MINIMAL GENERATING SYSTEMS OF A SUBGROUP OF $SL(2, \mathbb{C})$

by GERHARD ROSENBERGER

(Received 26th October 1986)

Introduction

Let H be any group. We call a cardinal number r the rank r(H) of H if H can be generated by a generating system X with cardinal number r but not by a generating system Y with cardinal number s less than r. Let r(H) be the rank of H.

We call a generating system X of H a minimal generating system (M.G.S.) of H if X has the cardinal number r(H).

In this note we prove the following.

Theorem. Let G be a non-elementary and non-elliptic subgroup of $SL(2, \mathbb{C})$. Then G can be generated by a minimal generating system which contains either only hyperbolic matrices or only loxodromic matrices.

Preliminary remarks

We write $[A, B] = ABA^{-1}B^{-1}$ for the commutator of $A, B \in SL(2, \mathbb{C})$ and tr A for the trace of $A \in SL(2, \mathbb{C})$; also E denotes the unit matrix in $SL(2, \mathbb{C})$.

We call an element $A \in SL(2, \mathbb{C}), A \neq \pm E$,

hyperbolic if tr $A \in \mathbb{R}$, |tr A| > 2,

parabolic if tr $A \in \mathbb{R}$, |tr A| = 2,

elliptic if tr $A \in \mathbb{R}$, |tr A| < 2, and loxodromic if tr $A \notin \mathbb{R}$.

Now let G be a subgroup of $SL(2, \mathbb{C})$. We say G is elementary if the commutator of any two elements of infinite order has trace 2; equivalently, G is elementary if any two elements of infinite order (regarded as linear fractional transformations) have at least one common fixed point.

The elementary subgroups of $SL(2, \mathbb{C})$ are well known and easily dealt with (cf. [1, pp. 117-147]).

We say that G is elliptic if each of its elements $A \neq \pm E$ is elliptic. We often use the identity

$$\operatorname{tr} AB^{-1} = \operatorname{tr} A \cdot \operatorname{tr} B - \operatorname{tr} AB$$

for two elements A, B in $SL(2, \mathbb{C})$.

261

GERHARD ROSENBERGER

Proof of the Theorem

Throughout this section, let G be a non-elementary and non-elliptic subgroup of $SL(2, \mathbb{C})$.

Proposition 1. Let $\operatorname{tr} A \in \mathbb{R}$ for all $A \in X$ and for all M.G.S.'s X of G. Then G can be generated by a M.G.S. which contains only hyperbolic matrices.

Proof. Let X be a M.G.S. of G and tr $A \in \mathbb{R}$ for all $A \in X$. We assume that tr $B \notin \mathbb{R}$ for some $B \in G$ and we will show that this assumption leads to a contradiction.

Then there are $A_1, \ldots, A_n \in X$, different in pairs, with $B \in \langle A_1, \ldots, A_n \rangle$, the subgroup generated by A_1, \ldots, A_n , and tr B can be expressed as a polynomial with integral coefficients in the $2^n - 1$ traces tr $A_{i_1} \ldots A_{i_v}$, $1 \le v \le n$, $1 \le i_1 < i_2 < \cdots < i_v \le n$ (cf. e.g. [2, p. 220]).

Now we have tr $A_{i_1}
dots A_{i_1}
dots A_{i_1}
dots A_{i_1}
dots A_{i_1}
dots A_{i_1}
dots A_{i_2}
because tr <math>B \notin \mathbb{R}$. If we replace A_{i_1} by $A_{i_1}
dots A_{i_2}$ we obtain a M.G.S. Y of G which contains an element with non-real trace. This gives a contradiction.

Therefore we have tr $B \in \mathbb{R}$ for all $B \in G$.

After a suitable conjugation we may assume that $G \subset SL(2, \mathbb{R})$ because G is nonelementary and non-elliptic (cf. [3, p. 42]). The result then follows from [4, p. 350].

From now on we assume that G has a M.G.S. X with tr $A \notin \mathbb{R}$ for some $A \in X$ and we show that G then can be generated by a M.G.S. which contains only loxodromic elements.

