ R
(n+1)×m(n+1) and censor the

process by observing it only when the state lies in level m. The censored process has transition
matrix

S = �m,m + T3(I − T1)
−1T2 ∈ R

(n+1)×(n+1),

and is irreducible with invariant probability ρ = [ρ0, ρ1, . . . , ρn] ∈ R
1×(n+1) satisfying the

equation
ρS = ρ. (5.1)

Furthermore, since ρ is the relative invariant probability of the phases given that the level is
m, it follows that πm = αmρ, where the constant αm ∈ [0, 1] is the invariant probability for
level m. Note that we can represent ρ in terms of shifted supply probability vectors as follows.
Since p0 > 0, the vectors

δkp = [0, 0, . . . , 0, p0, p1, . . . , p
+
n−k],

for k = 0, 1, . . . , n, are a basis for R
1×(n+1). Thus, we can write ρ = ∑n

k=0 γkδ
kp for suitably

chosen constants γk ∈ R. Note that δ0p = p.

5.2. The key simplification

For 0 ≤ i ≤ n let ei ∈ R
(n+1)×1 denote the unit column vector with 1 in the ith position and

0 elsewhere. Now, �kA = ekp for 0 ≤ k ≤ n; hence,

�i,jA = ui,jp,

where ui,j ∈ R
(n+1)×1 and ui,j ≥ 0 for each 0 ≤ i ≤ m and 0 ≤ j < m − 1. Hence, we can

simplify the expressions for the two key block matrices T1 and T3 by writing

T1 = [ui,jp], T3 = [um,jp]. (5.2)

It is now easy to show that powers of T1 also take a simple form. Indeed, we can write

T s
1 = [u(s)

i,jp], (5.3)

for each s ∈ N, whereu(s)
i,j ∈ R

(n+1)×1 andu(s)
i,j ≥ 0 for each 0 ≤ i ≤ m−1 and 0 ≤ j ≤ m−1.

Hence, B = ∑∞
s=1 T s

1 ∈ R
m(n+1)×m(n+1) can be written in the form

B = [vi,jp],
where vi,j ∈ R

(n+1)×1 and vi,j ≥ 0 for each 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ m − 1. The matrix
B satisfies the identity

I + B = (I − T1)
−1.
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5.3. The reduction process

It is convenient to rearrange the matrix multiplications. To do this, define nonnegative
elements

θi,j = pui,j ∈ R, ωi,j = pvi,j ∈ R,

for each 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ m − 1; hence, define new matrices

� = [pui,j ] ∈ R
m×m, � = [pvi,j ] ∈ R

m×m.

It is a matter of elementary matrix multiplication to show that

�s = [pu(s)
i,j ],

where u(s)
i,j is defined earlier in (5.3) for 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ m − 1. Hence, we deduce

that

� =
∞∑

s=1

�s ⇐⇒ I +� = (I −�)−1.

The relationship between � and � is equivalent to the relationship between B and T and
essentially involves a simple rearrangement of the same matrix multiplications.

5.4. The solution

We can now begin the solution procedure. From the equation π = πT we have

πi = αip, (5.4)

where

αi =
m∑

k=0

πkuk,i

is the invariant probability for level i for each 0 ≤ i < m. Since πkuk,i = αkpuk,i = αkθk,i

for 0 ≤ k ≤ m − 1 and since πm = αmρ, this becomes

αi =
m−1∑
k=0

αkθk,i + αmτi, (5.5)

where we have defined τi = ρum,i ∈ R for each 0 ≤ i < m. We use the vector notation

α = [α0, . . . , αm−1] ∈ R
1×m, τ = [τ0, . . . , τm−1] ∈ R

1×m

to collectively denote these terms. Now we can write (5.5) more compactly in the form

α = α�+ αmτ ⇐⇒ α = αmτ (I −�)−1. (5.6)

If f i ∈ R
m×1 is defined for 0 ≤ i ≤ m − 1 as the unit column vector with 1 in the ith position

and 0 elsewhere then it follows from (5.6) that the probability for level i is given by

