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THE PROXIMAL SUBGRADIENT FORMULA IN 
BANACH SPACE 

BY 

PHILIP D. LOEWEN 

ABSTRACT. The proximal subgradient formula is a refinement 
due to Rockafellar of Clarke's fundamental proximal normal 
formula. It expresses Clarke's generalized gradient of a lower 
semicontinuous function in terms of analytically simpler proximal 
subgradients. We use the infinite-dimensional proximal normal 
formula recently given by Borwein and Strojwas to derive a new 
version of the proximal subgradient formula in a reflexive Banach 
space X with Frechet differentiable and locally uniformly convex 
norm. Our result improves on the one given by Borwein and Strojwas 
by referring only to the given norm on X. 

Proximal analysis is an indispensable part of Clarke's nonsmooth calculus. Its 
importance derives partly from the elegance with which it combines both 
geometric and analytic viewpoints, but primarily from its exceptional versatility 
as a calculating tool. The basic result is Clarke's "proximal normal formula" [4], 
which explains how the (Clarke) normal cone to an arbitrary closed set can be 
described in terms of simpler objects called proximal normals. The formula has 
many applications, especially in the analysis of various value functions arising 
in optimization theory. In these cases the closed set of interest is the value 
function's epigraph, and the special shape of an epigraph set can be used to 
simplify the proximal normal formula. The refined result is the "proximal 
subgradient formula" first proven by Rockafellar [14] for the finite-dimensional 
case. Roughly speaking, it explains how the (Clarke) generalized gradient of a 
lower semicontinuous function V:Rn —» R U {±00} can be described in terms 
of simpler objects called proximal subgradients. This paper offers an infinite-
dimensional formulation of the proximal subgradient formula, based on the 
infinite-dimensional version of the proximal normal formula recently given by 
Borwein and Strojwas [2]. Although these authors have also considered the 
infinite-dimensional proximal subgradient formula [3], our result improves 
upon theirs by eliminating the need to consider all equivalent smooth norms 
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on the base space when defining the set of singular limiting proximal sub-
gradients. 

This paper has only two sections. The first of these reviews the basics of 
proximal analysis in the finite-dimensional case, while introducing definitions 
and notation of more general scope. The second section presents the proximal 
subgradient formula in any reflexive Banach space with locally uniformly 
convex and Frechet differentiable norm. 

1. Introduction. 

DEFINITION 1.1. Let (X, ||-|| ) be a Banach space, and let C be a nonempty 
closed subset of X. The distance function dc and the metric projection irc are 
given by 

(1.1) dc(x) = inf{ \\x - c\\:c e C}, 

(1.2) 7TC(X) = {c G C:\\x - c|| = dc(x) }. 

Given a point c G. C, we say that a nonzero vector v e X is perpendicular to C at 
c (written v _L C at c) if v e TT^1(C) — c, i.e. c G <nc(c + v). 

Now let X = R", and let C c R'7 contain a point c. Clarke's proximal normal 
formula asserts that the normal cone to C at c is given by 

(1.3) Nc(c) = co{lim \vz:A, ^ 0, v, J_ C at c„ ct e C, ct -> c}. 

In this finite-dimensional case, the scalar multiples X/-v/ of perpendicular vectors 
appearing in (1.3) are the proximal normals. When X is infinite-dimensional 
the normal cone is a subset of X* and a more general definition of proximal 
normals is required — see Definition 2.1. The utility of (1.3) for evaluating 
Nc(c) springs from the fact that when X = R" (or when X is a Hilbert 
space), 

(1.4) v _L C at c ^ <v, cf - c) ^ (l /2) |k r - c\\2 Vcr e C. 

The "proximal normal inequality" appearing on the right side of (1.4) can be 
reformulated as the assertion that the point c minimizes over C the functional 
( — v, c') -h (l/2)||c r — c|| . An analysis of this auxiliary optimization problem 
can lead to a complete understanding of Nc(c) via (1.3). 

