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We investigate the shallow flow of viscous fluid into and out of a channel whose gap
width increases as a power law (xn), where x is the downstream axis. The fluid flows
slowly, while injected at a rate in the form of tα , where t is time and α is a constant. The
invading fluid has a higher viscosity than the ambient fluid, thus avoiding Saffman–Taylor
instability. Similarity solutions of the first kind for the outflow problem are found using
approximations of lubrication theory. Zheng et al. (J. Fluid Mech., vol. 747, 2014, pp.
218–246) studied the deep-channel case and found divergent behaviour of the similarity
variable as n → 1 and n → 3, when fluid flows into and out of the channel, respectively.
No divergence is found in the shallow case presented here up to the breakdown of the
geometric assumption. The characteristic equilibration time for the numerically simulated
constant-volume flow to converge to the similarity solution is calculated assuming an
inverse dependence on the ratio disagreement between the current front using the method
of lines. An inverse power dependence between equilibration time and ratio disagreement
is found for channels of different powers. A similarity solution of the second kind for
the inflow problem is found using the phase-plane formalism and the bisection method.
An exponential decay relationship is found between n and the degree δ of the similarity
variable xt−δ , which does not show any divergent behaviour for large n. An asymptotic
behaviour is found for δ that approaches 1/2 for n � 1.

Key words: gravity currents, shallow water flows, lubrication theory

1. Introduction

There are a lot of similarities between the journey of a glacier and the flow of golden
syrup if we record and speed up the glacier’s flow on a camera. If the glacier flows without
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any disturbance, e.g. seasonal changes, we might even find it to be identical to the flow of
golden syrup in a gap, up to scaling transformations. The shape of a current at different
points in time is the same up to scaling when it reaches a steady state when memories of
the initial releasing conditions are lost. This idea of scaling symmetry is a powerful tool
that finds particular solutions for partial differential equations, called similarity solutions
in Barenblatt (1996). Notably, the self-similarity method solves numerous problems in the
field of gravity currents. Huppert (1982) modelled the two-dimensional and axisymmetric
spread of shallow and viscous currents using the similarity method, which agrees with the
experimental data. The method of similarity calculates the behaviour of the current using
scaling symmetry, and the solution derived represents the current in a stationary condition
when the memory of the initial conditions are lost, which within a finite time scale, differs
from the real flow depending on how it is released. Ball & Huppert (2019) and Webber &
Huppert (2019) discuss the time scale at which an axisymmetric current converges to the
self-similar solution. A similar construction is used herein to investigate the time scale of
real flow approaching the similarity solutions, and we found different leading-power terms
from the axisymmetric case studied by Ball & Huppert (2019) and Webber & Huppert
(2019).

This paper focuses on the viscous spreading of gravity currents in a power-law channel,
where the spreading is slow enough for the inertial force to be negligible, and the height of
the fluid is shallow, so the approximations of lubrication theory apply. The set-up relates
to the flow of lava driven by a gravity current if the dimension orthogonal to the flow
direction dominates over a large time scale. Previous studies of a similar set-up with a
deep channel by Zheng, Christov & Stone (2014) and Zheng & Stone (2022) consider
both free and porous media and found diverging second-order similarity solutions. Longo,
Di Federico & Chiapponi (2015) derived the similarity solution and its range of validity
for a similar geometric set-up in the non-Newtonian case with variable cross-section and
inclination.

We use the self-similar method to find the similarity solution of the first kind for the
viscous current flowing out of the channel and find the characteristic time of the spread
using dimensional analysis and the method of lines numerical scheme as employed in
Mathematica. We study the inflow problem using a similar method, except without the
global conservation condition. Having one less governing equation but the same degrees
of freedom means self-similar solutions of the first kind do not exist. Gratton & Minotti
(1990) developed a phase-plane formalism that we adapt to find self-similar parameters for
different power-law channels, showing the existence of self-similar solutions of the second
kind.