αi = αf i = αmτ (I −�)−1f i , (5.7)

for 0 ≤ i ≤ m − 1. Since the total probability for all levels is 1 we have

m−1∑
i=0

αmτ (I −�)−1f i + αm = 1 ⇐⇒ αm = 1

1 + τ (I −�)−1
∑m−1

i=0 f i

.
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If we define f = ∑m−1
i=0 f i ∈ R

m×1 as the vector with 1 in every position then the previous
expression can be rewritten as

αm = 1

1 + τ (I −�)−1f
. (5.8)

For each 0 ≤ i < m it follows from (5.7) and (5.8) that

πi = αip = αmτ (I −�)−1f ip = τ (I −�)−1f ip

1 + τ (I −�)−1f
. (5.9)

Of course, we have already established that

πm = ρ

1 + τ (I −�)−1f
. (5.10)

6. Examples

6.1. Example 1: Stochastic supply and independent stochastic demand

The rainfall data at Parafield has been collected over an approximate 100 year time-frame.
Observations of the Parafield system show that supply is directly proportional to rainfall with
1 mm of rainfall generating approximately 1.75 ML of inflow. In this example we assume a
stochastic daily supply V defined by a discrete approximation to the cumulative distribution
function

F [v] = p0 + (1 − p0)

∫ v

0
xk−1e−x/θ dx,

where the parameters p0, k, and θ were determined by the method of maximum likelihood from
the supply generated by observed rainfall over the past 100 years on October 15. The supply
probability p ∈ R

1×51 is given approximately by

p ≈ [0.7114, 0.0491, 0.0348, 0.0284, 0.0238, 0.0202, 0.0173, 0.0149, 0.0129,

0.0111, 0.0097, 0.0084, 0.0073, 0.0063, 0.0055, 0.0048, 0.0042, 0.0037,

0.0032, 0.0028, 0.0025, 0.0022, 0.0019, 0.0016, 0.0014, 0.0013, 0.0011,

0.0010, 0.0009, 0.0007, 0.0007, 0.0006, 0.0005, 0.0004, 0.0004, 0.0003,

0.0003, 0.0003, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0001, 0.0001,

0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0004].
We refer to [7] for further details. In this example the stochastic demand W is generated by the
binomial probability vector q ∈ R

1×51 given by

q = [0.0778 0.2592 0.3456 0.2304 0.0768 0.0102 0 · · · 0],
where qw = (5

w

)
(0.4)w(0.6)5−w for w = 0, . . . , 5. In practice, demand probabilities could be

constructed by observation of daily demand. We might expect that the volume quotas promised
to consumers would be randomly accessed on a daily basis but fully used over the relevant
time-period. A well-designed system should be approximately balanced. That is, the expected
demand should be approximately equal to the expected supply. In this example the expected
daily supply is E[V ] ≈ 2.099 ML and the expected daily demand is E[W ] = 2.000 ML. The
supply and demand probabilities are shown in Figure 1.
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Figure 1: The supply probabilities (part (a)) and the demand probabilities (part (b)) from Example 1.
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Figure 2: The level probabilities (part (a)) and the phase probabilities (part (b)) from Example 1.

The vector λ = [α, α50] is the vector of invariant probabilities λi = αi ∈ [0, 1] for each
level i with 0 ≤ i ≤ 50. The component λi is the probability that the holding dam will contain
i units of water. We may define the vector μ = [μ0, μ1, . . . , μ50] of invariant probabilities
μj ∈ [0, 1] for each phase j with 0 ≤ j ≤ 50 by setting

μ =
50∑
i=0

πi =
49∑
i=0

λip + λ50ρ = (1 − λ50)p + λ50ρ.

The component μj is the probability that the capture dam will contain j units of water. The
vector ρ ∈ R

1×51 defines the relative phase probabilities at level 50. In other words, ρ shows the
steady state probabilities for the content of the capture dam when the holding dam is full. The
steady state level and phase probabilities are shown in Figure 2. The relative phase probabilities
at level 50 are shown in Figure 3.