The program sketched above takes on particular interest when the set C in 
question arises as the epigraph of some lower semicontinuous function. Indeed, 
let X be a Banach space on which some V:X —> R U {±00} is defined. 
Assume that V is finite-valued at some x G X, and that the epigraph set epi 
V = { (x, r):r ^ V(x) } is locally closed near (JC, V(x) ). Then Clarke's general­
ized gradient and asymptotic generalized gradient of V at x may be expressed as 

(1.5) dV(x) = { f G **:(f, - 1 ) e NepiV(x, V(x))}9 

(1.6) d°°V(x) = { f E **:(£, 0) e 7VepiK(x, F(x) ) }. 
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When X = Rn, one can evaluate these measures of the first-order behaviour of V 
by using (1.3) to compute the normal cone to epi V. Indeed, this is the method 
of choice when Fis the value function of some perturbed optimization problem: 
sensitivity studies and proofs of necessary conditions based on this approach 
may be found, for example, in [11, 14, 15, 16, 5, 7]. 

Thanks to Rockafellar [14], we now know that when C = epi V for some 
lower semicontinuous V:Rn —> R U {±oo}, the special shape of C allows us to 
retain equality in (1.3) while imposing additional conditions on the sequences of 
perpendiculars described on the right-hand side. The resulting identity is called 
the proximal subgradient formula; its extra conditions, to be studied in detail 
below, exclude some of the technical problems which come up if (1.3) is applied 
directly to (1.5) and (1.6). The proofs in [16] bear witness to this assertion. 

In spite of their many uses, the proximal subgradient and proximal normal 
formulas have been limited to finite-dimensional spaces until recently. Borwein 
and Strojwas [2] gave the first complete generalization of the proximal normal 
formula to an infinite-dimensional setting. (Treiman's earlier results [17, 18] use 
Frechet epsilon-normals instead of proximal normals, and are slightly weaker.) 
Their proof has been illustrated for Hilbert spaces in [13], and simplified 
considerably in [1]. Infinite-dimensional applications along the lines described 
above have also appeared: see [6] and [7], for example. In [3], Borwein and 
Strojwas also present a version of the proximal subgradient formula. Their 
result suffers from the need to involve all equivalent smooth norms on the 
Banach space in question. The main result of this paper is a sharper version of 
the proximal subgradient formula in which only the given norm must be 
considered. We prove it in the next section by combining the infinite-
dimensional proximal normal formula of [2] with an elementary argument 
involving nearest points. 

2. The proximal subgradient formula. Throughout this section, we consider a 
reflexive Banach space (X, ||*|| ) whose norm is both Frechet différend able at all 
nonzero points of X and locally uniformly convex. Any reflexive Banach space 
can be given an equivalent norm with these two properties ("Trojanski's 
theorem"); also, the usual norms of the classical Lp-spaces (1 < p < oo) and all 
Hilbert spaces have both properties. See Diestel [10] for precise definitions and 
proofs. For convenience of notation we will sometimes write n(x) = \\x\\. Thus 
the subgradient set dn(x) consists of all functionals £ e X* for which 

(2.1) (&y - x) ^ \\y\\ - ||x|| Vy e X 

In particular, if x ¥= 0 then dn(x) consists of a single functional £ = Vn(x) 
obeying ||£||* = £(x) = 1; and moreover the mapping y —» Vn(y) is 
norm-to-norm continuous at x. 
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DEFINITION 2.1. Let C be a closed subset of X containing a point c. If m^ (C) 
contains points distinct from c, then the set of proximal normal functional to C at c 
is the subset of X* given by 

(2.2) PNc(c) = {XVn(v):X â 0, v _L C at c}; 

(f^c](c) = ic) then PNc = {°>-
Here is the infinite-dimensional version of the proximal normal formula, 

from which thé proximal subgradient formula will be derived. 

