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Abstract 

Additive Manufacturing (AM) enables innovative product designs. One promising research field is AM of 

integrated electrically structures, e.g. heating panels using Joule effect. A mayor challenge in designing 

heating panels using AM is the dependency of its resultant resistivity from material, process and geometry 

parameters. The goal-oriented design of heating panels with individual surface temperatures the interactions 

between these parameters need to be understand. Therefore, a data-driven design approach is developed that 

facilitates a design of heating panels with specific properties. 

Keywords: data-driven design, design support system, additive manufacturing, electrically 
conductive polymers, heat-generating structures 

1. Introduction 
Additive manufacturing (AM) provides enhanced freedom in product or part design. One of these new 

design possibilities is multi-material design that allows a combination of multiple materials in one part 

without additional joining or assembly processes. Due to its easy handling and a great variety of 

available materials in material extrusion(MEX) has been established for multi-material, especially for 

the integration of additional functions like electrical conductivity, e.g., for sensing elements (Leigh et 

al., 2012) or integrated heating panels using the Joule effect (Dul et al., 2018; Watschke et al., 2019). 

While AM of sensors has already been investigated in many studies, there has been only isolated 

research in the area of heat-generating structures. However, additively manufactured heating panels 

with individualized shapes and properties could provide a vast potential. AM enables local control of 

the heat distribution by an adjustment of electrical resistivity due to a variation of part orientation and 

geometry (e.g., lattice structures) (Watschke 2019), process parameters (Watschke et al., 2019; Hilbig 

et al., 2020), or material distribution (Dul et al., 2018; Zhuang et al., 2017). Thus, it is possible to 

adjust the surface temperature of heating panels individually.  

To fully utilize this potential new design methods or tools are necessary for describing the interactions 

between process-specific influencing factors and the part's resultant electrical resistivity. Therefore, in 

this contribution a data-driven design approach is developed, that enables designing heating panels 

with customizable homogeneous surface temperatures. 

2. State of the art 
This section describes the main leverages of MEX for electrical resistivity and heat distribution. 

Furthermore, it provides an introduction to data-driven strategies in process and design domains in the 

context of AM. 
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2.1. Influences on additively manufactured electrically conductive structures 

Additive manufacturing of electrically conductive structures enables adjustment of part's resultant electrical 

resistance and surface temperature by both geometry, process parameters as well as the applied voltage. 

Thus, the resistivity is not only determined by the selected material, but also by the manufacturing process. 

Influencing factors on the resistivity related to the process are: build orientation (Dul et al., 2018; Zhang  

et al, 2017), layer height (Hampel et al., 2017; Zhang et al., 2017), raster angle orientation (Watschke et al., 

2019; Hilbig et al., 2020), extrusion width (Zhang et al., 2017), flow rate (Zhang et al., 2017; Watschke et 

al.; 2019; Hilbig et al., 2020), extrusion temperature (Hampel et al., 2017; Watschke et al., 2019; Hilbig et 

al., 2020), and cooling (Hampel et al., 2017). The raster angle has the biggest effect on resistivity. 

Therefore, the adjustment of this parameter has the main leverage of the surface temperature by the 

electrical resistivity of the heating panel (Watschke et al., 2019; Hilbig et al., 2020; Tirado-Garcia et al., 

2021). Watschke, (2019) and Kim et al., 2020 investigated the head distribution by alternatives geometries 

like honeycomb and lattice structures. 

2.2. Machine learning approaches in design for additive manufacturing 

The design freedom provided by AM to adjust mechanical and electrical part properties by geometry and 

process parameters leads to an increased dimensionality of the design space. Trade-offs between objectives 

and constraints imposed by the manufacturing process make it even more challenging to find optial and 

feasible design solutions. Therefore, new approaches are required to effectively screen the multi-

dimensional design space to exploit the full potential for product design. In general, a classification can be 

made between data-driven and model-based design strategies to support design exploration and 

exploitation for AM (Zhang et al., 2021). Design exploration is dedicated to quickly identifying all design 

alternatives that satisfy a range of design objectives and are related to the early design stages. In 

comparison, design exploitation has the target to search for a design with maximum performance for 

defined criteria (Xiong et al., 2019). Model-based approaches utilize a priori knowledge of the underlying 

physical knowledge of the process. These principles are then subsequently used to build a process model 

for simulation, which is then verified and validated (Yin et al., 2014). On the other hand, data-driven 

strategies are the approach of integrating, analysing, and processing collected data from multiple sources 

(e.g., experimental, simulation and sales data) to get insights into the underlying problem (An et al., 2015). 