The self-similar parameters contain information about the shape of the current, i.e. if
two flows share the same parameter, their shapes agree up to a scaling constant. Using
computational analysis, we find that the self-similar parameters of the inflow problem
approach 1/2 asymptotically through exponential decay up to breakdown of the geometric
assumption. The asymptotic behaviour means the shape of the flow stabilises as it evolves,
and tends to a constant shape at infinity.

2. Theory

2.1. Outflow from the origin
Consider fluid of density ρ released from the origin of a channel whose width increases in
the polynomial form of b(x) = b0xn, where b0 is a fixed constant and b dominates the scale
of height h, as shown in figure 1. The space is filled with ambient fluid of density ρ − �ρ

977 A23-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

91
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.911


Shallow viscous current between walls

x

b0xn

n =
 0

.5

n =
 1

n = 3

–0.5 0 0.5
0

0.2

0.4

0.6

0.8

1.0

Figure 1. A schematic showing the parameterisation of the fluid channel.

(�ρ > 0) with lower viscosity than the invading fluid, so Saffman–Taylor instability does
not occur. Since the height of the fluid is significantly smaller than the width, i.e. relatively
shallow, the viscous force exerted by the bottom plate dictates the resistance to the flow.
The bottom-plate dissipation of one-dimensional and axisymmetric gravity currents has
been studied by Huppert (1982), using the approximations of lubrication theory, supposing
zero shear stress at the top of the gravity current. We will follow the same line of logic
to derive an approximation to the Stokes equation, together with a different continuity
equation that satisfies the streamwise heterogeneity condition.

Assume the current flows slowly, so the fluid is instantaneously hydrostatic. The pressure
is then given by p(x, z) = p0 + ρg(h − z), where p0 is some constant, g is gravity and the
z axis, is vertically upwards with z = 0 at the base. The viscous force balances with the
pressure gradient, leading to

1
ρ

∂p
∂x

= ν
∂2u
∂z2 = g′ ∂h

∂x
, (2.1)

where g′ = (�ρ/ρ)g and x is along the channel. The fluid travels with velocity u in the
x direction. Equation (2.1) is an approximation to the Stokes equation, when the velocity
variation in z dominates, which is the Navier–Stokes equation when the inertial terms are
negligible. Applying the no-slip condition on the bottom plate (u|h=0) and the continuity
of shear stress (∂u/∂z|z=h± = 0 if the ambient is a lot less viscous, e.g. honey intruding
air), we obtain

u = − g′

2ν

∂h
∂x

z(2h − z). (2.2)

Averaging the velocity in the z direction, we obtain one of the two governing equations

ū = −�ρg
3μ

h2 ∂h
∂x

, (2.3)

where ū is the streamwise velocity averaged in the z direction.
The incompressibility conditions suggest that whatever enters a box of width δx must

either exit or be compensated by a change of height, which leads to

∂Q
∂x

= −∂(hb)

∂t
, (2.4)
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where the flux Q is the product of the averaged velocity ū and the cross-sectional area
h × b. The continuity equation is therefore

∂h
∂t

+ 1
xn

∂

∂x
[(b0xn)hū] = 0. (2.5)

Together with (2.3), we derive the nonlinear partial differential equation that governs the
height change with x and t

∂h
∂t

− β

xn
∂

∂x

(
xnh3 ∂h

∂x

)
= 0, (2.6)

where β = �ρg/3μ. The overall volume of the fluid is conserved and equal to the rate of
injection, which we assume to take the general power-law form tα . Hence∫ xf

0
hxn dx = Btα, (2.7)

where B is the proportionality constant. Equations (2.6) and (2.7), together with the current
front condition h[xf (t)] = 0, contain sufficient information to determine h(x, t). Assuming
h(x, t) exists in an intermediate asymptotic regime where the solutions are self-similar,
we can find the similarity solution of the first kind using scaling analysis as defined in
Barenblatt (1996, 2003). The similarity variable is found to be

η = x(βB3)−1/(3n+5)t−((3α+1)/(3n+5)). (2.8)

