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ABSTRACT

In various applications of heavy-tail modelling, the assumed Pareto behaviour
is tempered ultimately in the range of the largest data. In insurance applica-
tions, claim payments are influenced by claim management and claims may,
for instance, be subject to a higher level of inspection at highest damage levels
leading to weaker tails than apparent from modal claims. Generalizing ear-
lier results of Meerschaert et al. (2012) and Raschke (2020), in this paper we
consider tempering of a Pareto-type distribution with a general Weibull dis-
tribution in a peaks-over-threshold approach. This requires to modulate the
tempering parameters as a function of the chosen threshold. Modelling such a
tempering effect is important in order to avoid overestimation of risk measures
such as the value-at-risk at high quantiles. We use a pseudo maximum likeli-
hood approach to estimate the model parameters and consider the estimation
of extreme quantiles. We derive basic asymptotic results for the estimators, give
illustrations with simulation experiments and apply the developed techniques
to fire and liability insurance data, providing insight into the relevance of the
tempering component in heavy-tail modelling.
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1. INTRODUCTION

Probability distributions with power-law tails are extensively used in various
fields of applications including insurance, finance, information technology,
mining of precious stones and language studies (see, e.g., Nair et al. (2020)
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for a recent overview). In the extreme value methodology, such applications
are appropriately modelled using the concept of Pareto-type models such that
a variable X of interest satisfies

P(X > x)= x−α�(x), (1.1)

with α > 0 and some slowly varying function � satisfying

�(tx)
�(t)
→ 1 as t→∞ for every x> 0. (1.2)

In addition to the (pure) Pareto distribution, further examples from this model
are the Burr, Fréchet, t and log-gamma distribution (see Beirlant et al. (1996),
Chapter 2 for an overview). Often the power-law behaviour does not extend
indefinitely due to some truncation or tapering effects. In Beirlant et al. (2016),
estimation of truncated tails was developed in a peaks-over-threshold (POT)
approach for Pareto-type tails, and other max-domains of attraction were
dealt with in Beirlant et al. (2017). Inspired by applications in geophysics
and finance, Meerschaert et al. (2012) discussed parameter estimation under
exponential tempering of a simple Pareto law with survival function

P(X > x)= cx−αe−βx, (1.3)

where α, β > 0 and c> 0 is a scale parameter. In the context of insurance
data, Raschke (2020) recently discussed the use of the more general Weibull
tempering of a simple power law with survival function

P(X > x)= cx−αe−(βx)
τ

, (1.4)

with c, α, β, τ > 0.
However, typically the power-law behaviour only sets in from some threshold
t on, rather than from the lowest measurements as assumed when using the
simple Pareto model. The Pareto-type model (1.1) allows for flexible modelling
of this behaviour. In this paper, we therefore want to study Weibull tempered
Pareto-type distributions with survival function

P(X > x)= x−α�(x)e−(βx)
τ

, (1.5)

with � a slowly varying function, α = 1/γ > 0 controlling the power-law tail
with extreme value index γ , and β, τ governing the Weibull tempering.

We illustrate the need for such Weibull tempering of a Pareto-type tail with
the Norwegian fire insurance data set discussed in Beirlant et al. (1996), which
contains the year of occurrence of the claim and the claim value (in thousand
Krones) from 1972 until 1992, see also Brazauskas and Kleefeld (2016, Section
2) for a detailed description of the data. In Figure 1, these data are plotted by
year of occurrence, next to a log–log plot (Pareto QQ-plot)(

− log
(
1− j

n+ 1

)
, logXj,n

)
, j= 1, . . . , n,
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FIGURE 1: Norwegian fire claim data: claim sizes as a function of occurrence time (top left), log–log plot
(top right) and α̂H

k estimates with 95% confidence interval (bottom).
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FIGURE 2: Norwegian fire claim data: Weibull QQ-plot (left) and Weibull derivative plot (right).

where X1,n ≤X2,n ≤ . . .≤Xn,n denote the ordered data from a sample of size
n. Strict Pareto behaviour corresponds to an overall linear log–log plot, but
linearity only arises approximately at the top 5000 observations. The bending
at the largest observations in the upper right corner in the log–log plot was also
noted. This tapering near the highest observations often occurs with insurance
claim data and typically is due to a stricter claim management policy for the
larger claims. This tapering is also visible when plotting the pseudo maximum
likelihood estimator α̂H

k = 1/Hk,n of α under (1.1) (cf. bottom plot in Figure 1),
where Hk,n denotes the Hill estimator (1975)

Hk,n = 1
k

k∑
j=1

log
Xn−j+1,n
Xn−k,n

. (1.6)
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FIGURE 3: Secura Belgian Re claim data: log(Claim sizes) as a function of the year of occurrence (top left),
log–log plot (top right), α̂H

k estimates with 95% confidence interval (middle), Weibull QQ-plot (bottom left)
and Weibull derivative plot (bottom right).

