The weak closure of the set of singular elements in a Banach algebra

J. D. Gray

In this note it is proved that for a certain class of infinite dimensional Banach algebras the set of singular elements (the non-units) is dense in the weak topology.

It is well known and easily proven (Rickart, [2], p. 12), that in any (complex) Banach algebra B, with identity, the set S of singular elements (the non-units) is closed in the norm topology. In some recent work of the author on a generalization of the operational calculus for Banach algebras it became important to know something of the topological nature of S when B is equipped with the weak topology. This topology has as a basis sets of the form

$$\{ \xi \in B : |x^*(x) - x^*(\xi)| < \varepsilon ; x^* \in A \}$$

where $x \in B$, $\varepsilon > 0$ and A is a finite set in the dual space B^* of continuous linear functionals on B. If B (as a vector space) has finite dimension, the weak and the norm topology coincide, and so, in this case, S is closed in the weak topology.

For a certain class of algebras we have a partial converse to this result.

Theorem. Suppose B is an infinite dimensional, semi-simple, commutative Banach algebra with identity, for which the Gelfand map is surjective. Then S is weakly dense in B.

Proof. To see that this is a partial converse to the above statement

Received 15 September 1969. The author would like to thank Mr C.D. Cox for helpful discussions.
we note that S is always a proper subset of B, and so, if it is dense it is not closed. The Gelfand map is that well known homomorphism $B \rightarrow C(X)$ of B into the Banach algebra $C(X)$ of all continuous, complex-valued functions on the compact Hausdorff space X of maximal ideals of B. As B is semi-simple, this homomorphism is injective, and thus, by assumption, bijective. By the open mapping theorem we conclude that it is a homeomorphism. Therefore, by Theorem V.3.15 of Dunford and Schwartz [1], it is a homeomorphism when both B and $C(X)$ have the weak topology. Thus it suffices to prove the theorem for the algebra $C(X)$. Now a function in $C(X)$ is singular if and only if it vanishes at some point of X. The problem is then: given $f \in C(X)$ (which we may assume not to be identically zero), show that every neighbourhood of f in the weak topology contains a function which vanishes somewhere in X. It suffices therefore to exhibit a net $\{f_\alpha\}$ of singular elements with $\lim_{\alpha} f_\alpha = f$.

f may be written in a unique way as $\phi + i \psi$, where $\phi, \psi : X \rightarrow \mathbb{R}$ are continuous. Now, as $C(X)$ is infinite dimensional, X is an infinite set, and as it is also compact, we conclude that there is a point $p \in X$ which is not isolated. Let U be a neighbourhood basis for p - indexed by some well-ordered set Γ', so $U = \{U_\alpha' : \alpha \in \Gamma'\}$. Choose an $\alpha_0 \in \Gamma'$ and define $U_{\alpha_0} = U_\alpha'$. If $\beta \geq \alpha_0$ and U_β has been defined, define inductively $U_{\beta+} = U_\beta' \cup U_\beta$, where $\beta+$ is the least element of the set $\{\gamma \in \Gamma' : \gamma > \beta\}$. Then the family $\{U_\alpha : \alpha \geq \alpha_0\}$ is also a neighbourhood basis of open sets for p. Furthermore, if $\beta > \alpha \geq \alpha_0$ we have $U_\beta \supset U_\alpha$, and each U_α contains a point other than p (as p is not isolated). Next, because X is Hausdorff, we have $\cap_{\alpha \geq \alpha_0} U_\alpha = \{p\}$. For convenience we let Γ be the directed set $\{\alpha \in \Gamma' : \alpha \geq \alpha_0\}$. For each $\alpha \in \Gamma$ let $F_\alpha = X - U_\alpha$, so that F_α is closed. Also, let \hat{F}_α be the closed set $F_\alpha \cup \{p\}$. For $\alpha \in \Gamma$ we may, by construction, choose a point $p_\alpha \in U_\alpha$ in such a way that $p_\alpha \not\in U_{\alpha+}$. X, being a compact Hausdorff space, is also normal, and hence, by Urysohn's Lemma, for each $\alpha \in \Gamma$, we may choose a continuous real-valued
function g_a on X so that $0 \leq g_a \leq 1$; $g_a(p_a) = 1$ and g_a vanishes on \hat{F}_a. Now define $\phi_a : X \to R$ by

$$\phi_a(\lambda) = (1 - g_a(\lambda)) \phi(\lambda); \quad \lambda \in X.$$

Then ϕ_a is continuous; $-\phi \leq \phi_a \leq \phi$; $\phi_a(p_a) = 0$ and $\phi_a|\hat{F}_a = \phi|\hat{F}_a$. In exactly the same manner we construct a continuous function $\psi_a : X \to R$ with $-\psi \leq \psi_a \leq \psi$; $\psi_a(p_a) = 0$ and $\psi_a|\hat{F}_a = \psi|\hat{F}_a$. Write $f_a = \phi_a + i\psi_a$ so that each f_a is a singular element of $C(X)$.

