Non-Right-Orderable 3-Manifold Groups

R. Roberts and J. Shareshian

Abstract. We exhibit infinitely many hyperbolic 3-manifold groups that are not right-orderable.

1 Introduction

Orderability of groups has been studied for some time, and recent attention has been paid to orderability of fundamental groups of 3-manifolds, notably in the paper [BRW02] of Boyer, Rolfsen and Wiest. In that paper, the authors determine exactly which nonhyperbolic, compact, \mathbb{P}^{2}-irreducible 3-manifolds have right orderable fundamental groups. As mentioned in [BRW02], some hyperbolic 3-manifolds have right orderable fundamental groups while others do not. The first examples of hyperbolic 3-manifolds with non-right-orderable fundamental groups appeared in [RSS03, DPT05, Fen07] and an early preprint version of this paper. (A group is right orderable if and only if it is left orderable.)

In both [RSS03] and [Fen07], the groups considered have presentations of the form

$$
G=\left\langle t, a, b \mid a^{t}=a^{m-1} b^{-1} a^{-1}, b^{t}=a^{-1}, t^{p}[a, b]^{q}=1\right\rangle
$$

where m, p, q are integers and p, q are relatively prime. In [RSS03], the case that $m \leq$ -3 and $\frac{p}{q} \in[1, \infty)$ is analyzed. In [Fen07], the case that $m \leq-4$ and $|p-2 q|=1$ is examined.

In this paper, we investigate the more general case where $G=G(\phi, p, q)$ has presentation

$$
G=\left\langle t, a, b \mid a^{t}=a^{\phi_{*}}, b^{t}=b^{\phi_{*}}, t^{p}[a, b]^{q}=1\right\rangle
$$

where ϕ_{*} is any automorphism of the rank two free group $F=F(a, b)$ such that

- $[a, b]^{\phi_{*}}=[a, b]$, and
- the automorphism ϕ_{\sharp} of the abelianization $F /[F, F] \cong \mathbb{Z} \oplus \mathbb{Z}$ induced by ϕ_{*} lies in $S L_{2}(\mathbb{Z})$, with $\left|\operatorname{Trace}\left(\phi_{\sharp}\right)\right|>2$.

In other words, ϕ_{*} is induced by an orientation preserving pseudo-Anosov homeomorphism ϕ of a once punctured torus (see [Ni17, FH82, CJR84, Ind06]). We show that if either $\operatorname{Trace}\left(\phi_{\sharp}\right)<-2$ and $\frac{p}{q} \in[1, \infty]$ or $\operatorname{Trace}\left(\phi_{\sharp}\right)>2$ and $(p, q)=(1,0)$, then $G(\phi, p, q)$ is not right orderable.

[^0]As noted in [DPT05], there is some overlap between the latter case and the work of Dą,

$$
\phi_{\sharp}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

then the manifold denoted by $M_{L_{[2,2]}}^{(n)}$ in [DPT05] has fundamental group $G\left(\phi^{n}, 1,0\right)$.
Let us pause here to explain some notation and conventions we used above and will use throughout the paper. For $g \in F$ and $\psi \in \operatorname{Aut}(F)$, we write g^{ψ} for the image of g under the action of ψ. The action of $\operatorname{Aut}(F)$ on F, along with all other group actions described in this paper, will be from the right, so if ψ_{1} and then ψ_{2} from $\operatorname{Aut}(F)$ are applied to $g \in F$, the resulting element is $g^{\psi_{1} \psi_{2}}$. For a group G and $g, h \in G$, we write g^{h} for $h^{-1} g h$. We write $[g, h]$ for $g h g^{-1} h^{-1}$.

A group is called a 3-manifold group if it can be realized as the fundamental group of a 3-manifold. The groups $G(\phi, p, q)$ described above are 3-manifold groups and their study in [RSS03, Fen07] and the current paper was motivated by questions arising from the study of Reebless foliations and essential laminations in the associated 3-manifolds. In general, there is an interesting interplay between the existence of Reebless foliations or, more generally, essential laminations in a 3-manifold M and the existence of nontrivial actions of $\pi_{1}(M)$ on associated (not necessarily Hausdorff) 1-manifolds and trees.

Let us describe in more detail the construction of 3-manifolds with fundamental groups $G(\phi, p, q)$. Let T be a once-punctured torus (a compact surface of genus one with boundary $\partial T \cong S^{1}$), and let $\phi: T \rightarrow T$ be a homeomorphism. The punctured torus bundle $M(\phi)$ is the quotient space

$$
M(\phi):=(T \times[0,1]) /((x, 0) \sim(\phi(x), 1))
$$

The map ϕ induces automorphisms ϕ_{*} of $F=\pi_{1}(T)$, well-defined up to an inner automorphism of F, and ϕ_{\sharp} of $H_{1}(T) \cong \mathbb{Z} \oplus \mathbb{Z}$. The following facts are well known (see [Ni17, FH82, CJR84, RSS03, Ind06]).

- The fundamental group $\pi_{1}(M(\phi))$ has presentation

$$
\begin{equation*}
\left\langle t, a, b \mid a^{t}=a^{\phi_{*}}, b^{t}=b^{\phi_{*}}\right\rangle \tag{1.1}
\end{equation*}
$$

- The automorphism ϕ_{*} maps [$\left.a, b\right]$ to one of its conjugates in F if ϕ preserves orientation, and to a conjugate of $[b, a]$ in F otherwise.
- If $\alpha \in \operatorname{Aut}(F)$ fixes $[a, b]$, then there is some ϕ such that $\phi_{*}=\alpha$. Moreover, for each $A \in \operatorname{Aut}\left(H_{1}(T)\right) \cong G L_{2}(\mathbb{Z})$, there is some $\alpha \in \operatorname{Aut}(F)$ that fixes $[a, b]$ and induces A on $F /[F, F]$. Therefore, for each $A \in G L_{2}(\mathbb{Z})$, there is some ϕ with $\phi_{\sharp}=A$.
- The manifolds $M(\phi)$ and $M(\psi)$ are homeomorphic if and only if ϕ_{\sharp} is conjugate to one of $\psi_{\sharp}, \psi_{\sharp}^{-1}$ in $G L_{2}(\mathbb{Z})$. (This is due to Murasugi.)
- $M(\phi)$ is orientable if and only if $\phi_{\sharp} \in S L_{2}(\mathbb{Z})$.

