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Existence of Positive Solutions for
Nonlinear Noncoercive Hemivariational
Inequalities

Michael E. Filippakis and Nikolaos S. Papageorgiou

Abstract. In this paper we investigate the existence of positive solutions for nonlinear elliptic problems

driven by the p-Laplacian with a nonsmooth potential (hemivariational inequality). Under asymptotic

conditions that make the Euler functional indefinite and incorporate in our framework the asymptot-

ically linear problems, using a variational approach based on nonsmooth critical point theory, we

obtain positive smooth solutions. Our analysis also leads naturally to multiplicity results.

1 Introduction

The aim of this paper is to study the existence of positive solutions for the follow-

ing second order nonlinear elliptic differential equation with nonsmooth potential
(hemivariational inequality):

(1.1)

{
− div

(
‖Dx(z)‖p−2Dx(z)

)
∈ ∂ j(z, x(z)) a.e. on Z

x|∂Z = 0, 1 < p <∞.

}

Here Z ⊆ R
N is a bounded domain with a C2 boundary ∂Z and j(z, x) is a measur-

able potential function which is locally Lipschitz and in general nonsmooth in x ∈ R.

By ∂ j(z, x) we denote the generalized subdifferential of x → j(z, x) (see Section 2).

Using a variational approach based on the nonsmooth critical point theory (see
Gasinski–Papageorgiou [5]), we establish the existence of a positive solution for prob-
lem (1.1) under conditions which make the Euler (energy) functional of the prob-
lem noncoercive. More precisely, we require that the “slopes”

{
u

xp−1 : u ∈ ∂ j(z, x)
}

stay above λ1 > 0 near +∞. Here λ1 > 0 is the principal eigenvalue of the nega-

tive p-Laplacian with Dirichlet boundary conditions, i.e., of (−△p,W
1,p
0 (Z)). Also,

near 0+ we ask that the “slopes”
{ p j(z,x)

xp

}
stay below λ1 > 0. Note that this second

asymptotic condition is in terms of the potential j(z, x), which is in general less re-
strictive than an analogous condition involving its subdifferential. When p = 2, our

framework incorporates the so-called “asymptotically linear problems” (see Amann–
Zehnder [1], Bartsch–Li [3] and Zhou [11]). This situation was extended recently
to problems driven by the p-Laplacian and the question of existence of positive so-
lutions was investigated by several authors. We mention the works of Huang [6],
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Li–Zhou [7] and Fan–Zhao–Huang [4]. In all these papers, the potential function is
smooth in x ∈ R and ∂ j(z, x) = f (z, x) belongs in C(Z×R), is positive on Z×R+ and

also satisfies additional restrictive hypotheses such as that f (z,x)

x
is nondecreasing in

x ≥ 0 for almost all z ∈ Z (see Li–Zhou [7] and Zhou [11]). Our hypotheses here are
weaker, permitting nonuniform nonresonance at +∞ and at 0+; the condition at 0+ is
expressed in terms of the potential and our potential function is nonsmooth in x ∈ R.

Moreover, our work here complements that of Motreanu–Papageorgiou [8], where

asymptotically at +∞ and at 0+, the situation with the “slopes”
{

u
xp−1 : u ∈ ∂ j(z, x)

}

and
{ p j(z,x)

xp

}
is reversed. This makes the Euler functional of Motreanu–Papagergiou

[8] coercive, while in our case it is indefinite. Finally we should mention that prob-
lems like (1.1) arise in mechanics and engineering when one wants to consider more

realistic laws of nonmonotone and multivalued nature, which means that the associ-
ated energy functional is nonconvex and nonsmooth. For concrete applications we
refer to Naniewicz–Panagiotopoulos [9].

2 Mathematical Background

Let X be a Banach space, X∗ its topological dual. By 〈 · , · 〉 we denote the duality
brackets for the pair (X,X∗). Given a locally Lipschitz function ϕ : X → R, the
generalized directional derivative of ϕ at x ∈ X in the direction h ∈ X, is defined by

ϕ0(x; h)
d f
= lim sup

x ′→x
λ↓0

ϕ(x ′ + λh) − ϕ(x ′)

λ
.

The function h → ϕ0(x; h) is sublinear, continuous and so it is the support func-
tion of a nonempty, w∗-compact, convex set ∂ϕ(x) ⊆ X∗ defined by

∂ϕ(x)
d f
= {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x; h) for all h ∈ X}.

