
Bull. Aust. Math. Soc. 85 (2012), 371–379
doi:10.1017/S0004972711003327

GLOBAL WELL-POSEDNESS FOR THE GENERALISED
FOURTH-ORDER SCHRÖDINGER EQUATION

YUZHAO WANG

(Received 2 June 2011)

Abstract

We study the Cauchy problem for the generalised fourth-order Schrödinger equation

i∂tu + ∂4
xu + ∂x(|u|2ku) = 0, u(0) = u0,

for data u0 in critical Sobolev spaces Ḣ1/2−3/2k. With small initial data we obtain global well-posedness
results. Our proof relies heavily on the method developed by Kenig et al. [‘Well-posedness and scattering
results for the generalised Korteweg–de Vries equation via the contraction principle’, Commun. Pure
Appl. Math. 46 (1993), 527–620].
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1. Introduction

This paper is mainly concerned with the global well-posedness of the Cauchy problem
for the generalised fourth-order Schrödinger equationi∂tu + ∂4

xu + ∂x(|u|2ku) = 0, k ≥ 2, (x, t) ∈ R × R,

u(x, 0) = u0(x),
(1.1)

which occurs in the study of deep water wave dynamics [2], solitary waves [7], vortex
filaments [3], and so on. The well-posedness of (1.1) has been widely studied; see
[4–6] and references therein.

We show that the initial value problem (1.1) is globally well posed for small data
in the critical space Ḣsk with sk = 1/2 − 3/2k, and this allows us to obtain nonlinear
scattering in a neighbourhood of the origin in Ḣsk . This global result is sharp, since
Ḣsk is the critical space corresponding to (1.1) in the sense that if u(x, t) solves (1.1)
with initial data u0, then

uλ(x, t) = λ−3/2ku
( x
λ
,

t
λ4

)
, λ > 0,
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solves (1.1) with initial data

u0,λ(x) = λ−3/2ku0

( x
λ

)
, λ > 0,

and such scaling preserves the Ḣsk norm, that is, ‖u0,λ(x)‖Ḣsk = ‖u0‖Ḣsk .
It is interesting to compare our results with those obtained in [1] for the Schrödinger

equation and in [8] for the generalised Korteweg–de Vries (KdV) equation. In [1],
Cazenave and Weissler showed that∂tu = i(∂2

xu + |u|ku), (x, t) ∈ R × R,

u(x, 0) = u0(x),

is globally well posed in u0 ∈ Ḣsk with sk = 1/2 − 2/k, k ≥ 4, for sufficiently small data.
In [8], Kenig, Ponce and Vega showed that∂tu + ∂3

xu + ukux = 0, (x, t) ∈ R × R,

u(x, 0) = u0(x),

is globally well posed in Ḣsk with sk = 1/2 − 2/k, k ≥ 4, for sufficiently small data.
Both of these are global well-posedness results in critical spaces; we generalise them
to the fourth-order Schrödinger equation.

Our proof relies heavily on the methods developed by Kenig et al. [8], which were
concerned with the generalised KdV equation. We develop some linear estimates for
the linear evolution group W(t) by interpolating between the sharp Kato smoothing
effect and the maximal function estimate, and employ the Christ–Kiselev lemma to get
the inhomogeneous estimates. Then we prove the nonlinear estimates by the Leibniz
rule for fractional derivatives [8]. Finally, we get the main theorem by the contraction
mapping principle.

1.1. Notation. For f ∈ S′, we denote by f̂ or F ( f ) the Fourier transform of f .
We denote by Fx the Fourier transform on the spatial variable. We write ω(ξ) = ξ4,
which is the dispersion relation associated with (1.1). For u0 ∈ S

′(R), the linear group
W(t)u0 = eit∂4

x u0 is defined by

Fx(W(t)φ)(ξ) = eiξ4tφ̂(ξ),

which is the dispersion semigroup associated with (1.1), and it is easy to see that
‖W(t)φ‖L2

x
= ‖φ‖L2

x
.

Let 1 ≤ p, q ≤∞. Define

‖ f ‖Lp
x Lq

t
=

(∫
R

(∫
R

| f (x, t)|q dt
)p/q

dx
)1/p

and

‖ f ‖Lq
t Lp

x
=

(∫
R

(∫
R

| f (x, t)|p dx
)q/p

dt
)1/q

.
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For α ∈ R, write

Dα f (x, t) = cα

∫
R

eixξ |ξ|αFx( f )(ξ, t) dξ.