The detailed calculations show that

λ ≈ [0.0350, 0.0073, 0.0069, 0.0069, 0.0068, 0.0068, 0.0069, 0.0069, 0.0069,

0.0070, 0.0070, 0.0071, 0.0071, 0.0072, 0.0072, 0.0073, 0.0073, 0.0074,

0.0075, 0.0075, 0.0076, 0.0076, 0.0077, 0.0077, 0.0078, 0.0079, 0.0079,

0.0080, 0.0081, 0.0081, 0.0082, 0.0082, 0.0083, 0.0084, 0.0084, 0.0085,

0.0086, 0.0086, 0.0087, 0.0088, 0.0088, 0.0089, 0.0090, 0.0090, 0.0091,

0.0092, 0.0093, 0.0093, 0.0094, 0.0095, 0.5752],
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Figure 3: The relative phase probabilities at level 50 from Example 1.

μ ≈ [0.3090, 0.0282, 0.0225, 0.0201, 0.0184, 0.0172, 0.0162, 0.0153, 0.0147,

0.0141, 0.0137, 0.0133, 0.0129, 0.0127, 0.0125, 0.0123, 0.0121, 0.0120,

0.0119, 0.0119, 0.0118, 0.0118, 0.0118, 0.0118, 0.0118, 0.0118, 0.0119,

0.0119, 0.0119, 0.0120, 0.0121, 0.0121, 0.0122, 0.0122, 0.0123, 0.0124,

0.0125, 0.0126, 0.0126, 0.0127, 0.0128, 0.0129, 0.0130, 0.0131, 0.0132,

0.0132, 0.0134, 0.0139, 0.0132, 0.0095, 0.0284],
and

ρ ≈ [0.0118, 0.0127, 0.0134, 0.0140, 0.0145, 0.0149, 0.0153, 0.0157, 0.0160,

0.0163, 0.0166, 0.0169, 0.0171, 0.0174, 0.0176, 0.0178, 0.0180, 0.0182,

0.0184, 0.0186, 0.0188, 0.0189, 0.0191, 0.0193, 0.0195, 0.0196, 0.0198,

0.0200, 0.0201, 0.0203, 0.0205, 0.0206, 0.0208, 0.0210, 0.0211, 0.0213,

0.0215, 0.0216, 0.0218, 0.0220, 0.0222, 0.0223, 0.0225, 0.0227, 0.0229,

0.0229, 0.0232, 0.0242, 0.0230, 0.0165, 0.0490].

The probability that the holding dam will be full is λ50 ≈ 0.5752 while the probability that the
holding dam will be empty is λ0 ≈ 0.0350.

6.2. Example 2: Stochastic supply and constant demand

For comparison, we have also calculated steady state probabilities for an identical system
with the same supply probabilities but with constant demand d = 2. The case d = 2 is obtained
by setting q = [0, 0, 1, 0, . . .]. The level and phase probabilities are shown in Figure 4.

The probability that the holding dam will be full is λ50 ≈ 0.5782 while the probability that
the holding dam will be empty is λ0 ≈ 0.0345. These probabilities are almost the same as the
corresponding probabilities for the fully stochastic system. Since the demand is slightly less
than the expected supply it is a little more likely that the holding dam will be full than would
be the case in a perfectly balanced system.
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Figure 4: The level probabilities for d = 2 (part (a)) and the phase probabilities for d = 2 (part (b)) for
Example 2.

