Guessing with Mutually Stationary Sets

Pierre Matet

Abstract. We use the mutually stationary sets of Foreman and Magidor as a tool to establish the validity of the two-cardinal version of the diamond principle in some special cases.

Jech [3] introduced the following notions. Let κ be a regular uncountable cardinal and $\lambda>\kappa$ be a cardinal. Then $P_{\kappa}(\lambda)$ denotes the collection of all subsets of λ of size less than κ. A subset C of $P_{\kappa}(\lambda)$ is closed unbounded if (i) C is cofinal in the partially ordered set (C, \subset), and (ii) for any nonzero ordinal $\delta<\kappa$ and any sequence $\left\langle a_{\alpha}: \alpha<\delta\right\rangle$ of elements of C such that $a_{\beta} \subseteq a_{\alpha}$ for all $\beta<\alpha, \bigcup_{\alpha<\delta} a_{\alpha} \in C$. A subset S of $P_{\kappa}(\lambda)$ is stationary if $S \cap C \neq \phi$ for every closed unbounded subset C of $P_{\kappa}(\lambda)$. The diamond principle $\rangle_{\kappa, \lambda}$ asserts the existence of a sequence $\left\langle s_{a}: a \in P_{\kappa}(\lambda)\right\rangle$ with $s_{a} \subseteq a$ such that for any $X \subseteq \lambda,\left\{a: s_{a}=X \cap a\right\}$ is a stationary subset of $P_{\kappa}(\lambda)$. Jech established that $\diamond_{\kappa, \lambda}$ holds in the constructible universe L. Moreover, he proved that $\nabla_{\kappa, \lambda}$ could be introduced by forcing.

It was shown in [1] that $2^{<\kappa}<\lambda$ implies $\diamond_{\kappa, \lambda}$. In the present paper we show that if $2^{<\kappa} \leq \mu^{\aleph_{0}}$ for some cardinal μ such that $\kappa<\mu \leq \lambda$ and $c f(\mu)=\omega$, then $\diamond_{\kappa, \lambda}$ holds. The proof closely follows that of the following result of Foreman and Magidor [2]: for a regular uncountable cardinal ν, let E_{ω}^{ν} denote the set of all infinite limit ordinals $\alpha<\nu$ such that $c f(\alpha)=\omega$. Suppose $\left\langle\mu_{n}: n<\omega\right\rangle$ is a sequence of regular cardinals such that $\kappa \leq \mu_{0}<\mu_{1}<\mu_{2}<\cdots<\lambda$. For $n<\omega$, let S_{n} be a stationary subset of $E_{\omega}^{\mu_{n}}$. Then the S_{n} 's are mutually stationary, which means that

$$
\left\{a \in P_{\kappa}(\lambda): \forall n \in \omega\left(\sup \left(a \cap \mu_{n}\right) \in S_{n}\right)\right\} \in N S_{\kappa, \lambda}^{+},
$$

where $N S_{\kappa, \lambda}$ denotes the ideal of nonstationary subsets of $P_{\kappa}(\lambda)$.
Let κ be a regular uncountable cardinal and $\lambda>\kappa$ be a cardinal. For $A \subseteq P_{\kappa}(\lambda)$, the two-person game $G_{\kappa, \lambda}(A)$ is defined as follows. The game lasts ω moves, with player I making the first move. Players I and II alternately pick elements of $P_{\kappa}(\lambda)$, thus building a sequence $\left\langle a_{n}: n<\omega\right\rangle$ with the condition that $a_{0} \subseteq a_{1} \subseteq a_{2} \subseteq \cdots$. Player II wins the game just in case $\bigcup_{n<\omega} a_{n} \in A$. Let $N G_{\kappa, \lambda}$ be the set of all subsets B of $P_{\kappa}(\lambda)$ such that II has a winning strategy in $G_{\kappa, \lambda}\left(P_{\kappa}(\lambda) \backslash B\right)$.

Lemma 1 (Matet [4]) Let κ be a regular uncountable cardinal and $\lambda>\kappa$ be a cardinal. Then $N G_{\kappa, \lambda}$ is a normal ideal on $P_{\kappa}(\lambda)$.