The multifunction x → ∂ϕ(x) is known as the generalized (or Clarke) subdiffer-

ential of ϕ. If ϕ is continuous convex (hence locally Lipschitz), then the generalized
subdifferential and the subdifferential in the sense of convex analysis coincide. Also
if ϕ ∈ C1(X) (hence it is locally Lipschitz), then ∂ϕ = {ϕ ′(x)}.

A point x ∈ X is a critical point of the locally Lipschitz function ϕ : X → R, if
0 ∈ ∂ϕ(x). A local extremum of ϕ is a critical point. In the present nonsmooth
setting, the well-known Palais–Smale condition (PS-condition, for short) takes the
following form:

A locally Lipschitz function ϕ : X → R satisfies the nonsmooth PS-condition
if every sequence {xn}n≥1 ⊆ X satisfying |ϕ(xn)| ≤ M1 for some M1 > 0 and
all n ≥ 1 and also satisfying m(xn) = inf [‖x∗‖ : x∗ ∈ ∂ϕ(xn)] → 0 as n → ∞,
has a strongly convergent subsequence.

The next theorem is a nonsmooth variant of the “mountain pass theorem”.
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Theorem 2.1 If X is a reflexive Banach space,ϕ : X → R is locally Lipschitz; it satisfies

the nonsmooth PS-condition and there exist x0, x1 ∈ X and r > 0 such that

max {ϕ(x0), ϕ(x1)} ≤ mr := inf{ϕ(x) : ‖x − x0‖ = r} and ‖x1 − x0‖ > r,

then there exists x̂ ∈ X which is a critical point of ϕ such that ϕ(x̂) ≥ mr .

Consider the following nonlinear eigenvalue problem

(2.1)

{
− div(‖Dx(z)‖p−2Dx(z)) = λ|x(z)|p−2x(z) a.e on Z

x|∂Z = 0, 1 < p <∞, λ ∈ R.

}

The smallest λ ∈ R for which (2.1) has a notrivial solution, is the first eigenvalue of

the negative p-Laplacian with Dirichlet boundary conditions, i.e., (−△p,W
1,p
0 (Z)).

It is positive, isolated and simple, i.e., the corresponding eigenspace is one-dimen-
sional. There is a variational characterization of λ1 > 0, namely

(2.2) λ1 = min

[
‖Dx‖

p
p

‖x‖
p
p

: x ∈ W
1,p
0 (Z), x 6= 0

]
.

The minimum is attained at the normalized eigenfunction u1 corresponding to
λ1 > 0, i.e., ‖u1‖p = 1. Moreover, u1 ∈ C1

0(Z) and u1(z) > 0 for all z ∈ Z. For more
details on the subjects mentioned in this section, see Gasinski–Papageorgiou [5].

3 Positive Solutions

Our hypotheses on the nonsmooth potential are the following:

H( j) j : Z × R → R is a function such that j(z, 0) = 0 a.e. on Z and

(i) for all x ∈ R, z → j(z, x) is measurable;
(ii) for almost all z ∈ Z, x → j(z, x) is locally Lipschitz;
(iii) for almost all z ∈ Z, all x ∈ R and all u ∈ ∂ j(z, x), we have

|u| ≤ α(z) + c|x|p−1 with α ∈ L∞(Z)+, c > 0;

(iv) there exists θ ∈ L∞(Z)+, θ(z) ≥ λ1 a.e. on Z with strict inequality
on a set of positive measure, such that lim infx→+∞

u
xp−1 ≥ θ(z)

uniformly for almost all z ∈ Z and all u ∈ ∂ j(z, x);
(v) there exists η ∈ L∞(Z)+, η(z) ≤ λ1 a.e. on Z with strict inequality

on a set of positive measure, such that lim supx→0+

p j(z,x)

xp ≤ η(z)
uniformly for almost all z ∈ Z.

We consider the Lipschitz continuous truncation function τ : R → R defined by

τ (x) =

{
0 if x ≤ 0,

x if x > 0.

