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Non-Right-Orderable 3-Manifold Groups

R. Roberts and J. Shareshian

Abstract. We exhibit infinitely many hyperbolic 3-manifold groups that are not right-orderable.

1 Introduction

Orderability of groups has been studied for some time, and recent attention has
been paid to orderability of fundamental groups of 3-manifolds, notably in the pa-
per [BRW02] of Boyer, Rolfsen and Wiest. In that paper, the authors determine ex-
actly which nonhyperbolic, compact, P2-irreducible 3-manifolds have right order-
able fundamental groups. As mentioned in [BRW02], some hyperbolic 3-manifolds
have right orderable fundamental groups while others do not. The first examples of
hyperbolic 3-manifolds with non-right-orderable fundamental groups appeared in
[RSS03, DPT05, Fen07] and an early preprint version of this paper. (A group is right
orderable if and only if it is left orderable.)

In both [RSS03] and [Fen07], the groups considered have presentations of the
form

G = 〈t, a, b|at
= am−1b−1a−1, bt

= a−1, t p[a, b]q
= 1〉,

where m, p, q are integers and p, q are relatively prime. In [RSS03], the case that m ≤
−3 and p

q
∈ [1,∞) is analyzed. In [Fen07], the case that m ≤ −4 and |p − 2q| = 1

is examined.

In this paper, we investigate the more general case where G = G(φ, p, q) has pre-
sentation

G = 〈t, a, b|at
= aφ∗ , bt

= bφ∗ , t p[a, b]q
= 1〉,

where φ∗ is any automorphism of the rank two free group F = F(a, b) such that

• [a, b]φ∗ = [a, b], and
• the automorphism φ♯ of the abelianization F/[F, F] ∼= Z⊕Z induced by φ∗ lies in

SL2(Z), with |Trace(φ♯)| > 2.

In other words, φ∗ is induced by an orientation preserving pseudo-Anosov homeo-
morphism φ of a once punctured torus (see [Ni17, FH82, CJR84, Ind06]). We show
that if either Trace(φ♯) < −2 and p

q
∈ [1,∞] or Trace(φ♯) > 2 and (p, q) = (1, 0),

then G(φ, p, q) is not right orderable.
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As noted in [DPT05], there is some overlap between the latter case and the work
of Da̧bkowski, Przytycki, and Togha. Indeed, if

φ♯ =

[
1 1
1 2

]
,

then the manifold denoted by M(n)
L[2,2]

in [DPT05] has fundamental group G(φn, 1, 0).
Let us pause here to explain some notation and conventions we used above and

will use throughout the paper. For g ∈ F and ψ ∈ Aut(F), we write gψ for the
image of g under the action of ψ. The action of Aut(F) on F, along with all other
group actions described in this paper, will be from the right, so if ψ1 and then ψ2

from Aut(F) are applied to g ∈ F, the resulting element is gψ1ψ2 . For a group G and
g, h ∈ G, we write gh for h−1gh. We write [g, h] for ghg−1h−1.

A group is called a 3-manifold group if it can be realized as the fundamental group
of a 3-manifold. The groups G(φ, p, q) described above are 3-manifold groups and
their study in [RSS03,Fen07] and the current paper was motivated by questions aris-
ing from the study of Reebless foliations and essential laminations in the associated
3-manifolds. In general, there is an interesting interplay between the existence of
Reebless foliations or, more generally, essential laminations in a 3-manifold M and
the existence of nontrivial actions of π1(M) on associated (not necessarily Hausdorff)
1-manifolds and trees.

Let us describe in more detail the construction of 3-manifolds with fundamental
groups G(φ, p, q). Let T be a once-punctured torus (a compact surface of genus one
with boundary ∂T ∼= S1), and let φ : T → T be a homeomorphism. The punctured

torus bundle M(φ) is the quotient space

M(φ) := (T × [0, 1])/((x, 0) ∼ (φ(x), 1)).

The map φ induces automorphisms φ∗ of F = π1(T), well-defined up to an inner
automorphism of F, and φ♯ of H1(T) ∼= Z ⊕ Z. The following facts are well known
(see [Ni17, FH82, CJR84, RSS03, Ind06]).

• The fundamental group π1(M(φ)) has presentation

(1.1) 〈t, a, b|at
= aφ∗ , bt

= bφ∗〉.

• The automorphism φ∗ maps [a, b] to one of its conjugates in F if φ preserves
orientation, and to a conjugate of [b, a] in F otherwise.

• If α ∈ Aut(F) fixes [a, b], then there is some φ such that φ∗ = α. Moreover,
for each A ∈ Aut(H1(T)) ∼= GL2(Z), there is some α ∈ Aut(F) that fixes [a, b]
and induces A on F/[F, F]. Therefore, for each A ∈ GL2(Z), there is some φ with
φ♯ = A.