Proposition 2 Let κ, μ and λ be three cardinals such that $\omega_{1} \leq \kappa<\mu \leq \lambda, \kappa$ is regular, $c f(\mu)=\omega$ and $2^{<\kappa} \leq \mu^{\aleph_{0}}$. Then there is a sequence $\left\langle s_{a}: a \in P_{\kappa}(\lambda)\right\rangle$ with $s_{a} \subseteq a$ such that for any $X \subseteq \lambda,\left\{a: s_{a}=X \cap a\right\} \in N G_{\kappa, \lambda}^{+}$.

[^0]Proof Pick an increasing sequence $\left\langle\mu_{n}: n<\omega\right\rangle$ of regular cardinals so that $\kappa \leq \mu_{0}$ and $\sup \left\{\mu_{n}: n<\omega\right\}=\mu$. For $n<\omega$, select a one-to-one function $\varphi_{n}: \bigcup_{\zeta<\kappa} \zeta_{2} \rightarrow$ $\prod_{n \leq p<\omega} \mu_{p}$ and a sequence $\left\langle S_{n}(z): z \in \prod_{j \leq n}{ }^{(j+1)} \mu_{n}\right\rangle$ of pairwise disjoint stationary subsets of $E_{\omega}^{\mu_{n}}$. For $b \subseteq \lambda$, let o.t.(b) denote the order type of b, and $e(b)$: o.t. (b) $\rightarrow b$ be the function that enumerates the elements of b in increasing order. For $a, b \in$ $P_{\kappa}(\lambda)$ with $a \subseteq b$, let $\chi(a, b)$: o.t. $(b) \rightarrow 2$ be defined by $(\chi(a, b))(\alpha)=1$ if and only if $(e(b))(\alpha) \in a$.

The proof will proceed as follows. Given $A \in N G_{\kappa, \lambda}^{*}$ and $X \subseteq \lambda$, we will construct a_{n} and z_{n} for $n<\omega$, and f_{n}^{i} and g_{n}^{i} for $i \leq n<\omega$ so that

- $a_{0}, a_{1}, \cdots \in P_{\kappa}(\lambda)$ and $a_{0} \subseteq a_{1} \subseteq \cdots$,
- $f_{n}^{i}=\chi\left(a_{i}, a_{n}\right)$ for $i<n$, and $f_{n}^{n}=\chi\left(X \cap a_{n}, a_{n}\right)$,
- $g_{n}^{i}=\varphi_{n}\left(f_{n}^{i}\right)$,
- $z_{n} \in \prod_{j \leq n}{ }^{(j+1)} \mu_{n}$ and $\left(z_{n}(j)\right)(i)=g_{j}^{i}(n)$ for $i \leq j \leq n$,
- setting $a=\bigcup_{n<\omega} a_{n}, a \in A$ and for every $n<\omega, \sup \left(a \cap \mu_{n}\right) \in S_{n}\left(z_{n}\right)$.

The point is that the a_{n} 's are coded by the z_{n} 's. In fact, let $\theta<$ o.t.(a). For $n<\omega$, let $a_{n}^{\theta}=a_{n} \cap\{(e(a))(\zeta): \zeta<\theta\}$. Suppose j is the least r such that $(e(a))(\theta) \in a_{r}$. Then (i) for $j<n<\omega$, o.t. $\left(a_{n}^{\theta}\right) \in \operatorname{dom}\left(f_{n}^{j}\right)$ and f_{n}^{j} (o.t. $\left.\left(a_{n}^{\theta}\right)\right)=1$, and (ii) for $\ell<j \leq n<\omega$, o.t. $\left(a_{n}^{\theta}\right) \in \operatorname{dom}\left(f_{n}^{\ell}\right)$ and $f_{n}^{\ell}\left(\right.$ o.t. $\left.\left(a_{n}^{\theta}\right)\right)=0$.