In general, more cost-effective and faster explorations and predictions are possible through data-driven 

techniques (Zhang et al., 2021; cf. Roy and Wodo, 2020). Data-driven design approaches for AM are 

primary based on supervised (e.g., Bayesian methods (Bessa et al., 2019) or artificial neural networks) 

machine learning methods. In the context of data-driven design strategies for MEX, approaches address, for 

example, dimensional accuracy (Wang et al., 2018), determining printable bridge lengths (Jian et al., 2019) 

or predicting thermal field during the manufacturing process. A detailed overview of data-driven strategies 

in AM can be found in the article by Zhang et al. (2021). 

3. Acquisition of data for the design exploration approach 
The following section presents the design of experiments, the set-up of the additive manufacturing 

process and the verification procedure for the determination of the resistivity and the voltage as well 

as process parameter-dependent heat distribution. 

3.1. Test specimens configuration for planar heating structures 

A D-optimal design space with a quadratic trial function is used for the design of experiment. In 

favour of the selection of the input factor the studies of Watschke et al., 2019 and Dul et al., 2018a 

were taken into consideration. The determination of the input factor was defined as categorical levels 

of the printing temperature of 210°C – 250°C with a step size of 10°C. Raster angle, see examples in 

Figure 1, of 0° – 90° with a step size of 10°, including the 45° orientation to the current flow. An 

orientation of 0° is parallel, whereas 90° is orthogonal to the current flow.  
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Figure 1. Examples of investigated infill orientations by the raster angle (α) in relation of the 

current flow during sourcing 

The design space results in a total number of 60 different process parameter sets with three specimens 

per set (180 in total). The dimensions of the test specimens, see Figure 2, were defined by microscope 

slides on which the specimens were manufactured. To investigate the optimal electrical contacting 

method of the specimens three variants were considered and evaluated, see Figure 2. 

   
a) Contacting without contact 

resistance reducing techniques 

b) Contacting with two silverpaste 

pads for combined sourcing and 

sensing 

c) Contacting with two silverpaste 

pads for sourcing and two for 

sensing 

Figure 2. Isometric view and dimensions of the test specimens and contacting variants 

In this research, the material BlackMagic3d PLA-Conductive (Graphene Laboratories, 2020) was 

used. To prevent hydration of the material a preconditioning process step of drying the filament was 

carried out at a temperature of 60°C for 24 hours. The selection of the preconditioning temperature 

was based on the matrix polymer of the filament. In order to avoid water absorption of the filament 

during production, the manufacturing process was carried out immediately after drying in standard 

atmosphere at room temperature at 22±2°C and relative humidity of 60±5%. The test specimens were 

manufactured with a Toolchanger® (E3D) using a Hemera® (E3D) direct extruder with a brass nozzle 

with diameter of 0.4mm. Other process parameters such as the printing bed temperature (60°C) and a 

manufacturing speed (40mm/s) were kept constant throughout the manufacturing process of all 

specimens. Due to the height of the specimen of 0.4mm, a layer height of 0.2mm was chosen, both of 

the layers are fabricated in the same raster angle, e.g. +45° / +45°. In preparatory tests, the material-

dependent flow was set with the aim of producing a true-to-scale. 

3.2. Introduction of the measurement set-up and the applied methods 

In order to characterize the electrical behaviour of the specimens, the resistivity was investigated. 

Relating to the resistance, resistivity is a geometry-independent property and is equal to the inverse 

conductivity of a material. The resistivity is defined in Equation 1 as: 

𝜌 = 𝑅 ∙
𝐴

𝐿
=

𝑈

𝐼
∙

𝑏∙ℎ

𝑙
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Ω𝑚2
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The geometrical influences of the used specimen remain constant. The cross-section (𝐴) of the 

specimen, see Figure 2, is defined by the product of width (b) and height (h). The distance between 

the contacted measuring pads (l) also remains constant due to the test rig and the connection variants. 