THEOREM 2.2 [2]. Let C be a closed subset of X containing a point c. Then 
Clarke's normal cone to C at c is given by 

(2.3) Nc(c) = co{w* - lim f.:f. e PNc(ct\ ct e C, q -> c}. 

We will use the following technical lemma. 

LEMMA 2.3. For any x G X with \\x\\ = 1, and any 8 > 0, r G (0, 1), let 

(2.4) Mr(x9 8) = {y Œ X:\\y\\ ^ 1, \\y - rx\\ ^ 1 - r + 8}. 

Then one has 

(2.5) limit sup{ \\y - x\\\y G Mr(x, 8) } - 0. 
5-^0 + 

PROOF. If the conclusion is false then there must be a constant e > 0 and 
sequences yt Q X, 8i —> 0 + such that yi G Mr(x, 5-) and 

lb, - jc|| ^ 2e V*. 

Defining xt = .y/llj^lL the inclusion yt G Mr(x, 5-) readily implies 1 ^ | |^ | | ^ 
1 + 5,, so that \\xt — yt\\ = 8t. For all / sufficiently large we have S- < €, whence 
H*, — x\\ i^ €. The local uniform convexity of X implies that, for some 
7] > 0, \\xt; + JC|| ^i 2(1 — 7]). We now estimate 

lbz - rx| | = || (1 4- r)xt - (x7 - yt) - r(x + xf.) || 

^ (1 4- r) - 8t - 2r(l - TJ) 

= 1 - r + 5f. + 2(rrj - 8Z). 

For all / sufficiently large, the term rx\ — 8t is positive, and the inclusion 
yt G Mr(x, 5-) is contradicted. The lemma holds. 

The remainder of this section deals with the case C = epi V for a function 
V\X7 —> R U {zboo}. For convenience we assume that V is lower semi-
continuous, although the proofs remain correct if we postulate only that epi V is 
locally closed near the point of interest. Note that epi F is a subset of the 
product space X X R, whose norm we take to be 

(2.6) II <*,/•) || = (IU| |2 + |r |2) , / 2 . 
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Clearly the unit ball of X X R inherits the smoothness and convexity properties 
of the ball in X, so Theorem 2.2 remains applicable. 

Let (x, r) G epi V be given. Then elements of PN iv(x, r) have the form 
(f, — 6) G X* X R, and clearly e ^ 0. Indeed, if e > 0 we must have 
r = V(x), while if e = 0 and (f, 0) G iWepiK(x, r) then it follows that 
(?, 0) G PAT iK(x, F(x) ) also. These observations allow us to rewrite (2.3) as 
follows: 

(2.7) Nepiv(x, V(x)) = co{w* - limtf,, -€•):(£,, -£ , ) G P7VepiK(^, K(xf.) ), 

*,- -> x, V(xt) -> F(x) }. 

As Rockafellar [14] observed in the finite-dimensional case, there appear to be 
three possibilities for the weak*-convergent sequences appearing on the right 
side of (2.7): either 

(a) €;—»€> 0, in which case c, > 0 for all i sufficiently large; or 
(b) € • —» 0 but et > 0 holds for arbitrarily large values of i — in which case we 

may obtain the same weak*-limit by considering only the subsequences along 
which ei > 0 for all /; or 

(c) €, = 0 for all i sufficiently large. 
The key assertion of the proximal subgradient formula is that the weak*-limit 
points of sequences of type (c) are already accounted for by sequences of 
type (b). Thus the extra condition ct > 0 V/ can be added to the right side of 
(2.7) while preserving the identity. This is the content of Theorem 2.4 below. 

THEOREM 2.4. Let V:X —> R U {±00} be lower semicontinuous, with 
V(x) G R. If a nonzero functional (f, 0) G PNepiv(x, V(x) ) and any positive 
tolerance p are given, then there exist a point x' G X with || (x\ V(x') ) — 
(x, V(x))\\ < p and a functional (f, — c') G PN iv(x', V(x')) such that 
€ ' > 0 a i K / | | ( r , - O - (£,0) |L < p . 