The detailed calculations show that

λ ≈ [0.0345, 0.0072, 0.0068, 0.0067, 0.0067, 0.0067, 0.0068, 0.0068, 0.0068,

0.0069, 0.0069, 0.0070, 0.0070, 0.0071, 0.0072, 0.0072, 0.0073, 0.0073,

0.0074, 0.0074, 0.0075, 0.0076, 0.0076, 0.0077, 0.0078, 0.0078, 0.0079,

0.0079, 0.0080, 0.0081, 0.0081, 0.0082, 0.0083, 0.0083, 0.0084, 0.0085,

0.0085, 0.0086, 0.0087, 0.0088, 0.0088, 0.0089, 0.0090, 0.0090, 0.0091,

0.0092, 0.0093, 0.0093, 0.0094, 0.0095, 0.5782]
and

μ ≈ [0.3069, 0.0281, 0.0224, 0.0201, 0.0184, 0.0172, 0.0162,

0.0153, 0.0147, 0.0141, 0.0137, 0.0133, 0.0130, 0.0127, 0.0125, 0.0123,

0.0122, 0.0121, 0.0121, 0.0119, 0.0120, 0.0119, 0.0120, 0.0118, 0.0120,

0.0119, 0.0121, 0.0119, 0.0123, 0.0119, 0.0125, 0.0119, 0.0127, 0.0119,

0.0131, 0.0119, 0.0135, 0.0118, 0.0141, 0.0115, 0.0148, 0.0110, 0.0158,

0.0102, 0.0172, 0.0090, 0.0191, 0.0071, 0.0219, 0.0043, 0.0259].
Note that μ50, μ48, μ46, . . . are significantly greater than the intermediate terms μ49, μ47,

μ45, . . . in this example. Since

μ = (1 − λ50)p + λ50ρ

and since pj−1 > pj for all j ∈ N, it follows that the oscillations in μ must come from the
oscillations in ρ. These oscillations can be seen clearly in Figure 5. The oscillations may be
explained as follows. The vector ρ describes the conditional probabilities for the content of the
capture dam when the holding dam is full. If the capture dam is also full and there is no supply
for the next few days—a reasonably likely event—then the content of the capture dam will fall
by two units each day. Because ρ50 is relatively large we might expect heightened values for
ρ48, ρ46, ρ44, . . . , and so on.

The fully stochastic system in Example 1 has expected demand E[W ] = 2 and hence we
would expect the steady state probabilities to be similar. This is indeed the case. Note, however,
that the relative phase probabilities at level 50 are smoother in the stochastic system because
the outflow is obtained as an average of different outflows.
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Figure 5: The relative phase probabilities at level 50 for d = 2 for Example 2.

7. Numerical calculations

The transition matrix T ∈ R
h×h may be very large. In our examples we have h = 2601.

Consequently, it is desirable to make the numerical calculations as efficient as possible. We used
MATLAB for all of our numerical calculations. There is no particular problem in constructing
large matrices and storing them in MATLAB but it is prudent to avoid, where possible, complex
calculations with these large matrices.

7.1. The new calculations

Rather than find the steady state for T ∈ R
2601×2601 directly we find it indirectly by first

calculating the steady state for S ∈ R
51×51. However, S = ϕmm + T3(I − T1)

−1T2, and it
would be fair to observe that T1 ∈ R

2551×2551. How then do we avoid complex calculations to
determine (I − T1)

−1? We may write

T1 = [
i,j ], where 
i,j = ui,jp ∈ R
51×51,

and

ui,j = q+
i ej +

min(i,j)∑
k=1

qi−kej−k ∈ R
51×1,

for each i = 0, . . . , 49 and j = 0, . . . , 49. We will use the matrix � = [θi,j ] ∈ R
50×50 in

our calculations. Note that θi,j = pui,j ∈ R for each i = 0, . . . , 49 and j = 0, . . . , 49. If we
write T r

1 = [
(r)
i,j ] and �s = [θ(s)

i,j ] then we wish to show that



(r)
i,j =

49∑
k=0

ui,kθ
(r−1)
k,j p,

for each r ∈ N. Indeed, a simple inductive argument shows us that



(r+1)
i,j =

49∑
h=0

ui,hp

49∑
k=0

uh,kθ
(r−1)
k,j p =

49∑
h=0

ui,h

49∑
k=0

θh,kθ
(r−1)
k,j p =

49∑
h=0

ui,hθ
(r)
h,jp,

https://doi.org/10.1239/jap/1395771418 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771418


A new look at urban water storage 131

as required. By summing over r it follows that



(1)
i,j +


(2)
i,j +


(3)
i,j + · · · =

49∑
k=0

ui,k[δk,j + θ
(1)
k,j + θ

(2)
k,j + · · · ]p, (7.1)

where we define δk,j = 1 for j = k and δk,j = 0 for j �= k. We may interpret (7.1) as follows.
Recall that I + � = (I −�)−1 and I + B = (I − T1)