We define ηf to be the value of η at xf (t), which is the position of the current front. Thus,
from (2.8),

xf (t) = ηf (βB3)1/(3n+5)t(3α+1)/(3n+5), (2.9)

which agrees with the constant cross-section case studied in Longo et al. (2015). We can
determine the similarity solution of h in terms of η as

h = η
2/3
f β−((n+1)/(3n+5))B2/(3n+5)t(2α−n−1)/(3n+5)φ( y), (2.10)

where y = η/ηf = x/xf . Substituting (2.10) into (2.6) and (2.7), we find the following
ordinary differential equation for φ and expression for ηf :

y(φ3φ′)′ + nφ3φ′ + 3α + 1
3n + 5

y2φ′ − 2α − n − 1
3n + 5

yφ = 0, (2.11a)

and

ηf =
(∫ 1

0
ynφdy

)−(3/(3n+5))

. (2.11b)

The front of the current corresponds to y = 1, so the boundary condition relevant for
(2.11a) is φ(1) = 0. Expanding φ about y = 1, we obtain the leading terms of φ as

φ( y) =
[

3
(

3α + 1
3n + 5

)]1/3

(1 − y)1/3
[

1 + 1
32

9(n + 1)α − 2
3α + 1

(1 − y) + O(1 − y)2
]

.

(2.12)

Note that corrections from the injection rate α and boundary order n are present from
(1 − y)4/3 onward, and the shallow assumption of h3 in (2.6) gives rise to leading order
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Figure 2. A plot of ηf against n derived using the similarity method of the first kind; ηf (α, n) is the unique
constant of proportionality for a flow of injection power α in an nth power channel. The graph shows the
behaviours for constant volume α = 0, constant injection rate α = 1 and α = 2 in different channels.

(1 − y)1/3. Therefore, when y → 1, the similarity solution approximates to

h ∼
[

3
(

3α + 1
3n + 5

)]1/3

η
2/3
f β−((n+1)/(3n+5))B2/(3n+5)(1 − y)1/3t(2α−n−1)/(3n+5), (2.13)

and ηf can be evaluated as

ηf (α, n) =
{(

9α + 3
3n + 5

)[
Γ (4/3)Γ (n + 1)

Γ (n + 7/3)

]3
}−1/(3n+5)

, (2.14)

where Γ (z) = ∫∞
0 xz−1 e−x dx is the standard gamma function. Figure 2 shows the shape

of ηf for α = 0, 1, 2.
Hence, from integrating (2.11b), ηf is a constant that characterises the shape of the

channel and the nature of the flow, e.g. for α = 0 and n = 1

ηf (0, 1) =
(

37

29 × 73

)−1/8

≈ 1.73 . . . . (2.15)

The similarity solution we have obtained from dimensional analysis assumes the
flow is self-similar, i.e. the shape of the current at different times relates through a
scaling transformation. However, the release of the currents is not perfect in real-world
experiments, and the real flow differs from the self-similar flow. To investigate how quickly
the real flow converges to the self-similar flow as the memory of the initial releasing
condition is lost, we investigate the characteristic equilibration time τ , which is the time
it takes for the real and self-similar flows to agree to a certain extent. The exact form of
τ will be different for different initial conditions. To first-degree approximation (whose
order we shall determine), this characteristic time is determined by the physical variables
β and B, and some variable that parametrises the initial condition.

One way of parameterising the initial configuration of the fluid is by considering the
ratio between the height at the origin and the extent of the flow, i.e. through the aspect
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ratio γ = h(0, t)/xf (t). Using (2.9) and (2.13), we obtain

γ =
[

3
(

3α + 1
3n + 5

)]1/3

η
−1/3
f β−((n+2)/(3n+5))B−(1/(3n+5))t−((α+n+2)/(3n+5)). (2.16)

Specifically, for a fixed-volume (α = 0) fluid flowing in a linear gap (n = 1), we can
calculate the value of ηf from (2.15) and find the dependence between the equilibration
time and initial aspect ratio through dimensional analysis. We can imagine setting up a
gate at x0 confining fluid of constant height h0 as the simplest initial condition. Setting
α = 0 in (2.7), we obtain

B =
∫ x0

0
h0xn dx, (2.17)

hence B ∝ h0xn+1
0 = γ0xn+2

0 . Substituting back to (2.9), bearing in mind that ηf is a
constant for fixed α and n, we determine the equilibration time satisfying