The norm in the Sobolev space Ḣs = D−sL2(R) will be denoted by ‖ · ‖Ḣs , that is,
‖v0‖Ḣs = ‖Dsv0‖2.

1.2. Main results. In this section, we state our main results concerning (1.1) and
make some further comments.

T 1.1 (Main theorem). Let k ≥ 2 and sk = (k − 3)/2k. Then there exists δk > 0
such that, for u0 ∈ Ḣsk with

‖Dsk u0‖2 < δk,

there exists a unique strong solution u of (2.1) satisfying

u ∈C(R; Ḣsk (R)), (1.2)

and
‖Dsk u‖L∞t L2

x
+ ‖Dsk+1/2u‖L7

xL14/3
t

+ ‖u‖L14k/5
x L7k/2

t
<∞. (1.3)

Moreover, the flow map u0→ u(t) from {u0 ∈ Ḣsk (R) : ‖u0‖Ḣsk (R)<δk
} into the class

defined by (1.2) and (1.3) is Lipschitz.

The proof will be given in the final section.

R 1.2. The sharpness of this result can be implied by the scaling argument since
Ḣsk is the critical space under scaling.

R 1.3. By a standard argument (see [8]), we also can prove the small-data global
well-posedness in Hs with s ≥ sk, and large-data local well-posedness in Ḣsk or Hs

(s ≥ sk).

2. Main linear estimates

In this section we shall deduce all the linear estimates, which are the main tools in
the proof of the main theorem stated in the previous section.

2.1. Homogeneous cases. We recall that W(t) denotes the semigroup associated
with (1.1), which means that v(x, t) = W(t)v0 solves the linear problem associated with
(1.1), that is, i∂tv + ∂4

xv = 0, (x, t) ∈ R × R,

v(x, 0) = v0(x),
(2.1)

First we shall need sharp versions of the smoothing effect of Kato type.
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L 2.1 (Kato smoothing effect). If u0 ∈ L2, then

sup
x

(∫
R

|D3/2W(t)u0(x)|2 dt
)1/2

≤C‖u0‖2, (2.2)

where D3/2 is defined by the Fourier multiplier |ξ|3/2.

P. The estimate (2.2) was given in [9, Theorem 4.1], where it was also shown that
this estimate is sharp. Thus we omit the details here. �

Now we turn to the maximal function estimate.

L 2.2. If u0 ∈ Ḣ1/4, then(∫
R

(sup
t
|W(t)u0(x)|)4 dx

)1/4

≤ c‖u0‖Ḣ1/4 . (2.3)

P. We see that (2.3) follows from [9, Theorem 2.5]. �

Before we interpolate between (2.2) and (2.3), we need the following Sobolev
embedding.

L 2.3. Let g ∈ S(R2) and k ≥ 2. Then

‖g(x, t)‖L14k/5
x L7k/2

t
≤ c‖D1/4−1/2kg‖L28k/(7k−4)

x L7k/2
t
. (2.4)

P. We can assume that k > 2, since the case k = 2 is trivial. Fix t and use fractional
integration in x to obtain the representation

g(x, t) = c
∫
R

1
|x − y|1−αk

Dαk
x g(y, t) dy,

where αk = 1/4 − 1/2k. By Minkowski’s integral inequality,

‖g(x, t)‖L7k/2
t
≤ c

∫
R

1
|x − y|1−αk

‖Dαk
x g(y, t)‖L7k/2

t
dy.

Since
5

14k
=

7k − 4
28k

−

(1
4
−

1
2k

)
=

7k − 4
28k

− αk,

then by fractional integration we obtain the desired result. �

Now we give some new estimates implied by (2.2) and (2.3).

L 2.4. (i) If u0 ∈ L2, then

‖D1/2W(t)u0‖L7
xL14/3

t
≤ c‖u0‖L2 . (2.5)

(ii) If u0 ∈ Ḣ1/4−1/k, then

‖W(t)u0‖L28k/(7k−4)
x L7k/2

t
≤ c‖D1/4−1/ku0‖L2 . (2.6)
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(iii) If u0 ∈ Ḣ1/2−3/2k, then

‖W(t)u0‖L14k/5
x L7k/2

t
≤ c‖D1/2−3/2ku0‖L2 . (2.7)

P. Part (i) follows from interpolating between (2.2) and (2.3), since

1
7

=
θ

∞
+

1 − θ
4

,
3
14

=
θ

2
+

1 − θ
∞

,
1
2

=
3θ
2
−

1 − θ
4

with θ = 3/7.
For (ii), since

7k − 4
28k

=
θ

∞
+

1 − θ
4

,
2
7k

=
θ

2
+

1 − θ
∞

,
1
4
−

1
k

= −
3θ
2

+
1 − θ

4
,

with θ = 4/7k, the result follows from a similar interpolation argument.
Part (iii) follows directly from (2.4) and (2.6). �

2.2. Inhomogeneous cases. The main tool in this section is the following Christ–
Kiselev lemma given by Molinet and Ribaud [10].