Now $\partial M(\phi)$ is a torus, and we can construct closed 3-manifolds $M(\phi, p, q)$ by performing Dehn filling along $\partial M(\phi)$. We now briefly describe the construction of these
manifolds, referring the reader to [Rol90] for general facts about Dehn surgery. We will be interested in simple closed curves on $\partial M(\phi)$ that are images under the standard covering map $c: \mathbb{R}^{2} \rightarrow \partial M(\phi)$ of lines with rational slopes. Fixing a coordinate system on \mathbb{R}^{2}, we say that a simple closed curve γ on $\partial M(\phi)$ has slope $p / q \in \mathbb{O} \cup\{\infty\}$ if $c^{-1}(\gamma)$ is a line of slope p / q in \mathbb{R}^{2}. It is known (see for example [CJR84, Ind06]) that the presentation (1.1) determines a unique choice of coordinate system on \mathbb{R}^{2} for which the following claims hold true.

- For any $x \in[0,1]$, the fiber $T \times\{x\}$ in $M(\phi)$ intersects $\partial M(\phi)$ in a simple closed curve γ. The line $c^{-1}(\gamma)$ has slope zero in \mathbb{R}^{2}.
- We may assume that the base point x_{0} used to determine $\pi_{1}\left(M_{\phi}\right)$ lies on $\partial M(\phi)$. There is a simple closed curve $\tau \subset \partial M(\phi)$ through x_{0} that represents t in the presentation given above. The line $c^{-1}(\tau)$ has infinite slope in \mathbb{R}^{2}.
If l is a line of rational slope p / q in \mathbb{R}^{2}, then $c(l)$ is a simple closed curve on $\partial M(\phi)$. We perform p / q-Dehn surgery on $M(\phi)$, obtaining the closed 3-manifold $M(\phi, p, q)$ as follows. Let $X=D^{2} \times S^{1}$ be a solid torus (here D^{2} is a closed disc). Fix $y \in S^{1}$ and let $f: \partial X \rightarrow \partial M(\phi)$ be a homeomorphism satisfying $f\left(\partial D^{2} \times\{y\}\right)=c(l)$. Then the homeomorphism type of the quotient space

$$
M(\phi, p, q):=(M(\phi) \cup X) /(x \sim f(x))
$$

does not depend on the choice of y or f. When p and q are relatively prime, we have

$$
\pi_{1}(M(\phi, p, q)) \cong G(\phi, p, q)
$$

Now we explain how, given a conjugacy class $[C]$ in $S L_{2}(\mathbb{Z})$, we will choose $A \in$ [C] and $\alpha \in \operatorname{Aut}(F)$ that fixes $[a, b]$ and induces A on $F /[F, F]$. By the comments above, there is some ϕ with $\phi_{*}=\alpha$ (so $\phi_{\sharp}=A$) and, having fixed [C], the homeomorphism type of $M(\phi)$ does not depend on our choice of A and α. Set

$$
N:=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], U:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], L:=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

So $N, U, L \in S L_{2}(\mathbb{Z})$. For a sequence $\Lambda=\left(k_{1}, l_{1}, \ldots, k_{r}, l_{r}\right)$ of positive integers, set

$$
X_{\Lambda}:=\prod_{i=1}^{r} U^{k_{i}} L^{l_{i}}
$$

Then (see [FH82, CJR84, Ha92, Ind06]) every $A \in S L_{2}(\mathbb{Z})$ satisfying $|\operatorname{Trace}(A)|>2$ is conjugate in $G L_{2}(\mathbb{Z})$ to X_{Λ} or $N X_{\Lambda}$ for some such sequence. In particular, if $\operatorname{Trace}(A)>2$, then A is conjugate to some X_{Λ}, while if $\operatorname{Trace}(A)<-2$, then A is conjugate to some $N X_{\Lambda}$. Define $\mathcal{N}, \mathcal{U}, \mathcal{L} \in \operatorname{Aut}(F)$ by

$$
\begin{array}{ll}
a^{\mathcal{N}}=[a, b] a^{-1}, & b^{\mathcal{N}}=a b^{-1} a^{-1}, \\
a^{\mathcal{U}}=a b, & b^{\mathcal{U}}=b, \\
a^{\mathcal{L}}=a, & b^{\mathcal{L}}=b a .
\end{array}
$$

Direct computation shows that

$$
[a, b]^{\mathcal{N}}=[a, b]^{\mathrm{u}}=[a, b]^{\mathcal{L}}=[a, b] .
$$

Moreover, \mathcal{N}, \mathcal{U} and \mathcal{L} induce the automorphisms N, U, and L respectively on the abelianization of F.

Given a sequence Λ as above, set

$$
\phi_{\Lambda}^{+}:=\prod_{i=1}^{r} \mathcal{U}^{k_{i}} \mathcal{L}^{l_{i}} \in \operatorname{Aut}(F), \quad \text { and } \quad \phi_{\Lambda}^{-}:=\mathcal{N} \phi_{\Lambda}^{+} \in \operatorname{Aut}(F) .
$$

According to the discussion above, we may make the following assumption without loss of generality, and the coordinate system on \mathbb{R}^{2} described above is always chosen having fixed ϕ_{*} as described therein.

Assumption 1.1 Let ϕ be an orientation preserving homeomorphism of the oncepunctured torus T.
(i) If $\operatorname{Trace}\left(\phi_{\sharp}\right)>2$, then there is some $\Lambda=\left(k_{1}, l_{1}, \ldots, k_{r}, l_{r}\right)$ such that $\phi_{*}=\phi_{\Lambda}^{+}$.
(ii) If Trace $\left(\phi_{\sharp}\right)<-2$, then there is some $\Lambda=\left(k_{1}, l_{1}, \ldots, k_{r}, l_{r}\right)$ such that $\phi_{*}=\phi_{\Lambda}^{-}$.

Let $\operatorname{Homeo}^{+}(\mathbb{R})$ be the group of orientation preserving homeomorphisms of \mathbb{R}. Our main results are as follows.