The latter can be considered as an estimator of the slope in the log–log plot
when restricting to the top k+ 1 observations. In that sense, the statistics
Hk,n can be considered as derivatives of the Pareto QQ-plot at the top k
observations. Here, the values α̂k exhibit a stable area for 1000≤ k≤ 5000
which expresses power-law behaviour beyond Xn−100,n, and make a sharp
increase at the smallest k values due to tapering. Following the QQ- and
derivative plot methodology from Chapter 4 in Albrecher et al. (2017), one
can construct a Weibull QQ-plot ( log (− log (1− j

n+1 )), logXj,n), j= 1, . . . , n,
and its derivative plot in order to verify the Weibull nature of the tempering
as proposed in (1.5). A Weibull tail is observed when a linear behaviour is
apparent in that QQ-plot at some top portion of the data, which can then be
confirmed by a constant derivative plot in that region. For the present case,
Figure 2 shows that the derivative plot becomes constant on average when
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logX > 11, corresponding to a linear Weibull pattern in the QQ-plot at the
top observations with vertical coordinate larger than 11.

As a second example, a tapering effect is also observed in the Secura Belgian
Re data set from Beirlant et al. (1996). We refer the reader to Beirlant et al.
(2006, Sections 1.3.3 and 6.2) for further details about the data set. The Pareto
QQ-plot in Figure 3 shows a linear pattern from logX > 15, but bending is
visible near the top 10 observations, leading to higher values of α̂H

k at k≤ 10.
The Weibull derivative plot shows an ultimately decreasing behaviour at the
largest 10 observations. This then could lead to truncated Pareto modelling
rather than Weibull tempering of a Pareto-type tail, as discussed in detail in
Beirlant et al. (2016).

In this paper, we complement the graphical and exploratory analysis of
Weibull tempering of Pareto-type tails as illustrated above with a mathemat-
ical analysis of model (1.5). This can be considered as an alternative to the
truncated Pareto-type distributions X discussed in Beirlant et al. (2016) which
were defined by X =d Y |Y <T for some high value of T and Y satisfying
Pareto-type behaviour (1.1). Truncation also leads to tapering and appears,
for instance, in modelling of earthquake energy levels on the basis of the
Gutenberg-Richter law. From the viewpoint of truncation, model (1.5) cor-
responds to X =min (Y ,W ) with Y andW independent, Y being Pareto-type
distributed andW Weibull distributed with P(W > x)= e−(βx)τ . Such a model is
intended to describe situations where a gradual transit from a power-law decay
to an exponentially fast decay is observed as one goes further into the tail. In
view of the general nature of the Pareto-type models (1.1), this approach will
not be able to capture the characteristics over the whole range of the distri-
bution but focuses rather on the largest observations above some threshold
Xn−k,n. However, if appropriate such tempered tail fits could be spliced with
different methods to describe the data below the chosen Xn−k,n, as it was done
before to obtain composed models with a Pareto or generalized Pareto tail
fit, see, for instance, Reynkens et al. (2017) for mixed Erlang compositions
with Pareto tails, Brazauskas and Kleefeld (2016) for log-normal and Weibull
models spliced with Pareto tail fits, and Raschke (2020) for Pareto–Pareto or
cascade Pareto modelling. Albrecher et al. (2020) considered a parsimonious
and versatile family of distributions for the modelling of heavy-tailed risks
using the class of matrix Mittag-Leffler distributions.

In Section 2, we position the tempered Pareto-Weibull model in a POT
approach allowing β→ 0 as the threshold t→∞ and study pseudo maximum
likelihood estimation providing basic asymptotic theory. We also discuss
estimation of extreme return levels and return periods. Proofs of mathematical
results are deferred to the Appendix. In Section 3, we provide simulation
results, and in Section 4 we complete the analysis of the Norwegian fire and the
Belgian liability insurance data sets based on the obtained results. Section 5
concludes.
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2. TEMPERED PARETO-TYPE MODELLING AND ESTIMATION

Let X =min (Y ,W ) with Y and W independent, where Y is Pareto-type
distributed following (1.1) and

P(W > x)= e−(βx)τ for x> 0.

The survival function of X is then given by

P(X > x) := F(x)= x−α�(x)e−(βx)
τ

.

For the POT distribution X
t

∣∣X > t for some threshold t> 0, we obtain for x> 1

Ft(x) := P

(
X
t

> x|X > t
)

= P(X > tx)
P(X > t)

= (tx)−α

t−α

�(xt)
�(t)

e−(βxt)τ

e−(βt)τ

= x−α �(xt)
�(t)

e−(βt)
τ (xτ−1).

By definition �(xt)/�(t)≈ 1 for large enough thresholds t. We then assume that
at some large values of t, the parameter β is inversely proportional to t, so that
a simple Pareto-Weibull model (1.4) provides an appropriate fit to the POTs
X/t (X > t), at least better than the simple Pareto fit with distribution function
1− x−α as used in classical extreme value methodology for Pareto-type tails. In
order to formalize the above, one takes the limit for t→∞ which necessarily
requires β = βt ↓ 0 as t ↑∞. Themodel considered in this paper is then formally
given by (M). The POT distribution Ft satisfies

Ft(x)→ Fα,β∞,τ (x) := x−αe−βτ∞(xτ−1), as t→∞ for every x> 1,

where

(a) (rough tempering) β = βt satisfies βtt→ β∞ > 0, corresponding to the sit-
uation where the deviation from the Pareto behaviour due to Weibull
tempering will be visible in the data from t on and the approximation
of the POT distribution using the limit distribution Fα,β∞,τ appears more
appropriate than using Fα,0,τ = x−α, the simple Pareto distribution;

(b) (light tempering) β = βt satisfies βtt→ 0, corresponding to

Ft(x)→ x−α, x> 1,

in which case the tempering is hardly or not visible in the data above t. It
will then be practically impossible to discriminate light tempering from no
tempering.
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Given a particular threshold t, the quasi-likelihood procedure consists of
fitting the limit distribution in (M) to the POT data

Xj

t
when Xj > t, j= 1, . . . , n.