PROOF. By definition, (f, 0) = Wn(z, 0) for some À > 0 and some vector 
(z, 0) _L epi V at (x, V(x) ). Without loss of generality we may assume 
x = 0, V(0) = 0, and ||z|| = 1. Let TJ > 0 be given. To prove the theorem, it 
suffices to produce points x G X and (y, — c) G (l/2)(z, 0) 4- AJ]B such that 
|| (x, V(x) ) || < 77, € > 0, and (y, —e) _L epi F a t (JC, F(JC) ). For in this case the 
vector (f, — e') = Wn(2(y, — e) ) is in PNepiv(x, V(x) ) and can be made 
arbitrarily close to (f, 0) in the norm of X* by simply reducing i\. (The last 
statement holds because Vn:X —> X* is norm-to-norm continuous [10, p. 29].) 

Throughout the proof we denote the open unit ball of X X R by P, and write 
E = epi V. Observe that since dE(z, 0) = ||z|| = 1, we have [ (z, 0) + B] fï 
E = 0. In fact, the special shape of E implies 

(2.8) [ (z, -t) + B] n E = 6 Vt ^ 0. 
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Let us begin by applying Lemma 2.3 to find some 8 G (0, TJ) SO small that 

(2.9) sup{| |(jc,v) | | : | | ( jc,v) - (z, 0) || ^ 1, 

|| (JC, v) - (z/2, 0) || ^ 1/2 + 40} < 7j. 

Then we define the cylinder 

(2.10) C = { (z/2, 0) + (M, - /) : | |w| | ^ 8, f G [0, S] }. 

Now the nearest point theorem of Lau [12] states that dom TTE contains a dense 
G8 subset of X X R. In particular, int C ¥= 0, so C Pi dom 7r£ is dense in C. 
Consider the following two mutually exclusive statements about these points: 
either 

(a) for all (y, v) G C Pi dom 77̂  one has (x, r) G 7r£(y, V) =̂> r = v; or 
(b) there exists (_y, v) G C n dom TTE such that r > v for some (x, r) G 

^(.V» v)« We will show that (a) is impossible and deduce the desired results 
from (b). 

An important ingredient in our analysis of (a) is the function 

d(t) : = dE(z/2, - t \ t G [0, 5]. 

Note that d is Lipschitz of rank 1 on [0, S], and obeys d(0) = 1/2. Let us prove 
that d(t) > 1/2 for t G (0, 8]. Indeed, if this were not the case then there would 
be some fixed t G (0, 8] for which d(t) ^ 1/2. In particular, there would be a 
sequence (xi9 rz) G E for which 

|| (*.,/•,.) - (z/2, - O i l <d(t) + l/i Vi. 

Note, however, that || (xz, rt) - (z, - f ) II = 1 Vz by (2.8). Thus (xi9 rz) -> 
(0, —/) by Lemma 2.3, and this contradicts the lower semicontinuity of V. 
Thus d(t) > 1/2 for all t G (0, 8], as claimed. 

Now suppose (a) holds. Then fix any s G [0, 8] and consider any sequence 
(yh —s,) in C Pi dom irE converging to (z/2, —s). Let (xz, rt) be any se­
quence obeying (xi9 rt) G irE(yi9 —st). Then we have rz = —sz by (a), and 

d(s) = ^ ( z / 2 , - s ) 

= lim ^ U > - ^ ) 
= limllO;,., ~st) - (xz, rt) \\ 

= lim||z/2 - JCZ||. 

Thus d(s) = lim||z/2 — xz||
2; for any t G [0, 8] we deduce 

d(t)2 ^ lim||(z/2, - 0 - (xz, - ^ z ) | | 2 

= lim(| |z/2 - xz||
2 4- \t - st\

2) 

= d(sf + (t - s)2. 
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This implies that the Lipschitz function d obeys 

dit) - dis) _ t - s n _ _ ^ 

f - s d(t) + d ( » 

whence d\t) ^ O V / G [0, S]. This forces d(S) ^ rf(0) = 1/2, a contradiction. So 
alternative (a) is impossible. 