−1. If we write B = [Bi,j ], where
Bi,j ∈ R

51×51 for each i = 0, . . . , 49 and j = 0, . . . , 49, and note thatB = T1+T 2
1 +T 3

1 +· · · ,

then (7.1) can be interpreted as

Bi,j = Ui (I +�)jp,

whereUi = [ui,0, · · · ,ui,49] ∈ R
51×50, (I+�)j = [δ1,j +ω1,j , · · · , δm,j +ωm,j ] ∈ R

50×1,

andp ∈ R
1×51. Thus, the required matrix inversion is reduced to a collection of feasible matrix

multiplications.
To find the invariant vector for S we note first that S is a stochastic matrix. That is, Sf = f

where f = [1, . . . , 1] ∈ R
50×1. Thus we can use the very stable iteration ρ(r+1) = ρ(r)S for

each r ∈ N with ρ(1) = [1, . . . , 1]/50 ∈ R to calculate the invariant vector ρ.

7.2. Checking the new calculations

For constant demand with d = 2 we checked our answers using the Gaussian elimination
described in [7]. We outline the crucial details below. Letψr = πm−r for each r = 1, 2, . . . , m.
Define W0 = (I −A)−1 and use the recursive definitions

Ws = [I −AW0�W1� · · ·Ws−1�]−1,

for each s = 1, . . . , d, and

Ws = [I −AWs−d�Ws−d+1� · · ·Ws−1�]−1,

for each s = d + 1, . . . , m − 1. Let Xm = Wm−d�Wm−d+1� · · ·Wm−1 and define

ϕr = πmXm�−r+1A,

for r = 1, 2, . . . , d, and

ϕr = πm{Xm�−r+1A− �−r+dA},
for r = d + 1, d + 2, . . . , m. In [7] it has been shown using Gaussian elimination that the
steady state equation (4.1) can be reduced to an equation of the form

ψ(I + U) = ϕ,

where U ∈ R
m(n+1)×m(n+1) is a block upper triangular matrix with blocks Uij ∈ R

(n+1)×(n+1)

for each i = 0, 1, . . . , m− 1 and j = 0, 1, . . . , m− 1, such that Uij = 0 for i ≤ j + d + 1 and
Uij = �−i+j+d+1A when i ≥ j + d + 2. Since U r = 0 when r(d + 1) > m this equation is
easily solved. Thus, we obtain an expression of the form

ψ = ϕ(I + U)−1 ⇐⇒ πs = πmRs ,
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for each s = 1, . . . , m − 1. The final equation for the invariant level probabilities is

[ d∑
s=0

πs

]
Am +

m∑
s=d+1

πsAm+d−s = πm.

If we use the formula πs = πmRs then the final equation becomes an eigenvector equation, i.e.

πmR = πm, (7.2)

where R ∈ R
(n+1)×(n+1) is given by

R =
[ d∑

s=0

Rs

]
Am +

m−1∑
s=d+1

RsAm+d−s +Ad .

We used MATLAB to find πm from (7.2) up to an unknown positive multiple and hence
determined the invariant level probabilities by back substitution.

8. Extension to a series of three dams

We outline briefly the extension of this method to a series of three dams—a capture dam
where stormwater is captured from an urban watercourse, a holding dam where water is held
while impurities are removed from suspension, and a distribution dam where water is collected
for distribution. The state of the system is denoted by (i, j, k) ∈ {0, 1, . . . , }×{0, 1, . . . , m}×
{0, 1, . . . , n}, where i, j , and k are the current contents of the distribution, holding, and capture
dams, respectively, and , m, and n are the capacities of the distribution, holding, and capture
dams, respectively. The content of the distribution dam is the level, the content of the holding
dam is the primary phase, and the content of the capture dam is the secondary phase. The
states are ordered by the following rules:

(1) (i, ·, ·) ≺ (i + 1, ·, ·),
(2) (i, j, ·) ≺ (i, j + 1, ·),
(3) (i, j, k) ≺ (i, j, k + 1).