We also use the notation λ= βτ
∞, so that the limit distribution in (M) is given

by

Fα,λ,τ (x)= x−αe−λ (xτ−1), x> 1.
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The log-likelihood is then given by

logL(α, λ, τ )=−(1+ α)
n∑
j=1

log
(
Xj

t

)
1(Xj>t) − λ

n∑
j=1

((
Xj

t

)τ

− 1
)
1(Xj>t)

+
n∑
j=1

log
(

α + λτ

(
Xj

t

)τ)
1(Xj>t).

(2.1)
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In extreme value methodology, the choice of a threshold t is an important mat-
ter. A common practice is to select the (k+ 1)-largest observation xn−k,n for
some k ∈ {4, . . . , n− 1} as the threshold t, and to plot the resulting estimates as
a function of the inverse rank k. Many authors then suggest to find k in a sta-
ble portion of these plots, if available. Data-driven choices of k are sometimes
available minimizing the asymptotic mean-squared error based on asymptotic
results that describe the bias and variance for intermediate k sequences. While
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an asymptotic result is presented below in Theorem 2.1, we here present an
approach focusing on the goodness-of-fit of the tempering model to the POT
data above the different thresholds xn−k,n, using a QQ-plot approach. Then, for
a given value of τ , one finds the least-squares line that minimizes(

− log
(
1− F̂k

(
Vj,k

))
, α logVj,k + τβτ

∞hτ

(
Vj,k

))
, j= 1, . . . , k, (2.2)

with hτ (x)= (xτ − 1)/τ , the POT data Vj,k =Xn−j+1,n/Xn−k,n, j= 1, . . . , k, and
F̂k denoting the empirical distribution function based on those POTs.

Therefore, since F̂k
(
Vj,k

)= j
k+1 , one is led to minimize

WLS(Vj,k;αk, δk, τk) :=
k∑
j=1

wj,k

(
1
α
log

k+ 1
k− j+ 1

− logVj,k − δhτ

(
Vj,k

))2

,

(2.3)
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FIGURE 8: Pareto-Weibull(1.0, 2.0, 0.2).Top:Mean (left) and RMSE (right) of α̂W
k , α̂M

k and Hk,n as a
function of k ;Middle:Mean (left) and RMSE (right) of τ̂Wk and τ̂Mk as a function of k; Bottom: Boxplots of

α̂W
k̂
, α̂M

k̂
, τ̂W

k̂
and τ̂M

k̂
(log-scale). Horizontal dashed lines indicate the real parameters.

with respect to α and δ = τβτ
∞, where {wj,k, j= 1, . . . , k} are appropriate

weights. In particular, if wj,k = 1/ log
(

k+1
k−j+1

)
when δ ↓ 0, that is without

tempering, we recover the classical Hill estimator Hk,n.

Optimization using (2.3) also leads to an adaptive selection method for
choosing k which gives appropriate estimates for (α, τ , β∞), choosing the k for
which the weighted least-squares (WLS) value is minimal:

k̂= arg min
k

SSk (2.4)

with

SSk =
k∑
j=1

1

log
(

k+1
k−j+1

) (
1

α̂W
k

log
(

k+ 1
k− j+ 1

)
− logVj,k − δ̂Wk hτ̂Wk

(
Vj,k

))2

.

(2.5)
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Since for τ→ 0 the parameters α and τ become non-identifiable, numer-
ical issues will arise during the statistical estimation procedure when directly
optimizing the likelihood, or when minimizing (2.3). However, fixing a value
of τ during the calibration procedure reduces numerical instabilities. The opti-
mization procedure Algorithm 1 which is used in the simulations and cases
leads to WLS estimates (̂αW

k , β̂W
∞,k, τ̂

W
k ) and maximum likelihood estimates

(̂αM
k , β̂M

∞,k, τ̂
M
k ), starting from a grid of m initial τ values τ̃1 < τ̃2 < · · ·< τ̃m,

m ∈N.
In order to estimate return periods of the type 1/P(X > z) for some large

outcome level z, we use the approximation

P(X > tx)
P(X > t)

≈ x−αe−λτhτ (x)
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p,k, Q̂
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with t large, so that setting tx= z and t= xn−k,n for some k, we obtain the
estimators for P(X > z)

P̂W
z,k =

k+ 1
n+ 1

(
z

xn−k,n

)−α̂Wk

exp
(
−λ̂kτ̂

W
k hτ̂Wk

(z/xn−k,n)
)