Theorem 1.2 If $\phi_{\sharp} \in S L_{2}(\mathbb{Z})$ and $\operatorname{Trace}\left(\phi_{\sharp}\right)>2$, then there is no nontrivial homeomorphism from $\pi_{1}(M(\phi, 1,0))$ to $\mathrm{Homeo}^{+}(\mathbb{R})$.
Theorem 1.3 If $\phi_{\sharp} \in S L_{2}(\mathbb{Z})$ and $\operatorname{Trace}\left(\phi_{\sharp}\right)<-2$ and $\frac{p}{q} \in[1, \infty]$, then there is no nontrivial homomorphism from $\pi_{1}(M(\phi, p, q))$ to Homeo $^{+}(\mathbb{R})$.

By Thurston's hyperbolic Dehn surgery Theorem (see [Th79]), infinitely many of the manifolds $M(\phi, p, q)$ appearing in Theorem 1.3are hyperbolic. In fact, the work of Bleiler and Hodgson (see [BH96]) shows that for infinitely many ϕ, the manifold $M(\phi, p, q)$ is hyperbolic whenever $(p, q) \neq(0,1)$. On the other hand, there exist infinitely many hyperbolic 3-manifolds $M=M(\phi, p, q)$ admitting a nontrivial homomorphism from $\pi_{1}(M)$ to Homeo $^{+}(\mathbb{R})$. Indeed, such a homomorphism was shown to exist when $\operatorname{Trace}\left(\phi_{\sharp}\right)>2$ and $q=1$ by Fenley in [Fen94].

Now we describe in more detail the applications of Theorems [1.2 and 1.3 Recall that a foliation (see [CaCo99] for definitions and basic results on foliations) \mathcal{F} of a manifold M is called \mathbb{R}-covered (see [Pl83]) if the leaf space \widetilde{L} of the foliation $\widetilde{\mathcal{F}}$ of the universal cover \widetilde{M} of M obtained by lifting \mathcal{F} is homeomorphic to \mathbb{R}. The foliation \mathcal{F} is transversely orientable (sometimes called coorientable) if each leaf of \mathcal{F} admits an oriented transversal in such a manner that the given orientations are locally consistent. In any case, the action of $\pi_{1}(M)$ on \widetilde{M} determines an action of $\pi_{1}(M)$ on \widetilde{L} by homeomorphisms, and if \mathcal{F} is \mathbb{R}-covered and transversely orientable this action gives a nontrivial homomorphism from $\pi_{1}(M)$ to $\mathrm{Homeo}^{+}(\mathbb{R})$. Thus we obtain Corollary [1.4 It is not hard to show that if $\phi_{\sharp} \in S L_{2}(\mathbb{Z})$ then the abelianization of $G(\phi, p, q)$ has order $\left|p\left(\operatorname{Trace}\left(\phi_{\sharp}\right)-2\right)\right|$. It follows that if p and $\operatorname{Trace}\left(\phi_{\sharp}\right)$ are both odd, then $G(\phi, p, q)$ has no subgroup of index two, and Corollary 1.4 still holds when we remove the phrase "transversely orientable".

Corollary 1.4 If $\phi_{\sharp} \in S L_{2}(\mathbb{Z})$ and either

- Trace $\left(\phi_{\sharp}\right)<-2$ and $\frac{p}{q} \in[1, \infty]$, or
- $\operatorname{Trace}\left(\phi_{\sharp}\right)>2$ and $(p, q)=(1,0)$,
then $M(\phi, p, q)$ admits no transversely orientable \mathbb{R}-covered foliation.
As mentioned above, it was shown in [RSS03] that certain of the $M(\phi, p, q)$ described in Theorem 1.3 admit no Reebless foliation and therefore no transversely orientable \mathbb{R}-covered foliation. On the other hand, it is known (see [Ha92]) that if $\phi_{\sharp} \in S L_{2}(\mathbb{Z})$ and either
(i) $\operatorname{Trace}\left(\phi_{\sharp}\right)>2$ and $q \neq 0$ or
(ii) $\frac{p}{q}<1$,
then $M(\phi, p, q)$ does admit a Reebless foliation.
A group G is right orderable if there exists a total ordering \prec on G such that for all $x, y, g \in G$, we have $x \prec y$ if and only if $x g \prec y g$. It is known ([Li99]) that a countable group G is right orderable if and only if there is an injective homomorphism from G to $\mathrm{Homeo}^{+}(\mathbb{R})$. Thus we have the following result.

Corollary 1.5 If $\phi_{\sharp} \in S L_{2}(\mathbb{Z})$ and either

- $\operatorname{Trace}\left(\phi_{\sharp}\right)<-2$ and $p \geq q \geq 1$ or $(p, q)=(1,0)$ or
- $\operatorname{Trace}\left(\phi_{\sharp}\right)>2$ and $(p, q)=(1,0)$,
then $\pi_{1}(M(\phi, p, q))$ is not right orderable.
We prove Theorems 1.2 and 1.3 as follows. Given coprime integers p, q, and $e \in$ $\{+,-\}$, and a sequence $\Lambda=\left(k_{1}, l_{1}, \ldots, k_{r}, l_{r}\right)$, let $G^{e}(\Lambda, p, q)$ be the group with generators t, a, b subject to the relations
(R1) $t^{-1} a t=a^{\phi_{\Lambda}^{e}}$,
(R2) $t^{-1} b t=b^{\phi_{\Lambda}^{e}}$,
(R3) $t^{p}[a, b]^{q}=1$.
Thus, if ϕ is a homeomorphism of the once punctured torus S and $\phi_{*}=\phi_{\Lambda}^{e}$, then $\pi_{1}(M(\phi, p, q))=G^{e}(\Lambda, p, q)$. Note that $G^{e}(\Lambda, 1,0)$ is the group with generators a, b subject to the relations
(S1) $a=a^{\phi_{\Lambda}^{e}}$,
(S2) $b=b^{\phi_{\Lambda}^{e}}$.
We say that a subgroup G of $\operatorname{Homeo}(\mathbb{R})$ has a global fixed point if there is some $x \in \mathbb{R}$ such that $x \sigma=x$ for each $\sigma \in G$. Let G be a nontrivial subgroup of Homeo $^{+}(\mathbb{R})$. Then the set of global fixed points of G is not dense in \mathbb{R}. Therefore, there is some G-invariant interval $(x, y) \subseteq \mathbb{R}$ such that G has no global fixed point in (x, y). Thus, Theorems 1.2 and 1.3 follow immediately from the following results, whose proofs appear in the next two sections.