B1/(n+2)βτγ
(3n+5)/(n+2)

0 = F( p, shape), (2.18)

where p is the ratio of the difference between the extent of the real-simulated flow front
and the front of the similarity solution

p = |xr − xs|
xr

, (2.19)

where xr and xs are the flow front xf calculated using the numerical solution to (2.6)
and the similarity solution (2.9), respectively. We now consider what happens at extreme
values of p. As p approaches 0, the disagreement between the similarity solution and the
real solution also approaches zero, which intuitively takes forever to achieve, i.e. τ → ∞.
However, there could be a huge disparity (p → ∞) between the two solutions when the
fluid is initially released (τ → 0). With these two intuitive observations in mind, we can
guess that p decreases with τ and diverges as p → 0+. The exact analytic dependence is
not straightforward, but Ball & Huppert (2019) and Webber & Huppert (2019) showed
that the inversely proportional relationship (τ ∝ p−1) works as an excellent first-order
approximation for the radially symmetric case. Although the exact proportionality for the
power-law channel might differ from the radially symmetric case, we can assume that

B1/(n+2)βτγ
(3n+5)/(n+2)

0 = p−χ(n)F( p, shape), (2.20)

where χ = χ(n) > 0 depends on the power of the channel; χ must be positive for the
solution to be physical, i.e. the solutions converge as time goes on.

We find χ(n) computationally by simulating the flow of the current using NDSolve in
Mathematica, and simplifying the boundary condition (2.7) using the method shown in
Appendix A. The first step is to find the numerical solution, which is shown in figure 3 for
the example of α = 0 (constant volume), n = 2 flow. To demonstrate the validity of the
simulation, we pick and fix y from (2.13) and show the proportionality predicted by the
similarity solution by plotting h−11/2, α = 0, n = 2 against t, as shown in figure 4.

We can then find the time scale of the asymptotic approach to the similarity solution by
plotting the difference ratio (p) against t for each n. An important point to make is that we
have chosen a smooth profile as the initial shape of the fluid to improve the accuracy of the
discretisation, as shown in figure 3. This comes at the price of a less well-defined fluid front
xf , which is closely approximated as the point of inflexion of the fluid profile at fixed t.
The offset also does not affect the value of χ(n) that we care more about. Figure 5 shows
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Figure 3. The evolution of the fluid profile at t = 0, 1, 100 solved numerically using (2.6), where the fluid
front x = 1 is modelled using an inverted sigmoid function h ∼ [1 + exp(c(x − 1))]−1 of large c � 1, for the
case of zero injection α = 0 between quadratic boundaries n = 2.
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Figure 4. To check the validity of the simulation, we fix y in (2.13) and show the predicted proportionality for
the case of n = 2.

the difference between the simulated moving front and that predicted by the similarity
solution. Figure 5(b) shows a decaying trend that we can use to find χ(n) with the FindFit
function in Mathematica.

Iterating the same process for different values of n, we can find χ(n) numerically. The
result is presented in figure 6, and a table of simulated results for integer-power channels
is presented in Appendix B. The idea is that, when performing experiments, one can
measure the difference between the real flow in the experiment and the similarity solution
empirically, and anticipate the difference to drop by p ∝ τ−χ(n) over time τ . Furthermore,
we observe a trend of χ ∝ 1/n, as shown by the plot fit in figure 6.

2.2. Inflow towards the origin
Consider instead the current flowing towards the origin. How does this change the equation
of motion? Equation (2.6) is invariant under this transformation since the geometry of the
flow, including the channel, is locally the same as before, and the approximation to the
Stokes equation still holds. However, the conservation equation (2.7) fails because we
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Figure 5. Comparison between the numerical simulation and the similarity solution represented by solid and
dashed lines, respectively, for α = 0, n = 2 is presented in (a), while (b) shows the ratio difference p plotted
against time. The numerical calculation uses the method of lines to discretise space, and the similarity solution
is shifted so xf |t→0 = 1, where we defined the initial condition. The simulation starts from finite t > 0 to avoid
divergence.