(2.6)

and similarly P̂M
z,k, where P(X > t)= P(X > xn−k,n) is estimated using the empir-

ical proportion (k+ 1)/(n+ 1).
The value z solving the equation

k+ 1
n+ 1

(
z

xn−k,n

)−α̂Wk

exp
(
−λ̂Wk τ̂Wk hτ̂Wk

(z/xn−k,n)
)
= p, (2.7)

for a given value p≤ 1
n , then yields an estimator Q̂W

p,k for the extreme quan-
tile or return level Q(1− p), and hence for the value-at-risk (VaRp) at extreme
quantile levels 1− p. Similarly, one obtains the estimator Q̂M

p,k.

https://doi.org/10.1017/asb.2020.43 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.43


522 H. ALBRECHER, J. ARAUJO-ACUNA AND J. BEIRLANT

1.
5

2.
0

2.
5

3.
0

3.
5

WLS MLE
Estimators

lo
g(

Q̂
k*

(1
−

1
cn

))

c =  1

1.
5

2.
0

2.
5

3.
0

3.
5

WLS MLE
Estimators

c =  2

2.
0

3.
0

4.
0

5.
0

0 100 200 300 400 500
k

lo
g(

Q̂
k
(1

−
1

cn
))

c =  1

WLS
MLE
Weissman

2.
0

3.
0

4.
0

5.
0

0 100 200 300 400 500
k

lo
g(

Q̂
k
(1

−
1

cn
))

c =  2

WLS
MLE
Weissman

2
4

6
8

12

0 100 200 300 400 500
k

M
S

E

c =  1

WLS
MLE
Weissman

4
6

8
10

14

0 100 200 300 400 500
k

M
S

E

c =  2

WLS
MLE
Weissman

Frechet − Weibull(a = 2, t = 0.5, b = 0 .5) , n = 500 , runs = 500 Frechet − Weibull(a = 2, t = 0.5, b = 0 .5) , n = 500 , runs = 500

Frechet − Weibull(a = 2, t = 0.5, b = 0 .5) , n = 500 , runs = 500

lo
g(

Q̂
k*

(1
−

1
cn

))

FIGURE 11: Log-normal-Weibull(0.0, 100, 1.5, 0.5): Boxplots of Q̂W
p,k̂
, Q̂M

p,k̂
with c= 0.2 (left) and c= 0.4

(right). Horizontal dashed lines indicate the real values.

We end this section stating the asymptotic distribution of the maximum
likelihood estimators α̂t, λ̂t, τ̂t. The likelihood equations in (α, λ, τ ) are given by

n∑
j=1

{
α + λτ

(
Xj

t

)τ}−1
1(Xj>t) =

n∑
j=1

log
(
Xj

t

)
1(Xj>t),

n∑
j=1

(
Xj
t

)τ

α + λτ
(
Xj
t

)τ 1(Xj>t) =
n∑
j=1

hτ

(
Xj

t

)
1(Xj>t),

n∑
j=1

(
Xj
t

)τ

log
(
Xj
t

)
α + λτ

(
Xj
t

)τ 1(Xj>t) =
n∑
j=1

(
Xj

t

)τ

log
(
Xj

t

)
1(Xj>t).
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Algorithm 1 Estimation of (̂αW
k , β̂W

∞,k, τ̂
W
k ) and (̂αM

k , β̂M
∞,k, τ̂

M
k )

1: set τ̃1 < τ̃2 < · · ·< τ̃m, m ∈N
2: for k= 1, 2, to n− 1 do
3: for i= 1, 2, to m do
4: Optimization step. Set(̂

αk,τ̃i , δ̂k,τ̃i
)
:= arg min

(α>0,δ>0)
WLS(Vj,k;α, δ, τ̃i)

5: ŴLSk,τ̃i←WLS(Vj,k ;̂αk,τ̃i , δ̂k,τ̃i , τ̃i)
6: λ̂k,τ̃i← δk,τ̃i/τ̃i

7: l̂ogLk,τ̃i← logL(Vj,k ;̂αk,τ̃i , λ̂k,τ̃i , τ̃i)
8: Set

(̂αW
k , δ̂Wk , τ̂Wk ) := arg min

(̂αk,τ̃i ,̂δk,τ̃i ,τ̃i)

{
ŴLSk,τ̃i ;i= 1, . . . ,m

}

9: β̂W
∞,k←

(̂
δWk /τ̃Wk

)1/τ̃Wk
10: Set

(̂αM
k , λ̂Mk , τ̂Mk ) := arg max

(̂αk,τ̃i ,̂λk,τ̃i ,τ̃i)

{
l̂ogLk,τ̃i ;i= 1, . . . ,m

}

11: β̂M
∞,k← (̂λMk )1/τ̃

M
k

12: return (̂αW
k , β̂W

∞,k, τ̂
W
k ) and (̂αM

k , β̂M
∞,k, τ̂

M
k ), for k= 1, 2, . . . , n− 1.

We further assume classical second-order slow variation

�(ty)
�(t)
= 1+Dtρhρ(y), with D ∈R, ρ < 0, (2.8)

and set θ̂ t = (α̂t, λ̂t, τ̂t)t and θ = (α, λ, τ )t.