We set j1(z, x) = j(z, τ (x)) which is still a measurable integrand, locally Lipschitz in

x ∈ R and introduce the Euler functional ϕ1 : W
1,p
0 (Z) → R defined by

ϕ1(x) =

1

p
‖Dx‖

p
p −

∫

Z

j1(z, x(z)) dz, x ∈ W
1,p
0 (Z).

We know that ϕ1 is locally Lipschitz (see Gasinski–Papageorgiou [5, p. 59]).
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Proposition 3.1 If hypotheses H( j) hold, then ϕ1 satisfies the nonsmooth PS-con-

dition.

Proof Let {xn}n≥1 ⊆ W
1,p
0 (Z) be a sequence such that

|ϕ1(xn)| ≤ M1 for some M1 > 0, all n ≥ 1 and m(xn) → 0 as n → ∞.

Since ∂ϕ1(xn) ⊆ W−1,q(Z) ( 1
p

+ 1
q

= 1) is weakly compact and the norm func-

tional in a Banach space is weakly lower semicontinuous, by the Weierstrass theorem

we can find x∗n ∈ ∂ϕ1(xn), n ≥ 1, such that ‖x∗n‖ = m(xn).We have x∗n = A(xn)−un,

with un ∈ Lq(Z), un(z) ∈ ∂ j1(z, xn(z)) a.e. on Z and A : W
1,p
0 (Z) → W−1,q(Z) is

defined by

〈A(x), y〉 =

∫

Z

‖Dx‖p−2(Dx,Dy)RN dz for all x, y ∈ W
1,p
0 (Z).

Hereafter, we denote the duality brackets for the pair (W
1,p
0 (Z), W−1,q(Z)) by

〈 · , · 〉. It is easy to check that A is monotone demicontinuous, hence maximal mono-
tone [5, p. 74].

We claim that {xn}n≥1 ⊆ W
1,p
0 (Z) is bounded. Suppose that this is not true. By

passing to a suitable subsequence if necessary, we may assume that ‖xn‖ → ∞. Set
yn =

xn

‖xn‖
. We can say that

yn
w
→ y in W

1,p
0 (Z) and yn → y in Lp(Z).

Because of hypothesis H( j)(iii) we have

|un(z)|

‖xn‖p−1
≤

α(z)

‖xn‖p−1
+ c|yn(z)|p−1 a.e. on Z(3.1)

⇒

{
un(·)

‖xn‖p−1

}
⊆ Lq(Z) is bounded.

So we may assume that un

‖xn‖p−1

w
→ h in Lq(Z). Given ε > 0, we consider the sets

Cε,n = {z ∈ Z : xn(z) > 0,
un(z)

xn(z)p−1
≥ θ(z) − ε}, n ≥ 1.

Note that for almost all z ∈ {y > 0}, xn(z) → +∞, and so because of hypothesis
H( j)(iv), we have χCε,n

(z) → 1 a.e. on {y > 0}. Then

∥∥∥ (1 − χCε,n
)

un

‖xn‖p−1

∥∥∥
Lq({y>0})

→ 0,

and so
χCε,n

un

‖xn‖p−1

w
→ h in Lq({y > 0}) as n → ∞.
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On the other hand, from the nonsmooth chain rule [5, p. 55], we have

(3.2) ∂ j1(z, x) ⊆






{0} if x < 0,

conv{η∂ j(z, 0) : η ∈ [0, 1]} if x = 0,

∂ j(z, x) if x > 0.

Then from (3.1) and (3.2) it follows that h(z) = 0 a.e. on {y ≤ 0}. We have

χCε,n
(z)

un(z)

‖xn‖p−1
= χCε,n

(z)
un(z)

xn(z)p−1
yn(z)p−1

≥ χCε,n
(z)(θ(z) − ε)yn(z)p−1 a.e. on Z.

Passing to the limit as n → ∞, using Mazur’s lemma and letting ε ↓ 0, we obtain

h(z) ≥ θ(z)y+(z)p−1 a.e. on Z

⇒ h(z) = g(z)y+(z)p−1 with g(z) ≥ θ(z) a.e. on Z,

(since h(z) ≤ cy+(z)p−1 a.e.).

From the choice of the sequence {xn}n≥1 ⊆ W
1,p
0 (Z), we have

∣∣ 〈A(xn), yn − y〉 −

∫

Z

un(yn − y) dz
∣∣ ≤ εn‖yn − y‖ with εn ↓ 0.