Lemma. Let $\operatorname{tr} A \notin \mathbb{R}$ for some $A \in X$ and some M.G.S. X of G.

Then G can be generated by a M.G.S. Y which contains two elements A and B with tr $A \notin \mathbb{R}$, tr $B \notin \mathbb{R}$ and tr $[A, B] \neq 2$.

Proof. If X is a M.G.S. of G then we may assume without any loss of generality that no pair of different elements generates a cyclic group (this is trivial if G is finitely generated).

Case 1. G has a M.G.S. X with $\operatorname{tr} A \notin \mathbb{R}$ for some $A \in X$ and $\operatorname{tr} B = 0$ for all $B \in X$, $B \neq A$.

Let X be a M.G.S. of G, $A \in X$ with tr $A \notin \mathbb{R}$ and tr B = 0 for all $B \in X$ with $B \neq A$. Because G is non-elementary there exists an element B in X such that tr B=0 and tr $[A, B] \neq 2$.

If tr $AB \notin \mathbb{R}$ then we replace B by AB and the lemma is proved because tr [A, AB] = tr $[A, B] \neq 2$.

If tr $AB \in \mathbb{R}$, tr $AB \neq 0$, then tr $A^2B \notin \mathbb{R}$. Now we replace B by A^2B and the lemma is proved because tr $[A, A^2B] = tr[A, B]$. Now let tr AB = 0. We may assume (after a suitable conjugation) that

$$B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } AB = \begin{pmatrix} 0 & -\rho \\ 1/\rho & 0 \end{pmatrix}, |\rho| \neq 1.$$

Because G is non-elementary the rank r(G) is greater than 2 and there exists an element

$$C = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$$

of X with $a \neq 0$ and $c \neq 0$ or $b \neq 0$.

Now let

$$C_1 = BC = \begin{pmatrix} -c & a \\ a & b \end{pmatrix}$$
 if $c \neq b$ and $C_1 = ABC = \begin{pmatrix} -\rho c & \rho a \\ a/\rho & b/\rho \end{pmatrix}$ if $c = b$.

Then we have tr $C_1 \neq 0$ and tr $[A, C_1] \neq 2$ because $|\rho| \neq 1$, $a \neq 0$ and $c \neq 0$ or $b \neq 0$.

Now we replace B by C_1 and consider A and C_1 .

If tr $C_1 \notin \mathbb{R}$ then the lemma is proved. If tr $C_1 \in \mathbb{R}$ and tr $AC_1 \notin \mathbb{R}$ then we replace C_1 by AC_1 and the lemma is proved because tr $[A, AC_1] = \text{tr} [A, C_1]$. If tr $C_1 \in \mathbb{R}$ and tr $AC_1 \in \mathbb{R}$ then tr $A^{-1}C_1 \notin \mathbb{R}$. Now we replace C_1 by $A^{-1}C_1$ and the lemma is proved because tr $[A, A^{-1}C_1] = \text{tr} [A, C_1]$.

Case 2. G has no M.G.S. X with tr $A \notin \mathbb{R}$ for some $A \in X$ and tr B = 0 for all $B \in X$, $B \neq A$.

Let X be a M.G.S. of G and $A \in X$ with tr $A \notin \mathbb{R}$. Because G is non-elementary there exists an element B in X such that tr $[A, B] \neq 2$.

If tr $B \notin \mathbb{R}$ then the lemma is proved. If tr $B \in \mathbb{R}$ and tr $AB \notin \mathbb{R}$ then we replace B by AB and the lemma is proved because tr [A, AB] = tr [A, B]. If tr $B \in \mathbb{R}$, tr $B \neq 0$ and tr $AB \in \mathbb{R}$ then tr $AB^{-1} \notin \mathbb{R}$. Now we replace B by AB^{-1} and the lemma is proved because tr $[A, AB^{-1}] = \text{tr} [A, B]$.