Theorem 2.1. Under F(x)= x−α�(x)e−βxτ

satisfying (M) with β∞ > 0 and �

satisfying (2.8), we have n, t→∞ such that nF(t)→∞ and
√
nF(t)tρ→ ν > 0

that √
nF(t)

(
θ̂ t − θ

)
→d N3

(
DνI−1b, I−1

)
with I ∈R3×3 symmetric and b ∈R3×1 and

I1,1 =
∫ ∞

1

u−α−1e−λτhτ (u)

α + λτuτ
du,

I2,2 = τ 2

∫ ∞

1

u2τ−α−1e−λτhτ (u)

α + λτuτ
du,
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I3,3 = λ

∫ ∞

1

{
log2 (u)− 2 log u

α + λτuτ
+ λuτ (1+ 2τ log u)− ατ ( log u)2

(α + λτuτ )2

}
uτ−α−1e−λτhτ (u)(α + λτuτ )du,

I1,2 = τ

∫ ∞

1

uτ−α−1e−λτhτ (u)

α + λτuτ
du,

I1,3 = λ

∫ ∞

1
(1+ τ log u)

uτ−α−1e−λτhτ (u)

α + λτuτ
du,

I2,3 =
∫ ∞

1

{
log u− α(1+ τ log u)

(α + λτuτ )2

}
uτ−α−1e−λτhτ (u)(α + λτuτ )du,

b1 =
∫ ∞

1

(
1

α + λτuτ
− log u

)
u−α−1e−λτhτ (u)[hρ(u)(α + λτuτ )− uρ ]du,

b2 =
∫ ∞

1

(
τuτ

α + λτuτ
− τhτ (u)

)
u−α−1e−λτhτ (u)[hρ(u)(α + λτuτ )− uρ ]du,

b3 = λ

∫ ∞

1

(
1+ τ log u
α + λτuτ

− log u
)
uτ−α−1e−λτhτ (u)[hρ(u)(α + λτuτ )− uρ ]du.

The derivation of this result is postponed to the Appendix.

3. SIMULATION RESULTS

The finite sample behaviour of the estimators (α̂W
k , τ̂Wk ) and (α̂M

k , τ̂Mk ) and the
resulting tail probabilities P̂W

z,k, P̂
M
z,k and extreme quantiles Q̂W

p,k, Q̂
M
p,k resulting

from Algorithm 1, (2.6) and (2.7), respectively, have been studied through an
extensive Monte Carlo simulation procedure. For each setting, 500 runs with
sample size n= 500 were performed. The mean and root mean squared error
(RMSE) of the estimators are presented for the following models:

(a) Burr-Weibull(α, ξ , τ , β) model with Burr distribution given by

FY (y)= 1− (
1+ y−ξα

)1/ξ
, y> 0, α > 0, ξ < 0.

Here, (2.8) is satisfied with ρ = ξα. We used (α, ξ , τ , β)= (2,−1, 1.50, 0.50)
and (2,−1, 0.50, 0.20).

(b) Fréchet-Weibull(α, τ , β) model with the Fréchet distribution function

FY (y)= exp (− y−α), y> 0, α > 0.

Here, (2.8) is satisfied with ρ =−α. We used (α, τ , β)= (2, 2, 0.50) and
(2, 0.50, 0.20).
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(c) Pareto-Weibull(α, τ , β) model using the Pareto distribution

1− FY (y)= y−α, y> 1, α > 0.

Here �(x)= 1. We used (α, τ , β)= (1, 2, 0.20).
(d) In order to study the behaviour of the estimators under Weibull tem-

pering of a heavy-tailed distribution outside the Pareto-type family, we
simulated from a tempered log-normal distribution with parameters μ= 0
and σ = 10.

In the plots concerning the estimation of α, we also plot the results for the Hill
estimator Hk,n, while in case of the tail quantile estimates Q̂W

p,k and Q̂
M
p,k we also

provide the results for the Weissman (1978) estimator Q̂H
p,k =Xn−k,n

(
k
np

)1/α̂Hk
.

Finally, we also present the boxplots of the estimates when using the adaptive
choice k̂ given in (2.4) for k. The characteristics for the tail probability estima-
tors P̂W

z,k, P̂
M
z,k are quite comparable to those of the extreme quantiles and are

omitted here.
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Clearly, the results for the MLE results α̂M , τ̂M and Q̂M
p improve upon the

weighted least squares-based results. The results with the adaptive choice k̂ of
k are promising, and again best for the MLE results. In case τ > 1 (see Figures
4, 5, 6, 7, 8, 9, 10 and 11) when the tempering is quite strong, the results for the
proposed methods are clearly improving upon the classical estimatorsHk,n and
Q̂H
p,k. Note that in these cases the VaR estimates based on the MLE parameters

taken at the adaptive value k̂ show a rather small bias, even in case of the
log-normal model which is situated outside our Pareto-type model assumption.