Therefore, the only varying factor is the resistance (R), which can be determined with the electrical 

parameters current (I) and voltage (U). The current and voltage are measured with a calibrated 

Keithley 2461 Sourcemeter. 

A test rig (see Figure 3a) is used to ensure constant conditions for the hook-up of the specimen to the 

sourcemeter and for the positioning of the specimen in the focal point of the thermal imaging camera. 

The sample is placed in the test rig and then the lever is used to clamp the specimen between the four 

jaws. Each jaw is equipped with 3x8 spring-loaded contacts. These contacts exert a force of 

approximately 0.6N per contact against the sample during measurement. Figure 3b shows an example 

of the wiring set-up for a 4-wire measurement. 

  
a) b)  

 

a) Test rig for hook-up of the sourcemeter and for precise alignment in front of the thermal imaging camera; b) 

Specimen wiring for 4-wire measurement 

Figure 3. Overview of test rig and contact set-up of the specimens for 4-wire measurement 

Depending on the wiring of the spring-loaded contact pin rows 2- as well as 4-wire measurements can 

be carried out with the test rig. In a 4-wire measurement configuration, see Figure 4b,d, the two outer 

rows of contact pins are sourcing while the two inner rows are sensing the voltage drop over the 

length (l). By measuring the voltage drop over the length of the specimen, the contact resistance can 

be largely eliminated from the measurement. Whereas measuring the resistivity by the 2-wire 

measurement, see Figure 4a,c, the applied voltage is measured in the source meter and the current is 

sourced into the specimen via the two inner rows of spring-loaded-contacts. This method ensures that 

the sample length over which the measured voltage drop occurs is identical to the 4-wire 

measurement, but the contact resistance can not be eliminated by sensing the voltage in the 

sourcemeter. The contact resistance can be reduced by applying an electrical contract agent, e.g. silver 

paste EMS12640 (Figure 4c,d). 

The temperature distribution can be recorded with a resolution of 640x480px using the TIM 640 

thermal imaging camera and 33° optics from Micro Epsilon. The camera is positioned at a distance of 

180𝑚𝑚, achieving a resolution of 170µ𝑚/𝑝𝑥. By clamping the specimens between the two jaws, the 

specimens were positioned precisely in the focal point of the thermal imaging camera. 
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a) 2-wire no silver paste pads b) 4-wire no silver paste pads 

  
c) 2-wire with silver paste pads d) 4-wire with silver paste pads 

R1: test lead resistance; R2: contact resistance between spring-loaded contacts an silver paste pads; R3: internal 

resistance of silver paste pad; R4: contact resistance between specimen an silver paste; R5: internal resistance of 

specimen between source and sense location; R6: internal resistance of specimen between low- and high-side 

sense location; R7: contact resistance between spring-loaded contacts and specimen 

Figure 4. Schematic overview of contacting variants 

3.3. Electric connection of additively manufactured structures 

To minimize the contact resistance of the samples an investigation of the electric bonding method was 

performed. Therefore, the combination possibilities can be categorized into three options: 

coating of contact area: none (a1) or with an electrical bonding agent (a2) 

number of contact pads: combined pads (b1) or separated pads for sensing and sourcing (b2) 

measurement method: 2-wire (c1) or 4-wire measuring (c2) 

In order to minimize the contact resistance (a2) the bonding agent silver paste EMS 12640 is applied at the 

specified location based on the two variants as depicted in Figure 2a,b.  