The guessing sequence $\left\langle s_{a}: a \in P_{\kappa}(\lambda)\right\rangle$ is defined as follows. Suppose $a \in P_{\kappa}(\lambda)$ and z_{n} for $n<\omega$ are such that $\sup \left(a \cap \mu_{n}\right) \in S_{n}\left(z_{n}\right)$ for any n. For $i \leq n<\omega$, define $g_{n}^{i} \in \prod_{n \leq p<\omega} \mu_{p}$ by $g_{n}^{i}(p)=\left(z_{p}(n)\right)(i)$, and let $g_{n}^{i}=\varphi_{n}\left(f_{n}^{i}\right)$. Put $\xi=$ o.t.(a). By induction on θ, define a_{n}^{θ} for $\theta \leq \xi$ and $n<\omega$ as follows. Set $a_{n}^{0}=\phi$ for all $n<\omega$. If θ is an infinite limit ordinal, set $a_{n}^{\theta}=\bigcup_{\eta<\theta} a_{n}^{\eta}$ for all $n<\omega$. Assuming a_{n}^{θ} has been defined for every n, look for a $j<\omega$ such that (α) for $j<n<\omega$, o.t. $\left(a_{n}^{\theta}\right) \in$ $\operatorname{dom}\left(f_{n}^{j}\right)$ and $f_{n}^{j}\left(\right.$ o.t. $\left.\left(a_{n}^{\theta}\right)\right)=1$, and (β) for $\ell<j \leq n<\omega$, o.t. $\left(a_{n}^{\theta}\right) \in \operatorname{dom}\left(f_{n}^{\ell}\right)$ and $f_{n}^{\ell}\left(\right.$ o.t. $\left.\left(a_{n}^{\theta}\right)\right)=0$. If there is no such j, put $a_{n}^{\theta+1}=a_{n}^{\theta}$ for all $n<\omega$. If there is one, it is unique. Set $a_{n}^{\theta+1}=a_{n}^{\theta}$ for $n<j$, and $a_{n}^{\theta+1}=a_{n}^{\theta} \cup\{(e(a))(\theta)\}$ for $j \leq n<\omega$. Finally, letting $a_{n}=a_{n}^{\xi}$ for each $n<\omega$, set $s_{a}=\bigcup_{n<\omega} s_{n}$, where

$$
s_{n}=\left\{\left(e\left(a_{n}\right)\right)(\eta): \eta \in \operatorname{dom}\left(f_{n}^{n}\right) \cap \text { o.t. }\left(a_{n}\right) \text { and } f_{n}^{n}(\eta)=1\right\} .
$$

Now fix $A \in N G_{\kappa, \lambda}^{*}$ and $X \subseteq \lambda$. We will find $a \in A$ such that $s_{a}=X \cap a$. Let τ be a winning strategy for player II in the game $G_{\kappa, \lambda}(A)$. Let $\left\langle\nu_{i}: i<\omega\right\rangle$ be an enumeration of the set $\left\{\mu_{n}: n<\omega\right\}$ such that (0) for each n, there are infinitely many i 's with $\nu_{i}=\mu_{n}$, and (1) $\ell(r)<\ell(s)$ whenever $r<s<\omega$, where $\ell: \omega \rightarrow \omega$ is defined by $\ell(j)=$ the least i such that $\mu_{j}=\nu_{i}$. (For instance, enumerate $\left\{\mu_{n}: n<\omega\right\}$ as $\left.\mu_{0}, \mu_{1}, \mu_{0}, \mu_{1}, \mu_{2}, \mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4} \cdots\right)$. Let T_{0} be the tree $\bigcup_{m<\omega} \prod_{i<m} \nu_{i}$, ordered by inclusion. For a subtree T of T_{0}, let [T] denote the set of all branches of T, i.e.,

$$
[T]=\left\{f \in \prod_{i<\omega} \nu_{i}: \forall m<\omega(f \upharpoonright m \in T)\right\}
$$

and set $\operatorname{suc}_{T}(t)=\{\alpha: t \cup\{(\operatorname{dom}(t), \alpha)\} \in T\}$ for every $t \in T$. Define $k: T_{0} \cup\left[T_{0}\right] \rightarrow$ $P_{\kappa}(\lambda)$ as follows. Put $k(\phi)=\tau(\phi)$. Given $m<\omega$ and $t \in T_{0}$ with $\operatorname{dom}(t)=$
$m+1$, define c_{i} and d_{i} for $i \leq m+1$ by $c_{0}=\phi$ and $d_{0}=\tau\left(c_{0}\right)$, and for $i>0$, $c_{i}=d_{i-1} \cup\{t(i-1)\}$ and $d_{i}=\tau\left(c_{0}, c_{1}, \ldots, c_{i}\right)$, and set $k(t)=d_{m+1}$. Finally, let $k(f)=\bigcup_{m<\omega} k(f \upharpoonright m)$ for any $f \in\left[T_{0}\right]$. Note that $\left\{k(f): f \in\left[T_{0}\right]\right\} \subseteq A$.