Dividing by ‖xn‖
p−1, we obtain

∣∣ 〈A(yn), yn − y〉 −

∫

Z

un

‖xn‖p−1
(yn − y) dz

∣∣ ≤
εn

‖xn‖p−1
‖yn − y‖.

Evidently,
∫

Z
un

‖xn‖p−1 (yn − y)dz → 0. So we obtain limn→∞〈A(yn), yn − y〉 = 0.

But A being maximal monotone, it is generalized pseudomonotone [5, p. 84], and so

〈A(yn), yn〉 → 〈A(y), y〉, hence ‖Dyn‖p → ‖Dy‖p. Since Dyn
w
→ Dy in Lp(Z,R

N),
and Lp(Z,R

N), being uniformly convex, has the Kadec–Klee property, we infer that

Dyn → Dy in Lp(Z,R
N), hence yn → y in W

1,p
0 (Z). Recall that

∣∣ 〈A(yn), v〉 −

∫

Z

un

‖x‖p−1
v dz

∣∣ ≤ εn‖v‖ for all v ∈ W
1,p
0 (Z).

In the limit as n → ∞, we obtain

(3.3) 〈A(y), v〉 =

∫

Z

hv dz =

∫

Z

g(y+)pv dz for all v ∈ W
1,p
0 (Z).

Recalling that Dy+(z) = 0 a.e on {y ≤ 0}, from (3.3) we infer that

(3.4) − div(‖Dy+(z)‖p−2Dy+(z)) = g(z)(y+(z))p−1 a.e. on Z, y+|∂Z = 0.
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From the strict monotonicity of the principal eigenvalue λ̂1(g) of a weighted eigen-

value problem on the weight g ∈ L∞(Z), we have λ̂1(g) < λ̂1(λ1) = 1. So from (3.4)

it follows that if y+ 6= 0, then y+ ∈ W
1,p
0 (Z) cannot be the principal eigenfunction

of the weighted eigenvalue problem with weight g, and so y+ must change sign [2], a

contradiction. Therefore y+ ≡ 0, and so y(z) ≤ 0 a.e. on Z. Then since

∣∣∣ 〈A(yn, yn〉 −

∫

Z

un

‖xn‖p−1
yn dz

∣∣∣ ≤ ε ′n with ε ′n ↓ 0

and ∫

Z

un

‖xn‖p−1
yn dz → 0 as n → ∞ (see (3.2))

we obtain ‖Dyn‖p → 0, i.e., yn → 0 in W
1,p
0 (Z), a contradiction to the fact that

‖yn‖ = 1, n ≥ 1. This implies that {xn}n≥1 ⊆ W
1,p
0 (Z) is bounded. So we may

assume that xn
w
→ x in W

1,p
0 (Z) and xn → x in Lp(Z). Because

∫
Z

un(xn − x) dz → 0
(see hypothesis H(j)(iii)), we have 〈A(xn), xn − x〉 → 0, and so as before from the

generalized pseudomonotonicity of A and the Kadec–Klee property of Lp(Z,R
N), we

conclude that xn → x in W
1,p
0 (Z).

In order to show that ϕ1 satisfies the mountain pass geometry, we need the fol-
lowing lemma which underlines the significance of the nonuniform nonresonance
condition H( j)(v).

Lemma 3.2 If η ∈ L∞(Z)+ satisfies η(z) ≤ λ1 a.e. on Z with strict inequality on a

set of positive measure, then there exists ξ > 0 such that

ψ(x) = ‖Dx‖
p
p −

∫

Z

η(z)|x(z)|p dz ≥ ξ‖Dx‖
p
p

for all x ∈ W
1,p
0 (Z).

Proof From (2.2) we see that ψ ≥ 0. Suppose that the lemma is not true. Exploit-
ing the p-homogeneity of ψ, we can find {xn}n≥1 ⊆ W

1,p
0 (Z) such that ψ(xn) ↓ 0

and ‖Dxn‖p = 1. Because of Poincaré’s inequality, we may assume that xn
w
→ x in

W
1,p
0 (Z) and xn → x in Lp(Z). Clearly ψ is w-lower semicontinuous on W

1,p
0 (Z). So

ψ(x) ≤ 0, hence

(3.5)

‖Dx‖
p
p ≤

∫

Z

η(z)|x(z)|p dz ≤ λ1‖x‖
p
p ⇒ x = 0 or x = ±u1 (see (2.2)).