Theorem 1.6 Let $\Lambda=\left(k_{1}, l_{1}, \ldots, k_{r}, l_{r}\right)$ be a sequence of positive integers and let $\phi=\phi_{\Lambda}^{+}$. Let $f: F \rightarrow \operatorname{Homeo}^{+}(\mathbb{R})$ be a homomorphism such that $f(a)=f\left(a^{\phi}\right)$ and $f(b)=f\left(b^{\phi}\right)$. The Image (f) has a global fixed point.

Theorem 1.7 Let $\Lambda=\left(k_{1}, l_{1}, \ldots, k_{r}, l_{r}\right)$ be a sequence of positive integers. Let p, q be relatively prime integers with $p \geq q \geq 1$ or $(p, q)=(1,0)$. Let $f: G^{-}(\Lambda, p, q) \rightarrow$ $\operatorname{Homeo}^{+}(\mathbb{R})$ be a homomorphism. Then Image (f) has a global fixed point.

Our proofs of Theorems 1.6 and 1.7 use induction on the parameter r appearing in the sequence $\Lambda=\left(k_{1}, l_{1}, \ldots, k_{r}, l_{r}\right)$. We find it interesting that this technique works, as it is unclear that there is any close algebraic similarity between $G^{e}(\Lambda, p, q)$ and $G^{e}(\Gamma, p, q)$ when Γ is obtained from $\Lambda=\left(k_{1}, l_{1}, \ldots, k_{r}, l_{r}\right)$ by appending k_{r+1}, l_{r+1}.

2 The Proof of Theorem 1.6

To prove Theorem 1.6, let us assume for contradiction that, with $\phi=\phi_{\Lambda}^{+}$as in the theorem, there exists a homomorphism $f: F \rightarrow \operatorname{Homeo}^{+}(\mathbb{R})$ satisfying $f(a)=f\left(a^{\phi}\right)$ and $f(b)=f\left(b^{\phi}\right)$, whose image has no global fixed point. For $x \in \mathbb{R}$ and $g \in F$, we write $x g$ for $x f(g)$.

Lemma 2.1 For each $x \in \mathbb{R}$, we have $x a \neq x$ and $x b \neq x$.
Proof Fix $x \in \mathbb{R}$ and assume for contradiction that $x a=x$. If $x b=x$, then x is a global fixed point for Image (f), a contradiction. Say $x b>x$. Since a^{ϕ} is a product of positive powers of a and b, we have $x a^{\phi}>x$, contradicting $f(a)=f\left(a^{\phi}\right)$. A similar argument shows that we cannot have $x b<x$, and further arguments of the same type supply contradictions under the initial assumption that $x b=x$.

Using Lemma 2.1 and the Intermediate Value Theorem, we see that either $x a>x$ for all $x \in \mathbb{R}$ or $x a<x$ for all $x \in \mathbb{R}$, and the same holds for b. We cannot have $x a>x$ and $x b>x$ for all $x \in \mathbb{R}$, since from this we can derive $x a^{\phi}>x a$ for all $x \in \mathbb{R}$, contradicting $f(a)=f\left(a^{\phi}\right)$. Similarly, we cannot have $x a<x$ and $x b<x$ for all $x \in \mathbb{R}$. If $x a<x$ and $x b>x$ for all $x \in \mathbb{R}$, we may conjugate Image (f) by any orientation reversing homeomorphism of \mathbb{R} to get a homomorphism $f^{-}: F \rightarrow \operatorname{Homeo}^{+}(\mathbb{R})$ satisfying $f^{-}(a)=f^{-}\left(a^{\phi}\right), f^{-}(b)=f^{-}\left(b^{\phi}\right), x f^{-}(a)>x$, and $x f^{-}(b)<x$, whose image has no global fixed point. Therefore, we may continue under the following assumption without loss of generality.

Assumption 2.2 For all $x \in \mathbb{R}$, we have $x a>x$ and $x b<x$.
Let us now examine the case $r=1$, so $\phi=\mathcal{U}^{k_{1}} \mathcal{L}^{l_{1}}$. In this case, we calculate that

$$
\begin{equation*}
a^{\phi}=a\left(b a^{l_{1}}\right)^{k_{1}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\phi}=b a^{l_{1}} \tag{2.2}
\end{equation*}
$$

Since $f\left(b^{\phi}\right)=f(b)$, it follows from (2.2) that $f\left(a^{l_{1}}\right)=1$, and we cannot have $x a>x$ for all $x \in \mathbb{R}$, contradicting Assumption 2.2. Thus we proceed under the following assumption.

Assumption 2.3 We have $r \geq 2$.

Now we introduce some useful notation. Having fixed $\phi=\phi_{\Lambda}^{+}$, we define, for $1 \leq i \leq j \leq r$,

$$
\phi^{(i, j)}:=\prod_{h=i}^{j} \mathcal{U}^{k_{h}} \mathcal{L}^{l_{h}} .
$$

Lemma 2.4 We have

$$
\begin{equation*}
a^{\phi}=a^{\phi^{(2, r)}}\left(b^{\phi}\right)^{k_{1}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\phi}=b^{\phi^{(2, r)}}\left(a^{\phi^{(2, r)}}\right)^{l_{1}} . \tag{2.4}
\end{equation*}
$$