1 2 3 4 5
0

0.02
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0.06

0.08

0.10

n

χ (n)

Figure 6. Value of χ(n) plotted against n, as calculated computationally with values tabulated in Appendix B.
The solid orange line represents ∼1/n up to a scaling constant, and shows close agreement with the simulated
result.

do not integrate from the origin, but back from the current front to infinity instead. In
experiments, the domain of integration terminates at a finite distance, ideally far enough
for the memory of the initial release conditions to be lost, so self-similarity arises. Losing
one of the boundary conditions means the solution to h(x, t) is not unique, and the problem
becomes more difficult. The governing equations are the Stokes equation (2.3) and the
continuity equation (2.5) as before

∂h
∂t

+ 1
xn

∂

∂x
(xnhu) = 0, (2.21a)

u = −βh2 ∂h
∂x

, (2.21b)

where instead of substituting u to form (2.6), we kept them as they were.
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We follow the phase-plane formalism developed by Gratton & Minotti (1990) to
investigate the nature of an inflow gravity current for our particular case of inhomogeneous
boundary set-up using numerical solutions. Using scaling analysis, we arrive at

u(x, t) = xU(x, t)/t, (2.22a)

h(x, t) = [x2H(x, t)/βt]1/3, (2.22b)

where both U(x, t) and H(x, t) are dimensionless. Substituting these representations into
(2.21), we obtain

2H + 3U + x
∂H
∂x

= 0, (2.23a)

H − t
∂H
∂t

− (3n + 5)UH − x
(

3H
∂U
∂x

+ U
∂H
∂x

)
= 0, (2.23b)

which are a set of coupled nonlinear partial differential equations (PDEs). We expect the
currents to have some degree of self-similarity as they propagate, i.e. the currents only
differ by a similarity transform across time. We can exploit this by defining similarity
variables and reducing the number of independent variables. Specifically, the similarity
condition is only satisfied when the current is far enough from the release source, but has
not quite reached the origin, i.e. in an intermediate stage defined in Barenblatt (2003).
There are two types of similarity solutions. The degree of self-similarity of a system
depends on the geometry of the flow. With complete self-similarity, we can derive a
full analytic description using scaling arguments, as presented above; however, numerical
analysis is required if the similarity is incomplete.

To eliminate one independent variable, we define a similarity variable η = xt−δ and
substitute this into (2.23). Eliminating η and rewriting (2.22a), we obtain

dU
dH

= H[3(n + 1)U + 2δ − 1] + 3U(δ − U)

3H(3U + 2H)
, (2.24a)

d ln |η|
dH

= − 1
2H + 3U

. (2.24b)

Equation (2.24a) is an autonomous equation for U and H, which can be solved analytically
in special cases and numerically in most cases. However, it is crucial to identify the initial
conditions before performing the integration. The path along which we integrate is guided
by the phase-plane vector field, and the endpoints coincide with critical points that decide
the boundary conditions and the shape of the current. Once the integral path U(H) has
been found, (2.24b) can be integrated to find η(H), with U(η) and H(η) then found through
inversion.

The critical points are locally stationary, which can be found by setting both the
denominator and numerator to zero in (2.24a). There are three finite and three infinite
critical points, each representing a different initial condition. The points at infinity
represent different types of boundary conditions, including the flow of moving sinks,
which is treated in Gratton & Minotti (1990), but unrelated to the inflow problem at hand.
The finite critical points are

(i) O : (H, U) = (0, 0), the fluid is stationary and has constant height;
(ii) A : (H, U) = (0, δ), the current height is zero at the front and travels at a finite

velocity, i.e. the advancing front of the viscous gravity current;
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(iii) B : (H, U) = [−3/2(5 + 3n), 1/(5 + 3n)], the current height and velocity h ∝
(−x2/t)1/3 and u ∝ x/t representing a flow outwards from the channel. Integration
paths around point B spiral endlessly, and so U and H exhibit oscillatory behaviour
not found in the physical variables u and h.

The flow to the origin is represented by the integral path from A to O, which only
exists under specific values of δ(n). By finding δ(n), we can demonstrate the existence of
a similarity solution of the second kind, and the actual flow can be simulated numerically
using the phase plane.