The net $\{f_a : a \in \Gamma\}$ will converge to f in the weak topology if for each continuous linear functional x^* on $C(X)$, and for each $\varepsilon > 0$, there is an $a_1 \in \Gamma$ so that $a > a_1$ implies that

$$|x^*(f) - x^*(f_a)| < \varepsilon.$$

The Riesz Representation Theorem ([I], Theorem IV.6.3) asserts the existence of an isometric isomorphism between $C(X)^*$ and the Banach space of regular, countably-additive, complex-valued measures on the Borel sets of X. Further, if μ is such a measure,

$$x^*(g) = \int_X g d\mu$$

for all $g \in C(X)$. Thus

$$|x^*(f) - x^*(f_a)| \leq \left| \int_{F_a} (f - f_a) d\mu \right| + \left| \int_{U_a} (f - f_a) d\mu \right|.$$

However, for each $a \in \Gamma$, the first factor above is identically zero as f and f_a agree on F_a. As for the second factor, it is

$$\leq \int_{U_a} |f - f_a| d\|\mu\|,$$

here $\|\mu\|$ represents the total variation of μ, and, by Theorem III.5.12 of [I], $\|\mu\|$ is also a regular (positive) measure on the Borel sets of X. Now suppose that the $\|\mu\|$-measure of the point p_a is zero. Then $\inf_V \|\mu\|(V) = 0$ - the infimum being taken over all open sets V.
containing \(p \). Thus we can choose such an open set \(V \) with
\[
\|u\|(V) < \varepsilon/2\|f\|.
\]
But \(\{U_\alpha\} \) is a basis for the open sets containing \(p \), and as it is also decreasing, there is an \(\alpha_1 \in \Gamma \) such that, if \(\alpha > \alpha_1 \) we have \(U_\alpha \subset V \) and so \(\|u\|(U_\alpha) < \varepsilon/2\|f\| \). Hence
\[
\int_{U_\alpha} |f-f_\alpha| \, d\|u\| \leq \int_{U_\alpha} \|f-f_\alpha\| \, d\|u\| \leq \|f-f_\alpha\| \cdot \|u\|(U_\alpha) \leq 2\|f\| \cdot \|u\|(U_\alpha) < \varepsilon
\]
provided \(\alpha > \alpha_1 \). Now suppose that \(\{p\} \) does not have \(\|u\| \)-measure zero, then, without loss of generality, we may assume that \(\|u\|(\{p\}) = 1 \) and that
\[
\int_{\{p\}} (f-f_\alpha) \, d\|u\| = 0 \quad \text{(remember that } f(p) = f_\alpha(p))
\]
Then
\[
\int_{U_\alpha} |f-f_\alpha| \, d\|u\| = \int_{U_\alpha-p} |f-f_\alpha| \, d\|u\| \leq 2\|f\| \cdot \|u\|(U_\alpha-p).
\]
By regularity we may choose an open set \(V \) containing \(p \) for which
\[
\|u\|(V) < 1 + \varepsilon/2\|f\| \quad \text{so that } \|u\|(V-p) < \varepsilon/2\|f\|.
\]
Arguing as before we find an \(\alpha_1 \) such that \(\|u\|(U_\alpha-p) < \varepsilon/2\|f\| \) provided \(\alpha > \alpha_1 \). This completes the proof of the theorem.

The proofs of the next results follow immediately from the theorem.

COROLLARY 1. Suppose \(B \) is an infinite dimensional, commutative, \(B^* \)-algebra with identity. Then \(S \) is weakly dense in \(B \).

COROLLARY 2. Let \(X \) be an infinite compact Hausdorff space. Suppose \(X \) contains a non-isolated point with a countable neighbourhood basis. Then \(S \) is weakly sequentially dense in \(C(X) \).

COROLLARY 3. Suppose the Banach algebra \(B \) satisfies the conditions of the theorem. Then, in the weak topology, the group of units of \(B \) has empty interior.

Finally, let \(B \) be the Banach algebra of bounded, complex-valued functions on a set \(\Omega \). As mentioned in [2], p. 295, the group \(G \) of units of \(B \) is open and dense in the norm topology. However, in the weak topology, \(G \) has empty interior. This follows from Corollary 3 and Theorem IV.6.18 of [1], according to which \(B \) is (isometrically isomorphic to) an algebra \(C(X) \), for a suitable compact Hausdorff space \(X \).
Singular elements in a Banach algebra

References

University of New South Wales,
Kensington, New South Wales.