If tr $B \in \mathbb{R}$, tr $AB \in \mathbb{R}$ and tr $AB \neq 0$ then tr $A^2B \notin \mathbb{R}$. Now we replace B by A^2B and the lemma is proved because tr $[A, A^2B] = tr[A, B]$.

From now on let tr B = tr AB = 0. Because G is non-elementary and by our assumptions about the M.G.S's there exists an element C in X, $A \neq C \neq B$, such that tr $C \neq 0$, tr $AC \neq 0$, tr $A^{-1}C \neq 0$, tr $BC \neq 0$, tr $BAC \neq 0$ and tr $BA^{-1}C \neq 0$ (if for instance tr $BA^{-1}D = 0$ for $D \in X$, $D \neq A$, with tr $D \neq 0$ then we replace D by D'. = $BA^{-1}D$ to get a new M.G.S. Y with D' \in Y and tr D' = 0).

If tr $C \in \mathbb{R}$ and tr $AC \notin \mathbb{R}$ then we replace C by AC.

If tr $C \in \mathbb{R}$, tr $AC \in \mathbb{R}$ then tr $A^{-1}C \notin \mathbb{R}$ and we replace C by $A^{-1}C$.

Then (after the suitable replacement) tr $C \notin \mathbb{R}$ and tr $BC \neq 0$.

If tr $[A, C] \neq 2$ then the lemma is proved.

Now let tr[A, C] = 2.

If tr $BC \notin \mathbb{R}$ and tr $[B, C] \neq 2$ then we replace B by BC and the lemma is proved because tr [BC, C] = tr [B, C]. If tr $BC \in \mathbb{R}$ then tr $BC^2 \notin \mathbb{R}$.

Therefore, if tr[B, C] $\neq 2$ and tr $BC \in \mathbb{R}$ we replace B by BC^2 and the lemma is proved because tr[BC^2 , C] = tr[B, C].

Now let tr[B, C] = 2. Then, altogether, we have the situation $tr A \notin \mathbb{R}$, $tr C \notin \mathbb{R}$, tr B = tr AB = 0, $tr BC \neq 0$, tr[A, C] = tr[B, C] = 2 and $tr[A, B] \neq 2$.

GERHARD ROSENBERGER

Therefore we may assume (after a suitable conjugation) that

$$C = \begin{pmatrix} \beta & 0 \\ 0 & \beta^{-1} \end{pmatrix}, B = \begin{pmatrix} a & 0 \\ c & -a \end{pmatrix}, a^2 = -1, \text{ and } A = \begin{pmatrix} \alpha & \gamma \\ 0 & \alpha^{-1} \end{pmatrix},$$

where $\gamma \neq 0 \neq c$ because tr[A, B] $\neq 2$. Then tr AB = 0 implies

$$c\gamma + a\alpha - a\alpha^{-1} = 0.$$

Therefore we obtain

$$tr[A, CB] = 2 + c\gamma(a\alpha - a\alpha^{-1} + c\gamma\beta^{-2} + a\alpha\beta^{-2} - a\alpha^{-1}\beta^{-2})$$
$$= 2 + ac\gamma(\alpha - \alpha^{-1}) \neq 2$$

because $a \neq 0$, $c \neq 0$, $\gamma \neq 0$ and tr $A \notin \mathbb{R}$.

Now we replace C by CB and consider A and CB.

If tr $CB \notin \mathbb{R}$ then the lemma is proved. If tr $CB \in \mathbb{R}$ and tr $ACB \notin \mathbb{R}$ then we replace CB by ACB and the lemma is proved because tr [A, ACB] = tr[A, CB].

If tr $CB \in \mathbb{R}$ and tr $ACB \in \mathbb{R}$ then tr $A^{-1}CB \notin \mathbb{R}$. Now we replace CB by $A^{-1}CB$ and the lemma is proved because tr $[A, A^{-1}CB] = \text{tr}[A, CB]$.

Proposition 2. Let tr $A \notin \mathbb{R}$ for some $A \in X$ and some M.G.S. X of G. Then G can be generated by a M.G.S. which contains only loxodromic matrices.