We will define $T_{n+1}, z_{n},\left\langle g_{n}^{i}: i \leq n\right\rangle,\left\langle f_{n}^{i}: i \leq n\right\rangle$ and a_{n} for $n<\omega$ so that

- T_{n+1} is a subtree of T_{n};
- for any $t \in T_{n+1},\left|\operatorname{suc}_{T_{n+1}}(t)\right|$ equals 1 if $\nu_{\operatorname{dom}(t)} \leq \mu_{n}$, and $\nu_{\operatorname{dom}(t)}$ otherwise;
- for any $f \in\left[T_{n+1}\right], \sup \left(\mu_{n} \cap k(f)\right) \in S_{n}\left(z_{n}\right)$;
- $z_{n} \in \prod_{j \leq n}{ }^{(j+1)} \mu_{n}$ and $\left(z_{n}(j)\right)(i)=g_{j}^{i}(n)$ for $i \leq j \leq n$;
- $g_{n}^{i}=\varphi_{n}\left(f_{n}^{i}\right)$;
- $f_{n}^{i}=\chi\left(a_{i}, a_{n}\right)$ for $i<n$, and $f_{n}^{n}=\chi\left(X \cap a_{n}, a_{n}\right)$;
- $a_{n}=k\left(s\left(T_{n}\right)\right)$, where $s\left(T_{n}\right)$ is the unique $t \in T_{n}$ such that $\operatorname{dom}(t)=\ell(n)$.

From here on we follow the proof of the Foreman-Magidor result, mentioned above, as it was written up by Shioya [6]. The only significant difference is that our mutually stationary sets are not given in advance, but defined one after the other as we go down the tree.

Suppose T_{n} has been constructed. For $\gamma<\mu_{n}$, let \mathcal{W}_{γ} be the collection of all subtrees W of T_{0} such that for any $w \in W, \operatorname{suc}_{W}(w)$ equals $\nu_{\operatorname{dom}(w)}$ if $\nu_{\operatorname{dom}(w)}<$ $\mu_{n}, \gamma \backslash \alpha$ for some $\alpha<\gamma$ if $\nu_{\operatorname{dom}(w)}=\mu_{n}$, and $\nu_{\operatorname{dom}(w)} \backslash \beta$ for some $\beta<\nu_{\operatorname{dom}(w)}$ if $\nu_{\operatorname{dom}(w)}>\mu_{n}$. Let C be the set of all $\gamma<\mu_{n}$ such that for every $W \in \mathcal{W}_{\gamma}$, there is $f \in\left[T_{n}\right] \cap[W]$ with $\mu_{n} \cap k(f) \subseteq \gamma$.

Claim $1 \quad C$ contains a closed unbounded subset of μ_{n}.
Proof Suppose otherwise. For $\gamma \in \mu_{n} \backslash C$, pick $W_{\gamma} \in \mathcal{W}_{\gamma}$ so that $\left(\mu_{n} \cap k(f)\right) \backslash \gamma \neq \phi$ for all $f \in\left[T_{n}\right] \cap\left[W_{\gamma}\right]$. Construct a subtree T of T_{n} so that for any $t \in T, \operatorname{suc}_{T}(t)$ equals $\operatorname{suc}_{T_{n}}(t)$ if $\nu_{\mathrm{dom}(t)} \leq \mu_{n}$, and $\{\alpha\}$ for some $\alpha \in \bigcap\left\{\operatorname{suc}_{W_{\gamma}}(t): t \in W_{\gamma}\right.$ and $\left.\gamma \in \mu_{n} \backslash C\right\}$ otherwise. For $\gamma<\mu_{n}$, let Y_{γ} be the set of all $t \in T$ such that $\nu_{\operatorname{dom}(t)}=\mu_{n}$ and $t(i)<\gamma$ for every $i \in \operatorname{dom}(t)$ with $\nu_{i}=\mu_{n}$. Note that $\left\{t \in T \cap W_{\gamma}: \nu_{\operatorname{dom}(t)}=\right.$ $\left.\mu_{n}\right\} \subseteq Y_{\gamma}$. Let D be the set of all $\gamma<\mu_{n}$ such that for any $t \in Y_{\gamma}, \mu_{n} \cap k(t) \subseteq \gamma$ and $\gamma \cap \operatorname{suc}_{T}(t)$ is cofinal in γ. Since D contains a closed unbounded subset of μ_{n}, we can find $\gamma \in D \backslash C$. It is simple to see that $\operatorname{suc}_{T}(t) \cap \operatorname{suc}_{W_{\gamma}}(t) \neq \phi$ for all $t \in T \cap W_{\gamma}$. Pick $f \in[T] \cap\left[W_{\gamma}\right]$. Then setting $H=\left\{j<\omega: \nu_{j}=\mu_{n}\right\}$,