• The manifolds M(φ) and M(ψ) are homeomorphic if and only if φ♯ is conjugate
to one of ψ♯, ψ

−1
♯ in GL2(Z). (This is due to Murasugi.)

• M(φ) is orientable if and only if φ♯ ∈ SL2(Z).

Now ∂M(φ) is a torus, and we can construct closed 3-manifolds M(φ, p, q) by per-
forming Dehn filling along ∂M(φ). We now briefly describe the construction of these
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manifolds, referring the reader to [Rol90] for general facts about Dehn surgery. We
will be interested in simple closed curves on ∂M(φ) that are images under the stan-
dard covering map c : R2 → ∂M(φ) of lines with rational slopes. Fixing a coordinate
system on R2, we say that a simple closed curve γ on ∂M(φ) has slope p/q ∈ Q∪{∞}
if c−1(γ) is a line of slope p/q in R2. It is known (see for example [CJR84, Ind06])
that the presentation (1.1) determines a unique choice of coordinate system on R2

for which the following claims hold true.

• For any x ∈ [0, 1], the fiber T × {x} in M(φ) intersects ∂M(φ) in a simple closed
curve γ. The line c−1(γ) has slope zero in R2.

• We may assume that the base point x0 used to determine π1(Mφ) lies on ∂M(φ).
There is a simple closed curve τ ⊂ ∂M(φ) through x0 that represents t in the
presentation given above. The line c−1(τ ) has infinite slope in R2.

If l is a line of rational slope p/q in R2, then c(l) is a simple closed curve on ∂M(φ).
We perform p/q-Dehn surgery on M(φ), obtaining the closed 3-manifold M(φ, p, q)
as follows. Let X = D2 × S1 be a solid torus (here D2 is a closed disc). Fix y ∈ S1 and
let f : ∂X → ∂M(φ) be a homeomorphism satisfying f (∂D2 × {y}) = c(l). Then
the homeomorphism type of the quotient space

M(φ, p, q) := (M(φ) ∪ X)/(x ∼ f (x))

does not depend on the choice of y or f . When p and q are relatively prime, we have

π1(M(φ, p, q)) ∼= G(φ, p, q).

Now we explain how, given a conjugacy class [C] in SL2(Z), we will choose A ∈
[C] and α ∈ Aut(F) that fixes [a, b] and induces A on F/[F, F]. By the comments
above, there is some φ with φ∗ = α (so φ♯ = A) and, having fixed [C], the homeo-
morphism type of M(φ) does not depend on our choice of A and α. Set

N :=

[
−1 0
0 −1

]
,U :=

[
1 1
0 1

]
, L :=

[
1 0
1 1

]
,

So N,U , L ∈ SL2(Z). For a sequence Λ = (k1, l1, . . . , kr, lr) of positive integers, set

XΛ :=
r∏

i=1

U ki Lli .

Then (see [FH82, CJR84, Ha92, Ind06]) every A ∈ SL2(Z) satisfying |Trace(A)| > 2
is conjugate in GL2(Z) to XΛ or NXΛ for some such sequence. In particular, if
Trace(A) > 2, then A is conjugate to some XΛ, while if Trace(A) < −2, then A is
conjugate to some NXΛ. Define N,U,L ∈ Aut(F) by

aN
= [a, b] a−1, bN

= ab−1a−1,

aU
= ab, bU

= b,

aL
= a, bL

= ba.
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Direct computation shows that

[a, b]
N

= [a, b]
U

= [a, b]
L

= [a, b] .

Moreover, N, U and L induce the automorphisms N, U , and L respectively on the
abelianization of F.

Given a sequence Λ as above, set

φ+
Λ :=

r∏
i=1

U
ki L

li ∈ Aut(F), and φ−

Λ
:= Nφ+

Λ ∈ Aut(F).

According to the discussion above, we may make the following assumption without
loss of generality, and the coordinate system on R2 described above is always chosen
having fixed φ∗ as described therein.

Assumption 1.1 Let φ be an orientation preserving homeomorphism of the once-

punctured torus T.

(i) If Trace(φ♯) > 2, then there is some Λ = (k1, l1, . . . , kr, lr) such that φ∗ = φ+
Λ

.

(ii) If Trace(φ♯) < −2, then there is some Λ = (k1, l1, . . . , kr, lr) such that φ∗ = φ−

Λ
.

Let Homeo+(R) be the group of orientation preserving homeomorphisms of R.
Our main results are as follows.

Theorem 1.2 If φ♯ ∈ SL2(Z) and Trace(φ♯) > 2, then there is no nontrivial homeo-

morphism from π1(M(φ, 1, 0)) to Homeo+(R).

Theorem 1.3 If φ♯ ∈ SL2(Z) and Trace(φ♯) < −2 and
p
q
∈ [1,∞], then there is no

nontrivial homomorphism from π1(M(φ, p, q)) to Homeo+(R).