Proof. By the lemma, G has a M.G.S. X which contains two elements A and B with tr $A \notin \mathbb{R}$, tr $B \notin \mathbb{R}$ and tr $[A, B] \neq 2$.

Now let

$$A = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}, \ |\alpha| > 1, \quad \text{and} \ B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

without any loss of generality. We have $c \neq 0$ and $b \neq 0$ because tr[A, B] $\neq 2$. Let

$$C = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

be any element of X with $A \neq C \neq B$. Then

$$BC = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}.$$

Thus if e=0, $ae+bg\neq 0$ and if h=0 then $cf+dh\neq 0$. Thus replacing C by BC if necessary, we can assume that $e\neq 0$ or $h\neq 0$. Then there exists an integer n such that $|\operatorname{tr} A^nC|>2$ because $|\alpha|>1$. Therefore $\operatorname{tr} A^nC\notin\mathbb{R}$ or $\operatorname{tr} A^{n+1}C\notin\mathbb{R}$ or $\operatorname{tr} A^{n-1}C\notin\mathbb{R}$. Let $\operatorname{tr} A^nC\notin\mathbb{R}$ without any loss of generality. Then we replace C by A^nC .

This proves Proposition 2.

Proposition 1 and Proposition 2, when taken together, prove the theorem. The following is a direct consequence of Proposition 1, Proposition 2 and their proofs.

Corollary. Let G be a non-elementary and non-elliptic subgroup of $SL(2, \mathbb{C})$. If tr $A \in \mathbb{R}$ for all $A \in G$ then G can be generated by a M.G.S. which contains only hyperbolic matrices. If tr $A \notin \mathbb{R}$ for some $A \in G$ then G can be generated by a M.G.S. which contains only loxodromic matrices.

Remark. Let P denote the natural map: $SL(2, \mathbb{C}) \rightarrow PSL(2, \mathbb{C})$. We use, with slight ambiguity, the term tr A for the trace of $A, A \in PSL(2, \mathbb{C})$, and also the term E for the identity element in $PSL(2, \mathbb{C})$. We adapt the definitions accordingly for a subgroup G of $PSL(2, \mathbb{C})$. Then the theorem and the corollary naturally also hold for a non-elementary and non-elliptic subgroup G of $PSL(2, \mathbb{C})$.

We mention that our constructions lead to the following supplement. Let G be a finitely generated, non-elementary and non-elliptic subgroup of $SL(2, \mathbb{C})$ or $PSL(2, \mathbb{C})$ and let X be a M.G.S. of G. Then there exists a Nielsen-transformation from X to a M.G.S. Y of G which contains either only hyperbolic elements or only loxodromic elements.

Added in proof. Recently I learned that N. A. Isatschenko (preprint, Novosibirsk 1987) proved a partial version of the above theorem. He also remarked that the above theorem when taken together with the result of T. Jørgensen (On discrete groups of Möbius transformations, *Amer. J. Math.* 98 (1976), 739-749) leads to the following.

Let G be a non-elementary and non-elliptic subgroup of $SL(2, \mathbb{C})$. Then G is discrete if and only if each subgroup generated by two loxodromic or hyperbolic elements is discrete.

REFERENCES

1. J. R. FORD, Automorphic functions. 2nd Edition (Chelsea, New York, 1951).

2. H. Helling, Diskrete Untergruppen von SL₂, Invent. Math. 17 (1972), 217–229.

3. G. KERN-ISBERNER and G. ROSENBERGER, Einige Bemerkungen über Untergruppen der $PSL(2, \mathbb{C})$, Resultate Math. 6 (1983), 40-47.

4. G. ROSENBERGER, Some remarks on a paper of C. Doyle and D. James on subgroups of $SL(2,\mathbb{R})$, Illinois J. Math. 28 (1984), 348-351.

Fachbereich Mathematik der Universität Dortmund Postfach 50 05 00 4600 Dortmund 50 Fed. Rep. of Germany