If x = 0, then ‖Dxn‖p → 0, a contradiction to the fact that ‖Dxn‖p = 1. So

x = ±u1. Then |x(z)| > 0 for all z ∈ Z. So from the first inequality in (3.5) and the
hypothesis on η we infer that ‖Dx‖

p
p < λ1‖x‖

p
p, a contradiction to (2.2).

Using this lemma, we prove the following proposition.
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Proposition 3.3 If hypotheses H(j) hold, then there exists ρ > 0 such that ϕ1(x) ≥

β > 0 for all x ∈ W
1,p
0 (Z) with ‖x‖ = ρ.

Proof By virtue of hypothesis H(j)(v), given ε > 0, we can find δ = δ(ε) > 0 such
that

(3.6) j1(z, x) = j(z, x) ≤
1

p
(η(z) + ε)xp for almost all z ∈ Z and all x ∈ (0, δ].

On the other hand, because of hypothesis H(j)(iii) and the mean value problem

for locally Lipschitz functions [5, p. 53], we have

(3.7) j1(z, x) ≤ c1xτ for almost all z ∈ Z, all x ≥ δ and with c1 > 0, τ > p.

Since j(z, 0) = 0 a.e. on Z, from (3.6) and (3.7) we infer that

(3.8) j1(z, x) ≤
1

p
(η(z) + ε)|x|p + c1|x|

τ for almost all z ∈ Z and all x ∈ R.

Therefore for all x ∈ W
1,p
0 (Z), we have

ϕ1(x) ≥
1

p
‖Dx‖

p
p −

1

p

∫

Z

η(z)|x(z)|p dz −
ε

p
‖x‖

p
p − c1‖x‖τ (see (3.8))

≥
1

p

(
ξ −

ε

λ1

)
‖Dx‖

p
p − c1‖x‖τ (see Lemma 3.2 and (2.2)).

Choosing ε < λ1ξ and using Poincaré’s inequality, we obtain

ϕ1(x) ≥ c2‖x‖p − c1‖x‖τ for some c2 > 0, all x ∈ W
1,p
0 (Z).

Since τ > p, we can find ρ > 0 small such that ϕ1(x) ≥ β > 0 for all x ∈ W
1,p
0 (Z)

with ‖x‖ = ρ.

Proposition 3.4 If hypotheses H(j) hold, then ϕ(tu1) → −∞ as t → +∞.

Proof By virtue of hypotheses H(j)(iii) and (iv), given ε > 0, we can find cε > 0
such that

(3.9) j1(z, x) ≥
1

p
(θ(z) − ε)xp − cε for almost all z ∈ Z, all x ≥ 0.

Then for t > 0 we have

ϕ1(tu1) ≤
t p

p

∫

Z

(λ1 − θ(z))u1(z)p dz +
εt p

p
‖u1‖

p
p + cε|Z|N
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(see (3.9) and recall that ‖Du1‖
p
p = λ1‖u1‖

p
p). Here |Z|N denotes the Lebesgue mea-

sure of Z ⊆ R
N. Note that

∫

Z

(λ1 − θ(z))u1(z)p dz = γ < 0 and ‖u1‖p = 1.

Soϕ1(tu1) ≤ t p

p
(γ+ε)+cε|Z|N . Choosing ε < −γ, we conclude that ϕ1(tu1) → −∞

as t → +∞.

Now we are ready for the theorem on the existence of positive solutions.

Theorem 3.5 If hypotheses H(j) hold, then problem (1.1) has a solution x ∈ C1
0(Z),

x 6= 0 and x(z) ≥ 0 a.e. on Z.

Proof Propositions 3.1, 3.3 and 3.4 permit the application of Theorem 2.1, which

gives x ∈ W
1,p
0 (Z) such that

0 ∈ ∂ϕ1(x) with ϕ1(0) = 0 < ϕ1(x).

Evidently x 6= 0, and from the inclusion it follows that

A(x) = u with u ∈ Lq(Z), u(z) ∈ ∂ j1(z, x(z)) a.e. on Z.

Using −x− ∈ W
1,p
0 (Z) as a test function, we obtain ‖Dx−‖

p
p = 0 (see (3.2)).