To identify the ideal combination of the three options, specimens were produced with the same process 

parameters. Each of the contacting methods was applied to five specimens and the resistivity was 

measured. For a comparison, a representative specimen of each combination is shown, see Figure 5. 

 
a1) without silver paste pads; a2) with silver paste pads; b1) combined silver paste pad for souring and sensing; 

b2) separated silver paste pad for souring and sensing; c1) 2-wire measurement; c2) 4-wire measurement 

Figure 5. Comparison of the resistivity by the contacting variants using a representative 
specimen for each variant 
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The main difference of the contact method is whether the contact surface is coated with or without 

silver paste, comparison of group a1 and group a2. The group with the silver paste has a lower contact 

resistance across all subgroups. As assumed in the group without silver paste (a1) the 4-wire 

measurement method shows that most of the contact resistance is eliminated by this measurement 

method. In comparison of the main groups (a1 vs. a2) the 4- wire measuring has the minimal contact 

resistance with minimal scattering of the data points. Across all the contacting methods, the variant 

with silver paste (group a2), with a separated silver paste pad for sourcing and sensing (group b2) and 

the 4-wire measuring method (group c2) caused the lowest contact resistance for the specimens. Thus, 

for all further measurements, contacting will be made with separate pads for sourcing and sensing with 

silver paste. Where possible, 4-wire measurement is preferred. 

3.4. Measurement of the temperature-dependent resistivity due to self-heating 

First of all, the resistivity of all specimens was measured at 22°C ± 2°C with a 4-wire measurement, 

see Figure 3b. The current is sourced through the two outer contact rows, which is regulated by an 

applied voltage of 1𝑉 between the inner contact rows. The resistivity is calculated from the voltage, 

the current and the geometry parameters between the two sense silver paste pads. 

For the application in heating panels, the temperature-dependent resistivity due to self-heating is 

measured. For this purpose, the specimens are supplied with higher voltages, which allows only 2-wire 

measurements due to the restriction of the sourcemeter. The surface temperature is recorded with the 

thermal imaging camera at a distance of 180mm. The schematic set-up is shown in Figure 6. 

 
Figure 6. Schematic circuit diagram of the specimen wiring and exemplary superimposition of 
the resulting heat distribution at 11V of a specimen with α=30° at 22°C ambient temperature 

At the start of the measurement, a voltage of 10V is applied on the specimens. The electrical power is 

converted into heat in the specimen and heats it, via the Joule's effect. This leads to a measurable change in 

resistivity. Therefore, the resistivity is continuously calculated from the measurement data and the time 

derivative 𝑑ρ/𝑑𝑡 is formed. An empirical threshold of |𝑑ρ/𝑑𝑡|  ≤  2.2 ∙ 10−6Ω (m  s)−1 is chosen as the 

threshold criteria for the resistivity to be considered sufficiently static. As soon as the resistivity falls below 

this threshold, it is measured 100 times and stored. Then a thermographic image associated with the 

resistivity is taken. The highest surface temperature is determined from the thermal image. If the 

temperature is below the polymer's heat deflection temperature of 60°C, the voltage is increased by 1V and 

maintained until the resistivity can be considered constant at the newly set voltage according to the 

threshold criteria. This process is repeated until the heat deflection temperature is exceeded. 

4. Development of a data-driven design exploration approach for 
heating panels 

The following chapter presents the data-based approach that enables efficient exploration of the design 

space for heating structures based on the previous experiments. Thereby, the scope is on supporting 

the process parameter selection of additively manufactured heating panels given a target temperature 

and a nominal voltage as input while maintaining the constraints of homogeneous heat distribution on 

the specimen's surface. First, the basic approach for the design support of the heating panels is 

presented. Based on this, the implementation, followed by the evaluation of the method, is described. 

4.1. Approach for data-driven design space exploration for heating panels 

The approach is divided into two core modules: regression model-based prediction of process parameter 

sets, followed by their classification into feasible and infeasible temperature distributions. These two 

modules are processed sequentially. Figure 7 visualizes the structure of the method to be implemented. 
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Figure 7. General approach for data-driven design exploration for heating panels 

A regression model is trained with the acquired data. Initially, the measurements taken in Section 3.4 

will serve as the primary training data. The model will thus be able to predict the process parameter 

sets that lead to the aspired electrical properties and thermal distribution of the heating panels surface 

based on the user specifications of nominal voltage Unom, target temperature difference ΔTset and 

geometry of the heating panels. The output of the regression should represent design recommendations 

that lead to the target temperature with low deviation. The aim is thus to extract parameter sets that are 

as robust as possible with respect to uncertainties in the manufacturing process and in the regression 

model. These are in this case raster angle and nozzle temperature (see Section 3.2). Therefore, the 

model represents two levers for adjusting the part properties that have a significant influence on the 

resistivity and thus on the heat distribution (cf. Watschke et al., 2019; Hilbig et al., 2020). 