Where necessary, we assume that  ≤ m ≤ n.
By considering the set of all elementary transitions it can be shown that the transition matrix

for the fully stochastic system can be written in the form

T =

⎡
⎢⎢⎢⎢⎢⎣

�0,0A �0,1A · · · �0,−1A �0,

�1,0A �1,1A · · · �1,−1A �1,

...
...

. . .
...

...

�−1,0A �−1,1A · · · �−1,−1A �−1,

�,0A �,1A · · · �,−1A �,

⎤
⎥⎥⎥⎥⎥⎦

=
[
T1 T2
T3 �,

]
,

where the matrices �i,j ∈ R
(m+1)(n+1)×(m+1)(n+1) are defined by the formulae

�i,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qi
+�j +

min(i,j)∑
r=1

qi−r�
j−r for 0 ≤ j < ,

qi
+A +

i∑
r=1

qi−rA−r for j = ,

for 0 ≤ i ≤ .
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The matrices A,� ∈ R
(m+1)(n+1)×(m+1)(n+1) are given by

A =

⎡
⎢⎢⎢⎣
P ϒP · · · ϒm−1P Pm

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎣

0 0 · · · 0 I

I 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 I

⎤
⎥⎥⎥⎦ ,

and Ai ∈ R
(m+1)(n+1)×(m+1)(n+1) is given by

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 · · · 0 0
P ϒP · · · ϒm−iP · · · ϒm−1P Pm

0 P · · · ϒm−i−1P · · · ϒm−2P Pm−1
...

...
. . .

...
...

...

0 0 · · · P · · · ϒi−1P Pi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
G

δG
...

δm−iG

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for each i = 0, 1, . . . , . The matrices P ,ϒ ∈ R
(n+1)×(n+1) are defined by

P =

⎡
⎢⎢⎢⎣

p0 p1 · · · pn−1 pn
+

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎦ , ϒ =

⎡
⎢⎢⎢⎣

0 0 · · · 0 1
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

⎤
⎥⎥⎥⎦ ,

and Pj ∈ R
(n+1)×(n+1) is given by

Pj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 · · · 0 0
p0 p1 · · · pn−j · · · pn−1 pn

+
0 p0 · · · pn−j−1 · · · pm−2 pn−1

+
...

...
. . .

...
...

...

0 0 · · · p0 · · · pj−1 pj
+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
p

δp
...

δn−jp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We consider a censored process with transition matrix S = �,+T3(I−T1)
−1T2 by observing

only at level  to find an invariant probability ρ = (ρ0, ρ1, . . . , ρm) ∈ R
1×(m+1)(n+1). Since

ρr ∈ R
1×(n+1) is the relative invariant probability of the secondary phases given that the level

is  and the primary phase is r , it follows that π,r = α,rρr where the constant α,r ∈ [0, 1] is
the total invariant probability for level  and primary phase r .

For i = 0, 1, . . . ,  let Ei ∈ R
(m+1)(n+1)×(n+1) denote the unit block column vector with

I ∈ R
(n+1)×(n+1) in the ith position and 0 ∈ R

(n+1)×(n+1) elsewhere. Now, �iA = EiG,

where G = [P ,ϒP , . . . ,ϒm−1P ,Pm]; hence, �i,jA = U i,jG, where U i,j ≥ 0. Thus, we
can simplify the expressions for T1 and T3 by writing

T1 = [U i,jG], T3 = [U ,jG].
Hence, T s

1 = [U (s)
i,jG] for each s ∈ N, where U (s)

i,j ≥ 0, and R = ∑∞
s=1 T

s
1 can be written

in the form R = [V i,jG] where V i,j ≥ 0. Once again we rearrange the required matrix
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multiplications by defining nonnegative block elements �i,j = GU i,j and �i,j = GV i,j for
each i, j = 0, 1, . . . , −1 and corresponding new matrices� = [�i,j ] and� = [�i,j ]. These
matrices satisfy similar key relationships to the analogous matrices in the smaller system. We
have

U i,jG =

⎡
⎢⎢⎢⎣
Ui,j,0
Ui,j,1

...