Proof We proceed by induction on r. The base case is $r=2$. In this case, we use (2.1) and (2.2) to get

$$
\begin{aligned}
a^{\phi} & =\left(a\left(b a^{l_{1}}\right)^{k_{1}}\right)^{\mathcal{U}^{k_{2}} \mathcal{L}^{l_{2}}}=a^{\mathcal{U}^{k_{2}} \mathcal{L}^{l_{2}}\left(\left(b a^{l_{1}}\right)^{u^{k_{2}} \mathcal{L}^{l_{2}}}\right)^{k_{1}}} \\
& =a^{\phi^{(2,2)}}\left(\left(b^{\mathcal{U}^{k_{1}} \mathcal{L}_{1}}\right)^{\mathcal{}_{k_{2}} \mathcal{L}^{l_{2}}}\right)^{k_{1}}=a^{\phi^{(2,2)}}\left(b^{\phi}\right)^{k_{1}}
\end{aligned}
$$

and

$$
b^{\phi}=\left(b a^{l_{1}}\right)^{u^{k_{2}} \mathcal{L}^{l_{2}}}=b^{u^{k_{2}} \mathcal{L}^{l_{2}}}\left(a^{u^{k_{2}} \mathcal{L}^{l_{2}}}\right)^{l_{1}}=b^{\phi^{(2,2)}}\left(a^{\phi^{(2,2)}}\right)^{l_{1}}
$$

as claimed. Now assume $r>2$. Using our inductive hypothesis, we get

$$
\begin{aligned}
a^{\phi} & =\left(a^{\phi^{(1, r-1)}}\right)^{\mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}}=\left(a^{\phi^{(2, r-1)}}\left(b^{\phi^{(1, r-1)}}\right)^{k_{1}}\right)^{\mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}} \\
& =\left(a^{\phi^{(2, r-1)}}\right)^{\mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}}\left(\left(b^{\phi^{(1, r-1)}}\right)^{u^{k_{r}} \mathcal{L}^{l_{r}}}\right)^{k_{1}}=a^{\phi^{(2, r)}}\left(b^{\phi}\right)^{k_{1}}
\end{aligned}
$$

and

$$
\begin{aligned}
b^{\phi} & =\left(b^{\phi^{(1, r-1)}}\right)^{\mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}}=\left(b^{\phi^{(2, r-1)}}\left(a^{\phi^{(2, r-1)}}\right)^{l_{1}}\right)^{\mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}} \\
& =\left(b^{\phi^{(2, r-1)}}\right)^{\mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}}\left(\left(a^{\phi^{(2, r-1)}}\right)^{\left.\mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}\right)^{l_{1}}=b^{\phi^{(2, r)}}\left(a^{\phi^{(2, r)}}\right)^{l_{1}} .}\right.
\end{aligned}
$$

Corollary 2.5 For all $x \in \mathbb{R}$, we have

$$
\begin{equation*}
x a^{l_{r}} \prod_{m=r}^{2}\left(a^{\phi^{(m, r)}}\right)^{l_{m-1}}=x \tag{2.5}
\end{equation*}
$$

(By $\prod_{m=r}^{2} c_{m}$ we mean the product $c_{r} c_{r-1} \cdots c_{2}$, for any c_{2}, \ldots, c_{r}.)
Proof Applying (2.4) repeatedly, we get

$$
\begin{aligned}
b^{\phi} & =b^{\phi^{(2, r)}}\left(a^{\phi^{(2, r)}}\right)^{l_{1}} \\
& =b^{\phi^{(3, r)}}\left(a^{\phi^{(3, r)}}\right)^{l_{2}}\left(a^{\phi^{(2, r)}}\right)^{l_{1}} \\
& =\ldots \\
& =b^{\phi^{(r, r)}} \prod_{m=r}^{2}\left(a^{\phi^{(m, r)}}\right)^{l_{m-1}} .
\end{aligned}
$$

Now $b^{\phi^{(r, r)}}=b a^{l_{r}}$ by (2.2), so (2.5) follows from $f\left(b^{\phi}\right)=f(b)$.

Corollary 2.6 For $1 \leq m \leq r$ and all $x \in \mathbb{R}$, we have

$$
\begin{equation*}
x a^{\phi^{(m, r)}}>x \tag{2.6}
\end{equation*}
$$

and $x b^{\phi^{(m, r)}}<x$.
Proof We proceed by induction on m, the base case $m=1$ being a restatement of Assumption 2.2. Now assume $m>1$. By inductive hypothesis, we have $x a^{\phi^{(m-1, r)}}>x$ and $x b^{\phi^{(m-1, r)}}<x$ for all $x \in \mathbb{R}$. Now by (2.3), we have (for each $x \in \mathbb{R}$)

$$
x a^{\phi^{(m-1, r)}}=x a^{\phi^{(m, r)}}\left(b^{\phi^{(m-1, r)}}\right)^{k_{m-1}}<x a^{\phi^{(m, r)}}
$$

so we must have $x a^{\phi^{(m, r)}}>x$ for all x. Hence by (2.4), we have

$$
x b^{\phi^{(m-1, r)}}=x b^{\phi^{(m, r)}}\left(a^{\phi^{(m, r)}}\right)^{l_{1}}>x b^{\phi^{(m, r)}}
$$

so we must have $x b^{\phi^{(m, r)}}<x$.
Combining Corollaries 2.5 and 2.6, we obtain the contradiction that proves Theorem 1.6 Indeed, by Assumption 2.2 and (2.6), we have

$$
x a^{l_{r}} \prod_{m=r}^{2}\left(a^{\phi^{(m, r)}}\right)^{l_{m-1}}>x
$$

for all $x \in \mathbb{R}$, contradicting (2.5).

3 The Proof of Theorem 1.7

We will begin by proving Theorem 1.7 under the following assumption and then explain how to adjust the given proof to handle the case $(p, q)=(1,0)$.
Assumption 3.1 We have $p \geq q \geq 1$.
Now we introduce some additional notation. Fix $\Lambda=\left(k_{1}, l_{1}, \ldots, k_{r}, l_{r}\right)$ and let $\phi=\phi_{\Lambda}^{-}$. For $1 \leq i \leq j \leq r$, set

$$
\Lambda^{(i, j)}:=\left(k_{i}, l_{i}, \ldots, k_{j}, l_{j}\right)
$$

and

$$
\phi_{(i, j)}:=\phi_{\Lambda^{(i, j)}}^{-}=\mathcal{N} \phi^{(i, j)} .
$$

For $i>j$, set $\phi_{(i, j)}=1$. Now define

$$
u_{\Lambda}:=\left(b^{-1}\right)^{\phi_{(2, r)}}, \quad v_{\Lambda}:=\left(a^{-1}\right)^{\phi_{(2, r)}}, \quad \text { and } \quad w_{\Lambda}:=v_{\Lambda}^{l_{1}-1} u_{\Lambda} v_{\Lambda}
$$

We call a nonidentity element g of the free group $F(a, b)$ totally negative if we can write g in reduced form as

$$
g=\prod_{i=1}^{s} a^{\rho_{i}} b^{\theta_{i}}
$$

with $\rho_{i}, \theta_{i} \leq 0$ for all $i \in[s]$.