In case τ < 1 (see Figures 12, 13, 14 and 15), hence under weaker tempering,
the bias and RMSE results are comparable with the classical estimators. The
VaR estimates at k̂ tend to overestimate the correct value. As will become clear
from the case studies in the next section, the Pareto and tempered Pareto fits
can lead to quite different extreme tail fits per sample.
We conclude that the use of classical estimators ignoring the tempering effect
leads to serious overestimation of the risk measures, while the proposed

https://doi.org/10.1017/asb.2020.43 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.43


TEMPERED PARETO-TYPE MODELLING USING WEIBULL DISTRIBUTIONS 527

−
4

−
2

0
2

4
Lo

g(
E

st
im

at
or

s)

0
1

2
3

4
5

WLS
MLE
Hill

0 100 200 300 400 500
k

0.
5

1.
0

1.
5

2.
0

2.
5

0 100 200 300 400 500
k

WLS
MLE

0
5

10
20

30

0 100 200 300 400 500
k

c =  0.2

WLS
MLE
Weissman

0
5

15
25

0 100 200 300 400 500
k

c =  0.4

WLS
MLE
Weissman

logNormal − Weibull(m = 0, s = 10,t = 1.5, b = 0.5) , n = 500 , runs = 500

logNormal − Weibull(m = 0, s = 10,t = 1.5, b = 0.5) , n = 500 , runs = 500 logNormal − Weibull(m = 0, s = 10,t = 1.5, b = 0.5) , n = 500 , runs = 500

lo
g(

Q̂
k
(1

−
1

cn
))

lo
g(

Q̂
k
(1

−
1

cn
))

t̂ k
( M

E
A

N
)

â
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method provides reasonable VaR estimates especially for larger values of τ > 1.
In case of smaller tempering with a heavier Weibull tail, improvements can be
made concerning the adaptive choice of k. Another possibility is to search for
bias reduced estimators as available in the non-tempering literature (see, for
instance, Chapters 3 and 4 in Beirlant et al. (2006)).

4. INSURANCE CASES

We now apply the presented methods to the Norwegian and the Secura Re
Belgian data sets introduced in Section 1. In addition, we contrast the tail index
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estimates α̂W
k,n and α̂M

k,n with the values obtained for the truncated Pareto-type
model proposed in Beirlant et al. (2016), where α̂T

k,n is obtained as the
solution to

Hk,n = 1
αT
k,n

+ R
αTk,n

k,n log (Rk,n)

1−RαTk,n

k,n ,

with Rk,n =Xn−k,n/Xn,n. The latter estimator was first proposed in Aban et al.
(2006) as the conditional MLE based on the k+ 1 (0≤ k< n) largest order
statistics representing only the portion of the tail where the truncated Pareto
approximation holds, see also Albrecher et al. (2017, Section 4.2.3).

We then also measure the goodness-of-fit using QQ-plot (2.2) and the
analogous expression for the truncated model.

For the Norwegian fire insurance data set, we find k̂= 4920 from the plot of
SSk from (2.5) in Figure 16, where also the different parameter estimates as a
function of k can be found. The log–log plot based on (2.2) at k= 4920 shows a
good tail fit for the tempered Pareto model, in contrast to the simple Pareto fit
which will overfit tail probabilities and quantiles. This can be seen from Figure
17 where for larger k, the classical Weissman estimates Q̂H

1/(cn),k (c= 1, 2) lead to
much larger estimates than those based on the proposed tempering modelling.
Only when k is really small, that is, when restricting to the data situated in the
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FIGURE 19: Norwegian fire insurance data: log VaR(99.5%) for tempered model (black and dark grey lines),
Pareto (dashed grey) and truncated Pareto (dotted grey) for selected time windows.
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FIGURE 20: Norwegian fire insurance data: log VaR(99.9%) for tempered model (black and dark grey lines),
Pareto (dashed grey) and truncated Pareto (dotted grey) for selected time windows.

bottom curved area of the log–log plot, the classical linear Pareto fit is able
to provide a reasonable representation of the most extreme data. Finally, note
from the log–log plot in Figure 16 that the truncated Pareto fit follows the
linear Pareto fit except for the two final extreme points after which a sharp
deviation is observed up to an estimated finite truncation point T estimated at
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FIGURE 21: Secura data set: Top left: SSk from (2.5); Top right: α̂W
k , α̂M

k , Hk,n and α̂T
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T̂k̂ = 1, 211, 106, when using the estimation method proposed in Beirlant et al.
(2016, Section 3, Equation (19)).

In order to illustrate the possibility of extending the proposed method in
a time-dependent regression context, we fitted the approach to 3-year sliding
time windows. The size of the windows was selected to have at least 300
observations at each point in time. Figure 18 shows the estimated VaR at
99.5% (top) and 99.9% (bottom) using the tempered Pareto approach with
k̂ selected using the proposed adaptive procedure, next to simple Pareto and
truncated Pareto modelling. We also compare with the observed quantiles
obtained using the standard R function, which estimates the quantiles as
weighted averages of consecutive order statistics. The VaR values based on
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the tempered Pareto model are situated between the observed and the Pareto
and truncated Pareto fits, from which one can conclude that the tempered tail
behaviour observed for the complete data set in the bottom frame in Figure 16
is also present conditional on a time window, leading to overestimation when
using classical methods that ignore the proposed tempering. It is also worth
noticing that the VaR at 99.5% values exhibits an overall decreasing trend with
some stable behaviour between 1979 and 1987. Figures 19 and 20 show the
respective VaR estimates for all values of k for some selected time windows.