$$
\mu_{n} \cap k(f)=\bigcup_{j \in H}\left(\mu_{n} \cap k(f \upharpoonright j)\right) \subseteq \gamma
$$

This contradiction completes the proof of Claim 1.
Now use Claim 1 to select $\gamma \in C \cap S_{n}\left(z_{n}\right)$. Let T be the set of all $t \in T_{n}$ such that $(\alpha)\left\{W \in \mathcal{W}_{\gamma}: t \in W\right\} \neq \phi$, and (β) for any $m \leq \operatorname{dom}(t)$ and any $W \in \mathcal{W}_{\gamma}$ with $t \upharpoonright m \in W$, there is $f \in\left[T_{n}\right] \cap[W]$ such that $t \upharpoonright m \subseteq f$ and $\mu_{n} \cap k(f) \subseteq \gamma$. Clearly, T is a subtree of T_{n}. Moreover, $\phi \in T$ and $\mu_{n} \cap k(t) \subseteq \gamma$ for every $t \in T$. It is simple to see that $\operatorname{suc}_{T}(t) \neq \phi$ for any $t \in T$ such that $\nu_{\operatorname{dom}(t)}<\mu_{n}$.

Claim 2 Let $t \in T$ be such that $\nu_{\operatorname{dom}(t)}=\mu_{n}$. Then $\gamma \cap \operatorname{suc}_{T}(t)$ is cofinal in γ.

Proof Suppose otherwise. Then $(\gamma \backslash \delta) \cap \operatorname{suc}_{T}(t)=\phi$ for some $\delta<\gamma$. Set $Q=$ $(\gamma \backslash \delta) \cap \operatorname{suc}_{T_{n}}(t)$. For $\alpha \in Q$ put $t_{\alpha}=t \cup\{(\operatorname{dom}(t), \alpha)\}$ and pick $W_{\alpha} \in \mathcal{W}_{\gamma}$ so that $t_{\alpha} \in W_{\alpha}$ and $\left(\mu_{n} \cap k(f)\right) \backslash \gamma \neq \phi$ for every $f \in\left[T_{n}\right] \cap\left[W_{\alpha}\right]$ with $t_{\alpha} \subseteq f$. Now select $W \in \mathcal{W}_{\gamma}$ so that

- given $\alpha \in Q, t_{\alpha} \in W$ and for any $w \in T_{0}$ with $t_{\alpha} \subset w, w \in W$ if and only if $w \in W_{\alpha}$,
- $\operatorname{suc}_{W}(t)=\gamma \backslash \delta$.

There is $f \in\left[T_{n}\right] \cap[W]$ such that $t \subseteq f$ and $\mu_{n} \cap k(f) \subseteq \gamma$. Then $t_{\alpha} \subseteq f$ for some $\alpha \in Q$. Clearly, $f \in\left[T_{n}\right] \cap\left[W_{\alpha}\right]$. This contradiction completes the proof of Claim 2.

A similar argument proves that $\left|\operatorname{suc}_{T}(t)\right|=\nu_{\text {dom }(t)}$ for every $t \in T$ such that $\nu_{\text {dom }(t)}>\mu_{n}$.