L 2.5. Let T be a linear operator defined on space-time function f (x, t) by

T f (t) =

∫
R

K(t, t′) f (t′) dt′,

such that
‖T f ‖Lp1

x L
q1
t
≤C‖ f ‖Lp2

x L
q2
t
,

where min(p1, q1) > max(p2, q2). Then∥∥∥∥∥∫ t

0
K(t, t′) f (t′) dt′

∥∥∥∥∥
L

p1
x L

q1
t

≤C‖ f ‖Lp2
x L

q2
t
.

Now we begin to state our main estimates in this section.

L 2.6. If g ∈ L7/6
x L14/11

t , then∥∥∥∥∥∂x

∫ t

0
W(t − s)g(s) ds

∥∥∥∥∥
L7

xL14/3
t

≤ c‖g‖L7/6
x L14/11

t
,∥∥∥∥∥D1/2

x

∫ t

0
W(t − s)g(s) ds

∥∥∥∥∥
L∞t L2

x

≤ c‖g‖L7/6
x L14/11

t
,∥∥∥∥∥D3/2k

∫ t

0
W(t − s)g(s) ds

∥∥∥∥∥
L(14k)/5

x L(7k)/2
t

≤ c‖g‖L7/6
x L14/11

t
.

P. (i) The dual of (2.5) is∥∥∥∥∥D1/2
∫
R

W(−s)g(s) ds
∥∥∥∥∥

L2
x

≤ c‖g‖L7/6
x L14/11

t
, (2.8)
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so by (2.5), ∥∥∥∥∥∂x

∫
R

W(t − s)g(s) ds
∥∥∥∥∥

L7
xL14/3

t

≤ c
∥∥∥∥∥D1/2

∫
R

W(−s)g(s) ds
∥∥∥∥∥

L2
x

,

which can be bounded by
c‖g‖L7/6

x L14/11
t

in view of (2.8). Thus we can complete the proof by the Christ–Kiselev lemma 2.5.
(ii) In view of the unitary property of the semigroup W(t), it is easy to see that∥∥∥∥∥D1/2

∫
R

W(t − s)g(s) ds
∥∥∥∥∥

L∞t L2
x

≤

∥∥∥∥∥D1/2
∫
R

W(−s)g(s) ds
∥∥∥∥∥

L2
x

.

Then the rest of the proof is the same as the previous one.
(iii) By (2.7) and (2.8) we have∥∥∥∥∥D3/2k

∫
R

W(t − s)g(s) ds
∥∥∥∥∥

L14k/5
x L7k/2

t

≤ c
∥∥∥∥∥D1/2

∫
R

W(−s)g(s) ds
∥∥∥∥∥

L2
x

≤ c‖g‖L7/6
x L14/11

t
.

Then we complete the proof by applying Lemma 2.5. �

3. Nonlinear estimates

We shall need the following nonlinear estimate in the next section.

L 3.1. If sk = 1/2 − 3/2k with k ≥ 2, then

‖Dsk+1/2
x (|v|2kv)‖L7/6

x L14/11
t
≤ c‖Dsk+1/2

x v‖L7
xL14/3

t
‖v‖2k

L14k/5
x L7k/2

t
. (3.1)

The proof of this nonlinear estimate is based on the following chain rule and Leibniz
rule for fractional derivatives (see [9]).

L 3.2 (Chain rule for fractional derivatives). Let α ∈ (0, 1) and p, q, p1 ∈ (1,∞),
q1 ∈ (1,∞], such that

1
p

=
1
p1

+
1
p2

and
1
q

=
1
q1

+
1
q2
.

Then
‖DαF( f )‖Lp

x Lq
T
≤ c‖F′( f )‖Lp1

x L
q1
T
‖Dα f ‖Lp2

x L
q2
T
.

L 3.3 (Leibniz rule for fractional derivatives). Let α ∈ (0, 1) and let
p, q, p1, q1, p2, q2 ∈ (1,∞) be such that

1
p

=
1
p1

+
1
p2

and
1
q

=
1
q1

+
1
q2
.