Lemma 3.2 Each of $u_{\Lambda}, v_{\Lambda}, w_{\Lambda} \in F(a, b)$ is totally negative. Also,

$$
\begin{align*}
a^{\phi} & =[a, b] v_{\Lambda} w_{\Lambda}^{k_{1}} \quad \text { and } \tag{3.1}\\
b^{\phi} & =w_{\Lambda} \tag{3.2}
\end{align*}
$$

Proof We proceed by induction on r. If $r=1$, direct calculation gives

$$
a^{\phi}=[a, b] a^{-1}\left(a^{1-l_{1}} b^{-1} a^{-1}\right)^{k_{1}}
$$

and (since $b^{\mathcal{N}}=b^{-1}[a, b]^{-1}$)

$$
b^{\phi}=a^{1-l_{1}} b^{-1} a^{-1}
$$

Hence the claim holds in this case. Now assume that $r>1$. We have

$$
\phi=\phi_{(1, r-1)} \mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}
$$

and $\phi_{(2, r)}=\phi_{(2, r-1)} \mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}$. It follows immediately that

$$
\begin{align*}
& u_{\Lambda}=u_{\Lambda_{(1, r-1)}}^{\mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}} \quad \text { and } \tag{3.3}\\
& v_{\Lambda}=v_{\Lambda_{(1, r-1)}}^{u^{k_{r}} \mathcal{L}^{l_{r}}} . \tag{3.4}
\end{align*}
$$

It follows from (3.3) and (3.4) that $w_{\Lambda}=w_{\Lambda_{(1, r-1)}}^{\chi^{k_{r}} \mathcal{L}^{l_{r}}}$. If $g \in F(a, b)$ is totally negative, then $g^{\mathcal{U}}$ and $g^{\mathcal{L}}$ are totally negative. It now follows from the inductive hypothesis that u_{Λ}, v_{Λ} and w_{Λ} are totally negative. Our inductive hypothesis also gives

$$
a^{\phi}=a^{\phi_{(1, r-1)}} u^{k_{r}} \mathcal{L}^{l_{r}}=\left([a, b]^{u^{k_{r}}} \mathcal{L}^{l_{r}}\right) v_{\Lambda_{(1, r-1)}}^{u^{k_{r}} \mathcal{L}^{l_{r}}}\left(w_{\Lambda_{(1, r-1)}}^{u^{k_{r}} \mathcal{L}^{l_{r}}}=[a, b] v_{\Lambda} w_{\Lambda}^{k_{1}}\right.
$$

and

$$
b^{\phi}=b^{\phi_{(1, r-1)}} \mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}=w_{\Lambda_{(1, r-1)}}^{\mathcal{U}^{k_{r}} \mathcal{L}^{l_{r}}}=w_{\Lambda}
$$

as claimed.
Lemma 3.3 If $r \geq 2$, then

$$
\begin{equation*}
u_{\Lambda}=v_{\Lambda_{(2, r)}}^{l_{2}} u_{\Lambda_{(2, r)}} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\Lambda}=u_{\Lambda}^{k_{2}} v_{\Lambda_{(2, r)}} \tag{3.6}
\end{equation*}
$$

Proof Again we use induction on r. If $r=2$, then $u_{\Lambda_{(2, r)}}=\left(b^{-1}\right)^{\phi_{(3,2)}}=b^{-1}$, and similarly, $v_{\Lambda_{(2, r)}}=a^{-1}$. Now direct calculation gives $u_{\Lambda}=a^{-l_{2}} b^{-1}$ and $v_{\Lambda}=$ $\left(a^{-l_{2}} b^{-1}\right)^{k_{2}} a^{-1}$, and the claim of the lemma holds in this case. Now assume $r>2$. Using the inductive hypothesis, we get

$$
u_{\Lambda}=u_{\Lambda_{(1, r-1)}}^{\chi^{k_{r}} \mathcal{L}^{l_{r}}}=\left(v_{\Lambda_{(2, r-1)}}^{\chi^{k_{r}} \mathcal{L}^{l_{r}}}\right)^{l_{2}}\left(u_{\Lambda_{(2, r-1)}}^{\chi^{k_{r}} \mathcal{L}^{l_{r}}}\right)=v_{\Lambda_{(2, r)}}^{l_{2}} u_{\Lambda_{(2, r)}}
$$

and

$$
v_{\Lambda}=v_{\Lambda_{(1, r-1)}}^{u^{k_{r}} \mathcal{L}^{l_{r}}}=\left(u_{\Lambda_{(1, r-1)}}^{u^{k_{r}} \mathcal{L}^{l_{r}}}\right)^{k_{2}} v_{\Lambda_{(2, r-1)}}^{u^{k_{r}} \mathcal{L}^{l_{r}}}=u_{\Lambda}^{k_{2}} v_{\Lambda_{(2, r)}}
$$

as claimed.

Corollary 3.4 There is no homomorphism $\psi: F(a, b) \rightarrow \operatorname{Homeo}^{+}(\mathbb{R})$ satisfying all of the conditions
(i) $\quad x \psi(a)>x$ for all $x \in \mathbb{R}$,
(ii) $x \psi(b)<x$ for all $x \in \mathbb{R}$,
(iii) $x \psi\left(u_{\Lambda}\right)<x$ for all $x \in \mathbb{R}$, and
(iv) $x \psi\left(v_{\Lambda}\right)>x$ for all $x \in \mathbb{R}$.