We are forced to accept condition (b), which provides points (y0, v0) ^ 
C n dom 77£ and (x, r) e 7T^(J0, V0) such that r > v0. Setting (y9 — c) = 
(.Vo> vo) ~~ (•*> r ) gives (y, — t) _L is at (JC, r) and € > 0. It follows immed­
iately that r = V(x). Moreover, \\(y0, v0) — (z/2, 0) || = \/28 implies 
|| (JC, K(JC) ) || < TJ by (2.9). Finally, we have 

11(7, - c ) - (z/2, 0) | |2 = \\y - z/2||2 + c2 

^ ( l b - ^ o l l + I bo - ^ / 2 H ) 2 + (v0 " rf 

^ 2(rj2 + <S2) 4- 2(T/2 + 82) 

< 8T)2. 

This shows that (y, —e) e (l/2)(z, 0) + 2\/2i]B and completes the proof. 

REMARK. When X = R" one has dom ITE = Rn. In this special case, the 
cylinder C in the proof above may be replaced by the line segment (z/2, —t) for 
/ G [0, S], and there is no need to consider sequences in the analysis of d(t) 
or the study of (a). The resulting argument rivals Rockafellar's original proof 
for simplicity. 

Theorem 2.4 clearly implies that adding the constraint £• > 0 Vz to the right 
side of (2.7) leaves that identity intact. To recover the usual form of the 
proximal subgradient formula now requires little more than new terminology 
and notation. 

DEFINITION 2.5. Let the lower semicontinuous function V:X —» R U {±00} 
be finite at x. We call the vector f e X* a proximal subgradient of V at x if 
(f, — 1) G PNcpiv(x, V(x) ). The vector J is a limiting proximal subgradient of V 
at x, written f e 3V(x), if Ç = w* — lim ^ for a sequence of proximal 
subgradients ff- of V at points xt —> x for which V(xt) —» F(x). Finally, f w 
a singular limiting proximal subgradient of V at x, written f G B 0 0 ^^ ) , //* 
f == w* — lim X^z /or some sequence of proximal subgradients fz as described 
above together with some sequence À- —» 0 . 

A 

Let us denote by A^pij/C*' ^(•x) ) t n e s e t °f limiting proximal normals to 
epi F whose convex hull is computed on the right side of (2.7). As we have ob­
served earlier, the nonzero elements of Nepiv(x, V(x) ) have two distinct forms. 
Either the limiting proximal normal is (f, — c) for some e > 0, in which case it 
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A A A 

can be written as e(f, — 1) for some f <E dV(x), or else it is (f, 0), in which case 
f e 8°°F(JC) by Theorem 2.4. In either case, we have 

(2.11) fiepiv(x> V(x) ) = N U N°°, where 

N = {€(f, - l ) : c i= 0,£ e 8K(JC) }, 

^V°° = { (L 0):f e â°°F(jc) }. 

In view of the definitions (1.5) and (1.6), we obtain from (2.11) the following 
result. 

THEOREM 2.6 (proximal subgradient formula). Let X be a reflexive Banach 
space whose norm is both Frechet differentiable and locally uniformly convex. 
Let V.X —» R U {zboo} be lower semicontinuous everywhere, and finite-valued 
at x. Then 

dV(x) = CO[8F(JC) + d°°V(x)]. 
A 

Moreover, if co N -lV(x9 V(x) ) happens to be closed, then one has 

dV(x) = co[8F(x) + d°°V(x)l 

d°°V(x) = co d°°V(x). 

PROOF. Apply to (2.11) the geometrical proposition of Rockafellar [15] which 
is presented for arbitrary normed linear spaces in [13, Proposition 4.2]. 
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