Then
‖Dα( f g) − f Dαg‖Lp

x Lq
T
≤ c‖Dα f ‖Lp1

x L
q1
T
‖g‖Lp2

x L
q2
T
.
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P  L 3.1. Let s = sk − 1/2. We first apply Lemma 3.3 with f = vk+1 and
g = v̄k, to give

‖Ds(|v|2kv) − vk+1Ds(v̄k)‖L7/6
x L14/11

t
≤ c‖Ds(vk+1)‖L2

xL2
t
‖v̄k‖L14/5

x L7/2
t
.

Then by Lemma 3.2, the above can be bounded by

c‖Dsv‖L7
xL14/3

t
‖vk‖L14/5

x L7/2
t
‖v̄k‖L14/5

x L7/2
t
≤ c‖Dsk+1/2

x v‖L7
xL14/3

t
‖v‖2k

L14k/5
x L7k/2

t
.

In order to complete the proof, we need to bound ‖vk+1Ds(v̄k)‖L7/6
x L14/11

t
. By Hölder’s

inequality, it can be bounded by

c‖vk+1‖L14k/(5(k+1))
x L7k/(2(k+1))

t
‖Ds(v̄k)‖L14k/(7k−5)

x L14k/(7k−4)
t

.

Then by Lemma 3.2, the above can be bounded by

c‖vk+1‖L14k/(5(k+1))
x L7k/(2(k+1))

t
‖Dsv̄‖L7

xL14/3
t
‖vk−1‖L14k/(5(k−1))

x L7k/(2(k−1))

≤ c‖Dsk+1/2
x v‖L7

xL14/3
t
‖v‖2k

L14k/5
x L7k/2

t
.

Thus we get the nonlinear estimate (3.1). �

4. Proof of main theorem

In this section we shall prove our main result, that is, that the initial value problem
(1.1) is globally well posed in a neighbourhood of the origin in Ḣsk with k ≥ 2.

P  T 1.1. For ω : R2→ R define

η1(ω) = ‖Dsk
x ω‖L∞t L2

x
,

η2(ω) = ‖Dsk+1/2
x ω‖L7

xL14/3
t
,

η3(ω) = ‖ω‖L14k/5
x L7k/2

t
,

Ω(ω) =

3∑
i=1

ηi(ω),

and
X = {ω ∈C(R; L2(R)) : Ω(ω) <∞}.

In view of Lemma 2.4 and the unitary property of the group W(t), it is easy to see that

Ω(W(t)u0) ≤ c‖Dsk u0‖2.

For u0 ∈ L2(R) and v ∈ X, we denote by u = Φ(v) = Φu0 (v) the solution of the linear
problem i∂tu + ∂4

xu + ∂x(|v|2kv) = 0, k ≥ 2, (x, t) ∈ R × R,

u(x, 0) = u0(x),
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which has an equivalent integral form,

u(t) = W(t)u0 −

∫ t

0
W(t − s)∂x(|v|2kv)(s) ds. (4.1)

We shall prove that Φ is a contraction map in a neighbourhood of the origin in Ḣsk ,
that is, there exist δ > 0 and a > 0 such that if ‖u0‖Ḣsk then

Φ : Xa→ Xa

is a contraction map, where

Xa = {ω ∈ X : Ω(ω) ≤ a}.

We shall use the integral equation (4.1). Inserting the linear estimates from
Lemmas 2.4 and 2.6 into (4.1) and then using Lemma 3.1,

η j(Φ(v)) ≤ c‖Dsk u0‖2 + c‖Dsk+1/2
x (|v|2kv)‖L7/6

x L14/11
t

≤ c‖Dsk u0‖2 + cη2(v)η2k
3 (v),

for j = 1, 2, 3 and v ∈ X. Thus we have

Ω(Φ(v)) ≤ c‖u0‖2 + c(Ω(v))2k+1.

If we choose δ such that

c(4cδ)2k = 1
2

and

a ∈ (2cδ, 3cδ),

then

Φ : Xa→ Xa.

A similar argument shows that

Ω(Φ(v) − Φ(v′)) ≤ c[Ω(Φ(v)) + Ω(Φ(v′))]2kΩ(v − v′)

≤ 2ca2kΩ(v − v′) < 1
2 Ω(v − v′).

Thus we can complete the proof by the standard contraction argument (as in [8]). �
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