Proof Again we use induction on r. As noted above, if $r=1$, we have $u_{\Lambda}=b^{-1}$ and conditions (ii) and (iii) cannot be satisfied simultaneously. Now assume $r>1$. By equation (3.6) of Lemma 3.3, if (iii) and (iv) are both satisfied, then we have $x \psi\left(v_{\Lambda_{(2, r)}}\right)>x$ for all $x \in \mathbb{R}$. Now (iii) and equation (3.5) of Lemma 3.3 force $x \psi\left(u_{\left.\Lambda_{(2, r)}\right)}\right)<x$ for all $x \in \mathbb{R}$. This means that conditions (i)-(iv) are satisfied if we replace Λ with $\Lambda_{(2, r)}$, which contradicts our inductive hypothesis.

Now we prove Theorem 1.7 Assume (for contradiction) that $f: G^{-}(\Lambda, p, q) \rightarrow$ $\operatorname{Homeo}^{+}(\mathbb{R})$ is a homomorphism whose image has no global fixed point. We write $t, a, b, u_{\Lambda}, v_{\Lambda}, w_{\Lambda}$ for the respective images of $t, a, b, u_{\Lambda}, v_{\Lambda}, w_{\Lambda} \in F(a, b, t)$ in $G^{-}(\Lambda, p, q)$. Set

$$
\begin{gathered}
\alpha:=f(a), \quad \beta:=f(b), \quad \gamma:=f([a, b]), \quad \tau:=f(t), \\
\mu:=f\left(u_{\Lambda}\right), \quad \nu:=f\left(v_{\Lambda}\right), \quad \text { and } \quad \omega:=f\left(w_{\Lambda}\right) .
\end{gathered}
$$

Since ϕ fixes [a,b], we know that τ and γ commute. The following simple result will be of great use.

Lemma 3.5 Let g, h be elements of a group G such that $g h=h g$ and there exist relatively prime integers p, q with $g^{p}=h^{-q}$. Then there is some $k \in G$ such that $g=k^{q}$ and $h=k^{-p}$.

To prove Lemma 3.5 we simply take integers r, s with $r p+s q=1$ and verify that $k=g^{s} h^{-r}$ has the desired properties. The next corollary, which we will use repeatedly, follows immediately.

Corollary 3.6 There is some $\kappa \in \operatorname{Homeo}^{+}(\mathbb{R})$ such that $\tau=\kappa^{q}$ and $\gamma=\kappa^{-p}$. In particular, if $p \geq q \geq 1$, then, for any $x \in \mathbb{R}$, one of the following conditions holds.
(K1) $x \kappa=x \tau=x \gamma=x$,
(K2) $x \gamma^{-1} \leq x \tau \leq x \kappa<x<x \kappa^{-1} \leq x \tau^{-1} \leq x \gamma$, or
(K3) $x \gamma \leq x \tau^{-1} \leq x \kappa^{-1}<x<x \kappa \leq x \tau \leq x \gamma^{-1}$
Lemma 3.7 There is no $x \in \mathbb{R}$ such that $x \alpha=x$.
Proof Assume for contradiction that there is some $x \in \mathbb{R}$ satisfying $x \alpha=x$. Note first that we cannot have $x \beta=x$, since this would force $x \gamma=x$, which in turn would force $x \tau=x$ (by Corollary 3.6), making x a global fixed point for Image (f).

Moreover, since v_{Λ} and w_{Λ} are totally negative words in a, b, we see that

- if $x \beta<x$ then $x \omega>x$ and $x \nu>x$, and
- if $x \beta>x$ then $x \omega<x$ and $x \nu<x$.

We can therefore conclude that $x \tau \neq x$. Indeed, if $x \tau=x$, then $x \beta \tau=x \tau^{-1} \beta \tau=$ $x \omega$. However, this is impossible, because if $x \beta>x$, then $x \omega=x \beta \tau>x \tau=x$, and similarly, if $x \beta<x$, then $x \omega<x$.

We may now assume without loss of generality that $x \tau>x$. (As we argued earlier, if $x \tau<x$, we may conjugate Image (f) by an orientation reversing homeomorphism.) Now case (K3) of Corollary 3.6 holds.

If $x \beta>x$, then $x \tau^{-1} \beta \tau=x \omega<x$, so $\left(x \tau^{-1}\right) \beta<x \tau^{-1}$. Similarly, if $x \beta<x$, then $\left(x \tau^{-1}\right) \beta>x \tau^{-1}$. In either case, the Intermediate Value Theorem guarantees that there is some $y \in\left(x \tau^{-1}, x\right)$ such that $y \beta=y$.

Note that $y \alpha \neq y$. In fact, since $y \gamma^{-1}=y \beta \alpha \beta^{-1} \alpha^{-1}=(y \alpha) \beta^{-1} \alpha^{-1}$, we must have $y \alpha>y$. (Otherwise, $y \gamma^{-1}<x$, which gives $y<x \gamma \leq x \tau^{-1}$, a contradiction.) Similarly, $x \gamma=(x \beta) \alpha^{-1} \beta^{-1}$ forces $x \beta<x$. In summary, we have

- $x \tau^{-1}<y<y \alpha<x$.

Now relation (R1), along with (3.1) and (3.2), gives

$$
\begin{aligned}
x \nu^{-1} \gamma^{-1} \tau^{-1} \alpha \tau & =x \omega^{k_{1}}=\left(x \tau^{-1}\right) \beta^{k_{1}} \tau \\
& <y \beta^{k_{1}} \tau=y \tau
\end{aligned}
$$

Since v_{Λ} is totally negative in a and b, we have $y<y \nu^{-1}$. It now follows that

$$
\begin{aligned}
y \gamma^{-1} \tau^{-1} & <\left(y \nu^{-1}\right) \gamma^{-1} \tau^{-1}<x \nu^{-1} \gamma^{-1} \tau^{-1} \\
& <y \alpha^{-1}<y
\end{aligned}
$$

It follows that $y \gamma^{-1}<y \tau$. Thus case (K2) of Corollary 3.6 holds, and we have $y \tau<y$. Now $x \tau^{-1}<y$ forces $x<y \tau<y$, giving the desired contradiction.

By Lemma 3.7 and the Intermediate Value Theorem, either $x \alpha>x$ for all $x \in \mathbb{R}$ or $x \alpha<x$ for all $x \in \mathbb{R}$. Now we may assume without loss of generality (once again using conjugation by an orientation reversing homeomorphism if necessary) that we have
(1) $x \alpha>x$ for all $x \in \mathbb{R}$.