Now pick an increasing sequence $\left\langle\gamma_{r}: r<\omega\right\rangle$ of ordinals with $\sup \left\{\gamma_{r}: r<\right.$ $\omega\}=\gamma$. Construct a subtree K of T so that for any $t \in K, \operatorname{suc}_{K}(t)$ equals $\operatorname{suc}_{T}(t)$ if $\nu_{\operatorname{dom}(t)} \neq \mu_{n}$, and $\{\alpha\}$ for some α such that $\gamma_{u_{t}} \leq \alpha<\gamma$ otherwise, where $u_{t}=\left|\left\{i<\operatorname{dom}(t): \nu_{i}=\mu_{n}\right\}\right|$. Note that $\sup \left(\mu_{n} \cap k(f)\right)=\gamma$ for any $f \in[K]$. Put $T_{n+1}=K$.

Finally, let $a=k(f)$ where $\{f\}=\left[\bigcap_{n<\omega} T_{n}\right]$. Clearly $a \in A, a=\bigcup_{n<\omega} a_{n}$ and $\sup \left(\mu_{n} \cap a\right) \in S_{n}\left(z_{n}\right)$ for all $n<\omega$. Moreover,

$$
s_{a}=\bigcup_{n<\omega}\left\{\left(e\left(a_{n}\right)\right)(\eta): \eta \in \text { o.t. }\left(a_{n}\right) \text { and } f_{n}^{n}(\eta)=1\right\}=\bigcup_{n<\omega}\left(X \cap a_{n}\right)=X \cap a
$$

This completes the proof of Proposition 2.
The reader has probably noticed that we proved more than what is asserted by Proposition 2. Here is the full statement of our result.

Proposition 3 Suppose that κ and μ_{n} for $n<\omega$ are regular cardinals such that $\omega_{1} \leq$ $\kappa \leq \mu_{0}<\mu_{1}<\cdots$ and $2^{<\kappa} \leq\left(\sup \left\{\mu_{n}: n<\omega\right\}\right)^{\aleph_{0}}$, and λ is a cardinal such that $\lambda>\mu_{n}$ for any $n<\omega$. Suppose further that for each $n<\omega, T_{n}$ is a stationary subset of $E_{\omega}^{\mu_{n}}$. Then letting $S=\left\{a \in P_{\kappa}(\lambda): \forall n<\omega\left(\sup \left(a \cap \mu_{n}\right) \in T_{n}\right)\right\}$, there is a sequence $\left\langle s_{a}: a \in P_{\kappa}(\lambda)\right\rangle$ with $s_{a} \subseteq a$ such that for every $X \subseteq \lambda,\left\{a \in S: s_{a}=X \cap a\right\} \in N G_{\kappa, \lambda}^{+}$.

Proposition 3 can be seen as a variation on the Foreman-Magidor result mentioned above. At the cost of assuming some inequality (that is trivially verified if $\kappa=\omega_{1}$) we obtain a stronger conclusion where the ideal $N D_{\kappa, \lambda}$ of those sets such that $\nabla_{\kappa, \lambda}(S)$ does not hold is substituted for the ideal $N S_{\kappa, \lambda}$ (see [1]).

For more on $N G_{\kappa, \lambda}$ and $\diamond_{\kappa, \lambda}$, see [5].

References

[1] H. D. Donder and P. Matet, Two cardinal versions of diamond. Israel J. Math. 83(1993), no. 1-2, 1-43.
[2] M. Foreman and M. Magidor, Mutually stationary sequence of sets and the non-saturation of the non-stationary ideal on $P_{\kappa}(\lambda)$. Acta Math. 186(2001), no. 2, 271-300.
[3] T. J. Jech, Some combinatorial problems concerning uncountable cardinals. Ann. Math. Logic 5(1972/73), 165-198.
[4] P. Matet, Concerning stationary subsets of $[\lambda]^{<\kappa}$. In: Set Theory and Its Applications. Lecture Notes in Mathematics 1401, Springer, Berlin, 1989, pp. 119-127.
[5] P. Matet, Game ideals. Ann. Pure Appl. Logic, to appear.
[6] M. Shioya, Splitting $\mathcal{P}_{\kappa} \lambda$ into maximally many stationary sets. Israel J. Math. 114(1999), 347-357.

Université de Caen - CNRS, Laboratoire de Mathématiques, 14032 Caen Cedex, France
e-mail: matet@math.unicaen.fr

[^0]: Received by the editors April 24, 2006; revised July 5, 2007.
 AMS subject classification: 03E05.
 Keywords: $P_{\kappa}(\lambda)$, diamond principle.
 (C)Canadian Mathematical Society 2008.