Hence x− = 0 and so x(z) ≥ 0 a.e. on Z. Finally from nonlinear regularity theory

[5, pp. 115–116], we have that x ∈ C1
0(Z). So x ∈ C1

0(Z) is a solution of (1.1) (see
(3.2)).

With a mild additional condition on j(z, x) we can have a strictly positive solution.

Theorem 3.6 If hypotheses H(j) hold and for almost all z ∈ Z, all x ≥ 0 and all

u ∈ ∂ j(z, x), −c0xp ≤ u with c0 > 0, then problem (1.1) has a solution x ∈ C1
0(Z)

with x(z) > 0 for all z ∈ Z.

Proof Let x ∈ C1
0(Z), x 6= 0, x ≥ 0 be the solution obtained in Theorem 3.5. Using

the nonlinear strict maximum principle of Vazquez [10] (see also [5, p. 117]), we
obtain x(z) > 0 for all z ∈ Z.

Remark 3.7 If ∂ j(z, x) ⊆ R+ for almost all z ∈ Z and all x ≥ 0, then the additional
condition of Theorem 3.6 it satisfied. Actually this is the situation in the papers

mentioned in the introduction.

It is clear from our analysis that if the asymptotic conditions in H(j)(iv) and (v)
are symmetric for ±∞ and for 0±, then we can have a multiplicity result for problem
(1.1). So let H(j) ′ be the hypotheses H(j) with the limits in H(j)(iv) and in H(j)(v)
replaced by
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(iv) lim inf|x|→∞
u

|x|p−2x
≥ θ(z) uniformly for almost all z ∈ Z and all u ∈ ∂ j(z, x),

(v) lim supx→0 e
p j(z,x)

|x|p ≤ η(z) uniformly for almost all z ∈ Z,

respectively.

Theorem 3.8 If hypotheses H(j) ′ hold, then problem (1.1) has at least two nontrivial

solutions x0, x1 ∈ C1
0(Z) such that x0(z) ≤ 0 ≤ x1(z) for all z ∈ Z.

Theorem 3.9 If hypotheses H(j) ′ hold and for almost all z ∈ Z, all x ∈ R and all u ∈
∂ j(z, x) we have ux ≥ 0, then problem (1.1) has at least two solutions x0, x1 ∈ C1

0(Z)

such that x0(z) < 0 < x1(z) for all z ∈ Z.
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[2] A. Anane, Simplicité et isolation de la premiere valeur propre du p-Laplacien avec poids. C. R. Acad.
Sci. Paris Sér. I Math. 305(1987), no. 16, 725–728.

[3] T. Bartsch amd S. Li, Critical point theory for asymptotically quadratic functionals and applications to
problems with resonance. Nonlin. Anal. 28(1997), no. 3, 419–441.

[4] X. L. Fan, Y. Z. Zhao, and G. F. Huang, Existence of solutions for the p-Laplacian with crossing
nonlinearity. Discr. Cont. Dyn. Systems 8(2002), no. 4, 1019–1024.

[5] L. Gasinski and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary
Value Problems. Series in Mathematical Analysis and Applications 8, Chapman and Hall/CRC,
Boca Raton, FL, 2005.

[6] Y. S. Huang, Positive solutions of quasilinear elliptic equations. Topol. Methods Nonlin. Anal.
12(1998), no. 1, 91–107.

[7] G. Li and H.-S. Zhou, Asymptotically linear Dirichlet problem for the p-Laplacian. Nonlinear Anal.
43(2001), no. 8, 1043–1055.

[8] D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear elliptic equations at resonance
with a nonsmooth potential. Nonlinear Anal. 56(2004), no. 8, 1211–1234.

[9] Z. Naniewicz and P. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and
Applications. Monographs and Textbooks in Pure and Applied Mathematics 188, Marcel Dekker,
New York, 1995.

[10] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations. Appl. Math.
Optim. 12(1984), no. 3, 191–202.

[11] H.-S. Zhou, Existence of asymptotically linear Dirichlet problem. Nonlin. Anal. 44(2001), no. 7,
909–918.

Department of Mathematics

National Technical University

Zografou Campus

Athens 15780

Greece

e-mail: mfilip@math.ntua.gr

npapg@math.ntua.gr

https://doi.org/10.4153/CMB-2007-034-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-034-6