The value of δ(n) can be found computationally by altering n and changing the value of
δ until the integral path shooting from perturbation at A reaches O, as seen in Zheng et al.
(2014) and Zheng & Stone (2022). The generating perturbation to first order around point
A can be found by linearising (2.24a), and the eigenvectors indicate which integral path
passes through A. Let rA → rA + δr, where δr = (η, μ), and consider up to the first order

dU
dH

∣∣∣∣
A

= η[3(1 + n)(δ + μ) + 2δ − 1] − 3μ(δ + μ)

3η(2η + 3δ + 3μ)
≈ [(3n + 5)δ − 1]η − 3μδ

9ηδ
,

(2.25)

δr ≈
(

9δ 0
(5 + 3n)δ − 1 −3δ

)
r. (2.26)

The eigenvectors corresponding to the linearised matrix are

λ1 = 9δ, e1 = [12δ, (5 + 3n)δ − 1]; (2.27a,b)

λ2 = −3δ, e2 = (0, 1). (2.28a,b)

The integral paths are then created using the built-in Mathematica function NDSolve with
an initial perturbation of the order of 10−3 along e1. The value of δ at different values of
n is then found by using the bisection method until the integration path passes the vicinity
of O. Figure 7 shows part of the bisection method for n = 0.3, where we see that a small
difference in δ causes the trajectory to either be attracted towards B or shoot off to infinity.

The instability shown in figure 7 is due to the imperfection of computational
perturbation because δr is not infinitesimal. When δ < δc, the cycling path to B
corresponds to an oscillation between U and H, while δ > δc shows that the fluid plunges
into a sink at a finite distance. Both are divergent behaviours as the fluid converges and
self-similarity breaks down as shown in Gratton & Minotti (1990).

Figure 8 shows the δc value obtained for various n and the logarithmic plot, which
proves to be approximately linear except in the region n → 0. The value of δ(n) then
decays exponentially towards δ∞ = 0.5. Fitting the equation as

δ(n) = a e−kn + 1
2 , (2.29)

and using the FindFit function, we find

a ≈ 0.23,

k ≈ 0.30.

}
(2.30)

This result suggests similarity solutions of the second kind exist for most n until the
geometric assumptions breakdown. Especially, n → ∞ introduces a straight edge at x = 1,
so the model breaks down at infinity, and the exact nature of the breakdown boundary
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Figure 7. To demonstrate the bisection method used to find δc for arbitrary n, we chose n = 1.5 as an example
of fluid flowing towards the origin. The critical points illustrated in this example are also present in different n,
except the positions are scaled accordingly. The vector field represents the local variation of (H, U), and the red
line represents the integration path. Path A to O represents the inflow, so we change δ until the path connecting
the two points appears. The upper half of the graph shows the behaviour of the integration path where δ is much
higher or lower than the critical value δc. The lower half is plotted with δ → δc, which shows high sensitivity to
changes in δ. The path either enters a limit cycle around point B if δ < δc or diverges towards infinity if δ > δc.
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Figure 8. (a) The critical value of the self-similarity parameter δc for different power-law channels n. The data
show a trend of asymptotic behaviour approaching 1/2 as n increases. (b) The best fit of a exp(−kn) + 1/2
together with (n, δ) data points on the logarithmic scale. The values of a and k were found numerically. There
is a close agreement between the data and the linear trend line in the region of large n, and the model breaks
down as n → 0 due to the change of channel geometry beyond n < 1.

requires further study. However, before the breakdown occurs, the geometry of the channel
approximates to a wide wedge with the axisymmetric current flowing towards the origin
with δ → 1/2. A comparison with the results of the ‘deep’ (h � b) case studied by
Zheng et al. (2014) is presented in figure 9, which shows divergence behaviour as n → 1−
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Figure 9. Comparison between the similarity parameter δ when h � b and h 	 b. The h � b case studied
by Zheng et al. (2014) shows a diverging trend approaching n → 1−, while the h 	 b case has a similarity
solution of the second kind for all n. Importantly, δ agrees for both cases at n = 0.