In Figure 21, the respective results are given for the Secura Re Belgium data
set. Here, the best tempered Pareto fit is found at k̂= 147, with the correspond-
ing log–log plot given in the bottom figure. Here, the tempered Pareto WLS fit
closely follows the linear Pareto fit, while the MLE fit shows too much bending
near the largest data. Both the Pareto and WLS tempered Pareto fit do miss
the deviation at the top two data, which however is taken into account in the
truncated Pareto analysis with T̂k̂ = 8, 967, 620= e16.009. While this deviation
can be considered as statistically non-significant, it makes sense to consider the
truncated Pareto fit here since Belgian car insurance contracts do show explicit
upper limits. Another motivation for a truncated model is that the extreme
quantile estimates Q̂M

1/(cn),k̂
hardly change from c= 1 to c= 2, namely around

the value e16, see Figure 22.
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5. CONCLUSION

In this paper, we addressed the fitting of Pareto-type distributions with a
tempering component of Weibull type at large values. We extend earlier results
for exponential tempering on strict Pareto tails, provide a POT approach,
develop estimation procedures and provide asymptotic properties of the
proposed estimators. Finally, we present a simulation study and also apply
the developed methods to actual insurance data, discussing challenges in the
implementation and how to overcome them. The estimation of VaR values
at extreme quantile levels shows improvements compared to more classical
extreme value estimation methods that ignore the considered tempering effect.
These improvements are more pronounced with growing tempering effect.

Further research concerning the generalization to a regression context and
the use of tempered Pareto-Weibull models in composed or splicing models will
be taken up in the future.
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APPENDIX A. PROOF OF THEOREM 2.1

Using Taylor expansions of the likelihood equations in θ̂ t around the correct value θ leads
to the following system of three equations, with θ̃ = (α̃, λ̃, τ̃ ) situated in between θ̂ t and θ :

√
nF(t)(̂αt − α)

1

nF(t)

n∑
j=1

1(
α̃ + λ̃τ̃

(
Xj
t

)τ̃
)2

1(Xj>t)

+
√
nF(t)(λ̂t − λ)

1

nF(t)

n∑
j=1

τ̃
(
Xj
t

)τ̃

(
α̃ + λ̃τ̃

(
Xj
t

)τ̃
)2

1(Xj>t)
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+
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⎜⎝ 1

nF(t)

n∑
j=1

⎧⎪⎨
⎪⎩

1

α + λτ
(
Xj
t

)τ − log
Xj
t

⎫⎪⎬
⎪⎭ 1(Xj>t)

⎞
⎟⎠ (A1)

√
nF(t) (̂αt − α)

1

nF(t)

n∑
j=1

τ̃
(
Xj
t

)τ̃

(
α̃ + λ̃τ̃

(
Xj
t

)τ̃
)2

1(Xj>t)

+
√
nF(t)

(
λ̂t − λ

) 1

nF(t)

n∑
j=1

τ̃ 2
(
Xj
t

)2τ̃
(

α̃+ λ̃τ̃
(
Xj
t

)τ̃
)2

1(Xj>t)

+
√
nF(t)

(
τ̂t − τ

) 1

nF(t)

n∑
j=1

⎛
⎜⎜⎜⎝

α̃
(
Xj
t

)τ̃ (
1+ τ̃ log

Xj
t

)
(

α̃+ λ̃τ̃
(
Xj
t

)τ̃
)2

−
(
Xj
t

)τ̃

log
Xj
t

⎞
⎟⎟⎟⎠ 1(Xj>t)

=
√
nF(t)

⎛
⎜⎝ 1

nF(t)

n∑
j=1

⎧⎪⎨
⎪⎩

τ
(
Xj
t

)τ

α + λτ
(
Xj
t

)τ −
(
Xj
t

)τ

+ 1

⎫⎪⎬
⎪⎭ 1(Xj>t)

⎞
⎟⎠ (A2)

√
nF(t) (̂αt − α)

1

nF(t)

n∑
j=1

λ̃
(
Xj
t

)τ̃ (
1+ τ̃ log

Xj
t

)
(

α̃ + λ̃τ̃
(
Xj
t

)τ̃
)2

1(Xj>t)

+
√
nF(t)(λ̂t − λ)

1

nF(t)

n∑
j=1

⎛
⎜⎜⎜⎝

α̃
(
Xj
t

)τ̃ (
1+ τ̃ log

Xj
t

)
(

α̃ + λ̃τ̃
(
Xj
t

)τ̃
)2

−
(
Xj
t

)τ̃

log
Xj
t

⎞
⎟⎟⎟⎠ 1(Xj>t)

+
√
nF(t)

(
τ̂t − τ

) λ̃

nF(t)

n∑
j=1

⎛
⎜⎜⎜⎝

λ̃
(
Xj
t

)τ̃ (
1+ 2τ̃ log

Xj
t

)
+ α̃τ̃

(
log

Xj
t

)2
(

α̃ + λ̃τ̃
(
Xj
t

)τ̃
)2

− 2 log
Xj
t

α̃ + λ̃τ̃
(
Xj
t

)τ̃
+ ( log

Xj
t
)2

⎞
⎟⎠ (

Xj
t

)τ̃

1(Xj>t)

=
√
nF(t)