Ui,j,m

⎤
⎥⎥⎥⎦

[
e0p e1p · · · em−1p

∑n
s=m esδ

s−mp
]
,

where Ui,j,r = [ui,j,r,0,ui,j,r,1, . . . ,ui,j,r,n] ∈ R
(n+1)×(n+1) and ui,j,r,s ∈ R

(n+1)×1. The
steady-state equation πT = π now gives

∑
i=0

m∑
r=0

πi,rui,j,r,sp = πj,s ⇐⇒ αj,sp = πj,s , (8.1)

where αj,s ≥ 0, for each j = 0, 1, . . . ,  − 1 and s = 0, 1, . . . , m − 1, and

∑
i=0

m∑
r=0

πi,r

n∑
s=m

ui,j,r,sδ
s−mp = πj,m ⇐⇒

n∑
s=m

βj,sδ
s−mp = πj,m, (8.2)

where βj,s ≥ 0, for each j = 0, 1, . . . ,  − 1 and s = m, m + 1, . . . , n. Thus, we observe
that the steady state probability πj,s is simply a multiple of the supply probability p for each
j = 0, 1, . . . ,  − 1 and s = 0, 1, . . . , m − 1. This is a key observation. Note too that
αj,m = ∑n

s=m βj,s . Define xj,r,s = ρru,j,r,s for each r = 0, 1, . . . , m and s = 0, 1, . . . , n.
If we substitute for πi,r and πi,m into the left-hand sides of the long form of (8.1) and (8.2),
respectively, and define α = (α0, . . . ,α−1), where αj = (αj,0, . . . , αj,m−1, βj,m, . . . , βj,n),

and use π,r = α,rρr , then we can combine (8.1) and (8.2) into a single system of equations,
i.e.

αj =
−1∑
i=0

αi�i,j +αXj ⇐⇒ α = α�+αX ⇐⇒ α = αX(I−�)−1,

(8.3)
where we have defined Xj = [xj,r,s] ∈ R

(m+1)×(n+1), for each j = 0, 1, . . . ,  − 1, and
X = [X1, . . . ,X−1]. The algebra required to derive (8.3) is complicated but essentially routine
and uses the relationships θi,j,r = pUi,j,r , for r = 0, 1, . . . , m− 1, and θi,j,r = δr−mpUi,j,m,

for r = m, m + 1, . . . , n. We also use the independence of p, δp, . . . , δnp. It is relatively
straightforward to extract expressions for the invariant probabilities from (8.3). We have not
yet looked for the most efficient numerical calculation schemes nor considered any specific
examples.

9. Conclusions

We have established analytic expressions for the steady state level and phase probabilities
in a system of two dams with stochastic daily supply and independent stochastic daily demand.
Our analysis extends previous work on a similar system in which demand is constant. In each
case the key solution idea is to reduce the size of the matrix computations by one order of
magnitude—that is, to the size required for consideration of a single dam. In this paper we go
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further and establish important characteristics of the invariant vectors for the various different
levels. In particular, the invariant vector for the top level is cast as the invariant vector of a
censored process involving only phase transitions at the top level. The invariant vectors for
phase transitions at all lower levels are shown to be scalar multiples of the supply probability
vector. The advantage in this characterisation of the process is that it apparently paves the
way for an extension of the analysis to systems of more than two dams although details of the
general analysis have not yet been considered.

Dedication

This paper is dedicated to our co-author, friend, and colleague, Charles E. M. Pearce, who
died on 8th of June 2012, as a result of a tragic car accident at the Manakaiua River on the
West Coast of the South Island of New Zealand. Charles was a most generous and agreeable
person and an outstanding applied mathematician. He won the ANZIAM medal in 2001 and
the ASOR medal in 2007. Charles was the Sir Thomas Elder Professor of Mathematics at The
University of Adelaide. He is sadly missed by his family, friends, and colleagues.
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