In the context of this work, the objective for the design of the heating panel is a homogeneous 

temperature distribution on the surface. The distribution is primarily influenced by the geometry, 

raster angles and the electrical contacting of the panels (Watschke et al., 2019). To separate feasible 

and infeasible designs, a classification model is trained based on the previous generated thermal 

images. Therefore, the captured images have to be labelled as feasible or infeasible manually or by a 

suitable clustering algorithm. Based on the predicted process parameter sets and geometric boundary 

conditions, the trained classifier should be able to specify the probable temperature distribution. In 

addition, designs with inhomogeneous heat distributions should be eliminated. The geometric 

parameters are constant in this work. In the future, it should be possible to predict the heat distribution 

based on measurements and simulations of varying and complex surfaces of heating panels, e.g. by 

encoding the geometry using 3D-shape descriptors (cf. Reuter et al., 2006). 

4.2. Implementation of the approach for data-driven design space exploration 

The implementation of the method for data-driven design space exploration for heating panels is done 

in version 3.8 of Python. In addition, the machine learning libraries Scikit-learn (v. 1.0.1) and Keras 

(v. 2.7.0) were used to realize the regression and classification tasks. For the regression model to 

predict appropriate process parameter sets, a Gaussian process regression (GPR) is utilized. In GPR 

kernel functions are used to define a prior distribution over the target functions and the input data to 

define a likelihood function. Based on Bayes theorem, a posterior distribution is defined over the 

target functions, the mean of which is used for prediction. The model's advantage is thus, that the 

variance in the input data due to uncertainties in heating panel manufacturing, measurements, and the 

regression model can be well captured. Consequently, the uncertainty of the predictions of a parameter 

set on the target temperature can be easily included in the design decision process. 

Instead of a multi-target regression approach, an inverse parameter identification strategy is followed. 

Thereby, a sampling of potential process parameter combinations is initially generated. The samples 

are passed to the trained regression model to predict temperature and associated standard deviation of 

the output. If the predicted temperature is within the defined tolerance range, the combination is 

labelled as a potential design candidate for later passing to the classification algorithm. Besides, the 

brute force approach an optimization algorithm can be utilized to determine an optimal parameter set. 

For training and evaluating the performance of the GPR model, the data set consisting of 1727 

samples is split into a training and test data set (ratio of 1/5). The used covariance functions is a 

composition of squared exponential and White Kernel with optimized hyperparameters estimated by 

L-BFGS-B algorithm. The quality of the trained model is measured with the coefficient of 

determination R2 = 0.94. Whereas a R2 above 90% promises sufficient prediction quality of the model. 

Furthermore, the residual distribution points out that the error is normally distributed around zero, 

which generally indicates a well-fitted model. 
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For the classification task of the predicted process parameter sets concerning their resulting heat 

distribution, the workflow shown in Figure 8, is implemented based on the collected thermal images. 

 
Figure 8. Flowchart for training the classifier for the estimation of feasible heat distributions 

To be able to train a classification algorithm, it is first necessary to group the collected data into 

feasible and infeasible heat distributions and thus label them on this basis. For this purpose, unique 

feature vectors are first extracted from the samples using a transfer learning strategy. In this work, the 

Deep Convolutional Neural Network (CNN) VGG16 for image classification tasks 

(Simonyan et al., 2014) implemented in Keras is used. The pre-trained network is treated as an 

arbitrary feature extractor, allowing the input image to propagate forward, stopping at a pre-specified 

layer and taking the outputs as the features for the further clustering task. Here, the final softmax 

layer, which is responsible for the final classification, has been removed from the VGG16 architecture. 

Therefore, the new final output of the network and thus each unique feature vector has 4096 

components characterising the thermal image. 

Before applying the density-based clustering algorithm DBSCAN on the extracted feature vectors to 

identify patterns based on the visual similarities of the heat distributions, a dimensionality reduction is 

performed. By applying principal component analysis (PCA) the feature vectors are reduced to 200 

principal components whereas 95.54% of the variance of the original feature space can be kept. Next, the 

feature vectors are fed to DBSCAN. Thereby, the optimum value for the search radius ε was determined 

based on the work of Rahma and Sitanggang, (2016) and the minimum samples default value is kept. The 

applied metric is the Euclidean distance. Figure 9 shows the extracted 8 main clusters. 