⎛
⎜⎝ λ

nF(t)

n∑
j=1

⎧⎪⎨
⎪⎩

(
Xj
t

)τ (
1+ τ log

Xj
t

)
α + λτ

(
Xj
t

)τ −
(
Xj
t

)τ

log
Xj
t

⎫⎪⎬
⎪⎭ 1(Xj>t)

⎞
⎟⎠ (A3)
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The coefficients of
√
nF(t)(α̂t − α),

√
nF(t)(λ̂t − λ) and

√
nF(t)(τ̂t − τ ) on the left-hand sides

of (A1), (A2) and (A3) now converge in probability to the corresponding elements of I. For
instance for

I1,1,n,t(α, λ, τ ) := 1

nF(t)

n∑
j=1

1(
α+ λτ

(
Xj
t

)τ )2 1(Xj>t)

we have

E(I1,1,n,t(α, λ, τ )) = −
∫ ∞
t

1(
α + λτ

( x
t

)τ̃ )2 d F(x)F(t)

= −
∫ ∞
1

1

(α + λτuτ )2
dFt(u)

→ −
∫ ∞
1

1

(α + λτuτ )2
dFα,λ,τ (u)= I1,1,

as t→∞ using the consistency of maximum likelihood estimators and assumption (M).
The convergence of I1,1,n,t(α̃, λ̃, τ̃ ) to I1,1 then follows from

Var
(
I1,1,n,t (α, λ, τ)

)=O ((
nF(t)

)−1)
and I1,1,n,t

(
α̃, λ̃, τ̃

)
− I1,1,n,t (α, λ, τ)= op(1)

as n, t→∞ using the consistency of the maximum likelihood estimators.
Next the asymptotic normal distribution of the right-hand sides of (A1)–(A3)

√
nF(t)

⎛
⎜⎝ 1

nF(t)

n∑
j=1

⎧⎪⎨
⎪⎩

1

α+ λτ
(
Xj
t

)τ − log
Xj
t

⎫⎪⎬
⎪⎭ 1(

Xj>t
),

1

nF(t)

n∑
j=1

⎧⎪⎨
⎪⎩

τ
(
Xj
t

)τ

α + λτ
(
Xj
t

)τ −
(
Xj
t

)τ

+ 1

⎫⎪⎬
⎪⎭ 1(Xj>t),

λ

nF(t)

n∑
j=1

⎧⎪⎨
⎪⎩

(
Xj
t

)τ (
1+ τ log

Xj
t

)
α + λτ

(
Xj
t

)τ −
(
Xj
t

)τ

log
Xj
t

⎫⎪⎬
⎪⎭ 1(Xj>t)

⎞
⎟⎠ (A4)

is derived.
Concerning the first component

1

nF(t)
E

⎛
⎜⎝ n∑
j=1

⎧⎪⎨
⎪⎩

1

α + λτ
(
Xj
t

)τ − log
Xj
t

⎫⎪⎬
⎪⎭ 1(Xj>t)

⎞
⎟⎠=− 1

F(t)

∫ ∞
t

{
1

α+ β∞ x
t
− log

(x
t

)}
dF(x)

=−
∫ ∞
1

{
1

α + λτuτ
− log u

}
dFt(u),
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with Ft(u)= P(X/t> u|X > t)= u−α(1+Dtρhρ (u))e−λ(uτ−1) using the second-order slow
variation condition (2.8), so that

−dFt(u)
du

= u−α−1e−λ(uτ−1)(α + λτuτ )+Dtρ u−α−1e−λ(uτ−1){hρ (u)[α+ λτuτ ]− uρ}.

Using partial integration, one easily checks that∫ ∞
1

{
1

α + λτuτ
− log u

}
u−α−1e−λ(uτ−1)(α+ λτuτ )du= 0,

so that the expected value of the first component is given byDtρ b1, leading to the asymptotic
bias expression of α̂t as given in Theorem 2.1, and similar calculations lead to the bias of λ̂t
and τ̂t.

So it remains to derive the asymptotic variances and covariances of the vector in (A4).
The variance of the first component is derived from

1

nF(t)

n∑
j=1

E

⎧⎪⎨
⎪⎩

1

α + λτ
(
Xj
t

)τ − log
Xj
t

⎫⎪⎬
⎪⎭

2

1(Xj>t)

= 1

F(t)
E

⎛
⎜⎜⎝

⎧⎪⎨
⎪⎩

1

α + λτ
(
X
t

)τ − log
X
t

⎫⎪⎬
⎪⎭

2

1(X>t)

⎞
⎟⎟⎠

= −
∫ ∞
1

(
1

(α + λτuτ )2
− 2 log u

α + λτuτ
+ ( log u)2

)
dFt(u)

→ −
∫ ∞
1

(
1

(α + λτuτ )2
− 2 log u

α + λτuτ
+ ( log u)2

)
du−αe−λ(uτ−1),

as n, t→∞. Using partial integration, one finds that
∫∞
1 ( 2 log u

α+λτuτ −
( log u)2)du−αe−λ(uτ−1) = 0, so that the asymptotic variance of the first component in
(A4) equals I1,1. In the same way, one finds that the asymptotic variance covariance matrix
of (A4) equals I.
Hence

(
I+ op(1)

) √
nF(t)(θ̂ t − θ )=N3 ((Dν)b, I)+ op(1), (A5)

from which the result follows.
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