Relation (R1) and (3.1) give

$$
\begin{aligned}
\nu \omega^{k_{1}} & =\gamma^{-1} \tau^{-1} \alpha \tau=\tau^{-1} \gamma^{-1} \alpha \tau \\
& =\tau^{-1} \beta \alpha \beta^{-1} \tau=\left(\beta^{-1} \tau\right)^{-1} \alpha\left(\beta^{-1} \tau\right)
\end{aligned}
$$

So, since α and $\nu \omega^{k_{1}}$ are conjugate in Homeo ${ }^{+}(\mathbb{R})$, it follows from our assumption $x \alpha>x$ for all $x \in \mathbb{R}$ that

$$
\begin{equation*}
x \nu \omega^{k_{1}}>x \tag{3.7}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Since $\nu \omega^{k_{1}}$ is totally negative and $x \alpha>x$ for all $x \in \mathbb{R}$ we must have (2) $x \beta<x$ for all $x \in \mathbb{R}$.

By (3.2), ω and β are conjugate in $\operatorname{Homeo}^{+}(\mathbb{R})$. Therefore,

$$
\begin{equation*}
x \omega<x \tag{3.8}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Combining this with (3.7), we get
(4) $x \nu>x$ for all $x \in \mathbb{R}$.

We know that $\omega=\nu^{l_{1}-1} \mu \nu$, and combining this with (4) and (3.8) gives
(3) $x \mu<x$ for all $x \in \mathbb{R}$.

Now (i)-(iv) give a contradiction to Corollary 3.4 and this completes the proof of Theorem 1.7 under Assumption 3.1 .

Finally, assume that $(p, q)=(1,0)$. We retain the notation introduced above. Note that Corollary 3.4 and its proof do not involve (p, q). Therefore, the corollary holds under our assumption. Lemma 3.7 also holds. Indeed, if $x \alpha=x$, then we cannot have $x \beta=x$, as $G^{-}(\Lambda, p, q)$ is generated by a and b. We may assume that $x \beta>x$. Since b^{ϕ} is totally negative, we have $x f\left(b^{\phi}\right)<x$. This contradicts $b=b^{\phi}$. So, we may assume that $x \alpha>x$ for all $x \in \mathbb{R}$. Now we may proceed as we did when $p \geq q \geq 1$. We have (since $\tau=1) \nu \omega^{k_{1}}=\beta \alpha \beta^{-1}$, so $x \nu \omega^{k_{1}}>x$ for all x. This forces $x \beta<x$ for all x, which in turn forces $x \nu>x$ and $x \mu<x$ for all x as it did before, and our proof is complete.

References

[BH96] S. Bleiler and C. D. Hodgson, Spherical space forms and Dehn filling. Topology 35(1996), no. 3, 809-833. doi:10.1016/0040-9383(95)00040-2
[BRW02] S. Boyer, D. Rolfsen, and B. Wiest, Orderable 3-manifold groups. Ann. Inst. Fourier (Grenoble) 55(2005), no. 1, 243-288.
[CaCo99] A. Candel and L. Conlon, Foliations. I. Graduate Studies in Mathematics, 23, American Mathematical Society, Providence, RI, 2000.
[CJR84] M. Culler, W. Jaco, and H. Rubenstein, Incompressible surfaces in once-punctured torus bundles. Proc. London Math. Soc. (3) 45(1982), no. 3, 385-419. doi:10.1112/plms/s3-45.3.385
[DPT05] M. K. Dąbkowski, J. H. Przytycki, and A. A. Togha, Non-left-orderable 3-manifold groups. Canad. Math. Bull. 48(2005), no. 1, 32-40.
[Fen07] S. Fenley, Laminar free hyperbolic 3-manifolds. Comment. Math. Helv. 82(2007), no. 2, 247-321. doi:10.4171/CMH/92
[Fen94] S. R. Fenley, Anosov flows in 3-manifolds. Ann. of Math. (2) 139(1994), no. 1, 79-115. doi:10.2307/2946628
[FH82] W. Floyd and A. Hatcher, Incompressible surfaces in punctured-torus bundles. Topology Appl. 13(1982), no. 3, 263-282. doi:10.1016/0166-8641(82)90035-9
[Ha92] A. Hatcher, Some examples of essential laminations in 3-manifolds. Ann. Inst. Fourier (Grenoble) 42(1992), no. 1-2, 313-332.
[Ind06] G. Indurskis, Fillings of one boundary component of the Whitehead link. Ph.D. thesis, Université du Québec à Montréal, 2006.
[Li99] P. A. Linnell, Left ordered amenable and locally indicable groups. J. London Math. Soc. (2) 60(1999), no. 1, 133-142. doi:10.1112/S0024610799007462
[Ni17] J. Nielsen, Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden. Math. Ann. 78(1964), no. 1, 385-397. doi:10.1007/BF01457113
[P183] J. F. Plante, Solvable groups acting on the line. Trans. Amer. Math. Soc. 278(1983), no. 1, 401-414. doi:10.2307/1999325
[RSS03] R. Roberts, J. Shareshian, and M. Stein, Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation. J. Amer. Math. Soc. 16(2003), no. 3, 639-679.
doi:10.1090/S0894-0347-03-00426-0
[Rol90] D. Rolfsen, Knots and links. Mathematics Lecture Series, 7, Publish or Perish, Inc., Houston, TX, 1990.
[Th79] W. Thurston, The geometry and topology of three-manifolds, Princeton, 1979. http://www.msri.org/publications/books/gt3m

Department of Mathematics, Washington University, St Louis, MO 63130
e-mail: roberts@math.wustl.edu shareshi@math.wustl.edu

[^0]: Received by the editors December 12, 2007.
 Published electronically July 26, 2010.
 R. Roberts was partially supported by National Science Foundation grants DMS-9971333 and DMS-0312442. J. Shareshian was partially supported by National Science Foundation grants DMS0070757, DMS-0300483 and DMS-0604233.

 AMS subject classification: 20F60, 57M05, 57M50.