 
Figure 9. DBSCAN results based on reduced feature vectors of thermal images 

Thereby, for visualization purposes, the feature vectors are embedded into 2D-space using t-SNE algorithm 

and only the data points corresponding to the last thermal images captured before reaching the threshold 

criteria (see Section 3.4) are depicted. For training the classifier, all images corresponding to clusters 1 

(raster angle 90°) and 2 (raster angle 0°) are labelled as feasible, since they show the most homogeneous 

temperature distribution. Concerning the nozzle temperature, no significant influence on the cluster 

formation and thus the heat distribution can be identified. The voltage has no effect on the homogeneity. 

This observation is consistent with the previous studies.  

Finally, the k-nearest neighbours (kNN) classification algorithm is trained based on the labelled data set. 

An accuracy score of 96.3% is achieved with the default settings of the Scikit-learn implementation of 

kNN. Whereas, the accuracy score is defined as the quotient between the number of correct predictions and 

the total number of predictions. Thus, a classification of the predicted process parameters into feasible and 

infeasible solutions can be performed. Furthermore, temperature images of the nearest neighbours can be 

returned to evaluate the predicted temperature distribution in detail. 
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4.3. Design support tool for additively manufactured heating panels 

The design space exploration method presented in the previous section was integrated into a dashboard 

using the Python library Panel (v. 0.12.4) that will be presented in detail in further publications. In addition 

to the recommendation system for robust process parameters, the support tool provides additional 

functionalities in the context of data pre-processing, e.g., for visual outlier detection, correlation and 

sensitivity analysis, and the initial comparison of various regression model approaches (e.g., random forest 

and gradient boosted regressor) to evaluate their performance in the context of the present data. In the 

dashboard, the user is able to enter the desired temperature difference of the heating panel, a tolerance 

range as well as the nominal voltage. The tool returns a list of suitable process parameters that have been 

labelled as feasible or infeasible (homogeneous heat distribution) using the classifier. Additionally, the 

predicted standard deviation of the temperature is returned. By selecting a parameter set, a thermal image is 

additionally shown based on the classifications. 

5. Conclusion 
In this research, AM heating structures were manufactured, characterised and the knowledge was refined 

for product development using a data-driven design approach. This includes the experimental 

determination of the optimal contacting variant for the used material (PLA/GNP) and the temperature-

dependent resistivity from ambient temperature to 60°C. Furthermore, it was confirmed that the heat 

distribution is mainly dependent on the raster angle and the applied voltage. 

The developed data-driven exploration approach enables a fast screening of design spaces. Thereby, robust 

process parameters (dependent on noise-level of input data and model uncertainty) can be predicted to 

extract design solutions that result in a desired heat distribution of the panel's surface. To evaluate of a 

current design solution, a classifier was trained to separate infeasible parameter sets (inhomogeneous 

temperature distribution) and to return an image of the probable heat distribution. 

Further research will be performed in fields of material development and a deeper data foundation, e.g. for 

process parameters as well as geometry. This provides a more sophisticated model for the design process of 

AM heating structures. The use of matrix polymers with higher heat deflection temperatures can unlock 

application fields with higher continuous operating temperatures. Furthermore, the resistivity can be 

lowered by modifying the conductive additives and results in the scalability for large-area applications. So 

far, the data-driven approach is limited to simple geometries but can be further trained with data sets of 

more complex shapes, so that the solution space of the operating principle of AM heating structure is 

increased for product development. In this context, 3D-shape descriptors will be evaluated to efficiently 

abstract unique geometrical attributes of complex shapes and to link them with resulting heat distributions 

dependent on process parameters and applied voltage. This classification approach can also offer great 

potential in terms of a design checker by supplementing shape segmentation algorithms. For example, 

based on the current design of a surface, regions can be identified in which there is a disturbance of the 

temperature field. In addition, the collection of further data is aimed at, for example, to implement a model 

that defines an infill orientation as a function of location. 
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