in the deep case, in contrast to no divergence in the shallow case up to the geometric
breakdown. Recall the definition of the similarity variable η = xt−δ , scaling space x → ax
has the same effect on the similarity variable as scaling time t → a−1/δt. Therefore,
δ can be interpreted as the power between x and t to preserve the scale invariance,
and a convergent δ implies the validity of the similarity method and therefore the scale
invariance assumption. The similarity variable δ converges to 1/2 in the shallow current
case before geometric breakdown implies scaling equivalence between ‘stretching’ x → ax
and ‘delaying’ measurement from release t → a−2t as n � 1.

3. Summary

We have investigated shallow viscous flows in a power-law channel ∼xn with tα injection
rate, considering both inflow and outflow, with possible application to models of different
scales due to the scale invariance nature of the similarity solutions e.g. lava flow models
and injection moulding. We showed that the outflow is described after some time by a
similarity solution of the first kind and evaluated how long it takes for this similarity
solution to be of the required accuracy compared with full numerical solutions. We
found similarity solutions of the second kind for inflow in different n channels using
the numerical bisection method on the integration curve on the current phase plane.
The similarity solutions of the second kind are determined by the similarity variable δ,
which decays exponentially to δ → 1/2 as the power of the channel increases, up until the
breakdown of the geometric assumption. The parameter for the shallow current exhibits no
divergent behaviour for n � 1, as opposed to the deep-current behaviour of the solutions
in Zheng et al. (2014), possibly due to the breakdown of the deep-channel geometric
assumption in the deep n > 1 region, and requires further theoretical study to determine.
The shallow-current result shows the validity of the similarity method to wider n channels,
which can produce asymptotic predictions on a large time scale. Experimental tests for the
similarity solutions of the viscous gravity current are necessary to check the validity of
the solutions in future work.
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Appendix A. Outflow boundary condition

Numerically solving the outflow problem requires the solution to satisfy both the PDE

∂h
∂t

− β

xn
∂

∂x

(
xnh3 ∂h

∂x

)
= 0, (A1)

and the conservation condition (α = 0)∫ xf (t)

0
h(t, x)xn dx = B, (A2)

at all times. This proves to be an issue because, not only does the boundary condition
change in time xf = xf (t), an integral boundary condition is not as easy to discretise as
differential boundary conditions. We can find appropriate differential boundary conditions
corresponding to the integral conservation by considering the integral of (A1) over the
simulation domain x ∈ (0, L] after multiplying xn on both sides∫ L

0
xn ∂h

∂t
dx = ∂

∂t

∫ L

0
xnh(t, x) dx = β

[
xnh3 ∂h

∂x

]L

0
, (A3)

where the open lower bound is to avoid dividing by zero. We can further enforce that
h(t, x) ≈ 0 for x > xf (t) because (0, L] covers the activity of the fluid (L > xf ). Condition
(A2) leads to ∫ xf (t)

0
xnh(t, x) dx =

∫ L

0
xnh(t, x) dx = B. (A4)

Substituting into the last result (A3), we obtain

βLnh3 ∂h
∂x

∣∣∣∣
x=L

− βxnh3 ∂h
∂x

∣∣∣∣
x→0

= 0. (A5)

Physically, both terms are negative, so must vanish

∂h
∂x

∣∣∣∣
x=L

= 0, (A6a)

xnh3 ∂h
∂x

∣∣∣∣
x→0

= 0. (A6b)

This method provides us with an easier way of dealing with the conservation condition.

Appendix B. Table of result of χ(n)

The table below displays χ calculated computationally for different values of n, which are
displayed in figure 6.
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n χ(n)

1.0 0.09828
1.5 0.07337
2.0 0.05649
2.5 0.04571
3.0 0.03719
3.5 0.03164
4.0 0.02639
4.5 0.02321
5.0 0.02050
5.5 0.01824
6.0 0.01580
6.5 0.01432
7.0 0.01275
7.5 0.01150
8.0 0.01036
8.5 0.01000
9.0 0.00875
9.5 0.00800

10.0 0.00756
10.5 0.00697
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