By Thurston’s hyperbolic Dehn surgery Theorem (see [Th79]), infinitely many of
the manifolds M(φ, p, q) appearing in Theorem 1.3 are hyperbolic. In fact, the work
of Bleiler and Hodgson (see [BH96]) shows that for infinitely many φ, the mani-
fold M(φ, p, q) is hyperbolic whenever (p, q) 6= (0, 1). On the other hand, there
exist infinitely many hyperbolic 3-manifolds M = M(φ, p, q) admitting a nontrivial
homomorphism from π1(M) to Homeo+(R). Indeed, such a homomorphism was
shown to exist when Trace(φ♯) > 2 and q = 1 by Fenley in [Fen94].

Now we describe in more detail the applications of Theorems 1.2 and 1.3. Recall
that a foliation (see [CaCo99] for definitions and basic results on foliations) F of
a manifold M is called R-covered (see [Pl83]) if the leaf space L̃ of the foliation F̃

of the universal cover M̃ of M obtained by lifting F is homeomorphic to R. The
foliation F is transversely orientable (sometimes called coorientable) if each leaf of
F admits an oriented transversal in such a manner that the given orientations are
locally consistent. In any case, the action of π1(M) on M̃ determines an action of
π1(M) on L̃ by homeomorphisms, and if F is R-covered and transversely orientable
this action gives a nontrivial homomorphism from π1(M) to Homeo+(R). Thus we
obtain Corollary 1.4. It is not hard to show that if φ♯ ∈ SL2(Z) then the abelianization
of G(φ, p, q) has order |p(Trace(φ♯) − 2)|. It follows that if p and Trace(φ♯) are both
odd, then G(φ, p, q) has no subgroup of index two, and Corollary 1.4 still holds when
we remove the phrase “transversely orientable”.
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Corollary 1.4 If φ♯ ∈ SL2(Z) and either

• Trace(φ♯) < −2 and
p
q
∈ [1,∞], or

• Trace(φ♯) > 2 and (p, q) = (1, 0),

then M(φ, p, q) admits no transversely orientable R-covered foliation.

As mentioned above, it was shown in [RSS03] that certain of the M(φ, p, q) de-
scribed in Theorem 1.3 admit no Reebless foliation and therefore no transversely
orientable R-covered foliation. On the other hand, it is known (see [Ha92]) that if
φ♯ ∈ SL2(Z) and either

(i) Trace(φ♯) > 2 and q 6= 0 or
(ii) p

q
< 1,

then M(φ, p, q) does admit a Reebless foliation.

A group G is right orderable if there exists a total ordering ≺ on G such that for all
x, y, g ∈ G, we have x ≺ y if and only if xg ≺ yg. It is known ([Li99]) that a count-
able group G is right orderable if and only if there is an injective homomorphism
from G to Homeo+(R). Thus we have the following result.

Corollary 1.5 If φ♯ ∈ SL2(Z) and either

• Trace(φ♯) < −2 and p ≥ q ≥ 1 or (p, q) = (1, 0) or
• Trace(φ♯) > 2 and (p, q) = (1, 0),

then π1(M(φ, p, q)) is not right orderable.

We prove Theorems 1.2 and 1.3 as follows. Given coprime integers p, q, and e ∈
{+,−}, and a sequence Λ = (k1, l1, . . . , kr, lr), let Ge(Λ, p, q) be the group with
generators t, a, b subject to the relations

(R1) t−1at = aφe
Λ ,

(R2) t−1bt = bφe
Λ ,

(R3) t p [a, b]
q
= 1.

Thus, if φ is a homeomorphism of the once punctured torus S and φ∗ = φe
Λ

, then
π1(M(φ, p, q)) = Ge(Λ, p, q). Note that Ge(Λ, 1, 0) is the group with generators a, b

subject to the relations

(S1) a = aφe
Λ ,

(S2) b = bφe
Λ .

We say that a subgroup G of Homeo(R) has a global fixed point if there is some
x ∈ R such that xσ = x for each σ ∈ G. Let G be a nontrivial subgroup of
Homeo+(R). Then the set of global fixed points of G is not dense in R. Therefore,
there is some G-invariant interval (x, y) ⊆ R such that G has no global fixed point
in (x, y). Thus, Theorems 1.2 and 1.3 follow immediately from the following results,
whose proofs appear in the next two sections.

Theorem 1.6 Let Λ = (k1, l1, . . . , kr, lr) be a sequence of positive integers and let

φ = φ+
Λ

. Let f : F → Homeo+(R) be a homomorphism such that f (a) = f (aφ) and

f (b) = f (bφ). The Image( f ) has a global fixed point.
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Theorem 1.7 Let Λ = (k1, l1, . . . , kr, lr) be a sequence of positive integers. Let p, q

be relatively prime integers with p ≥ q ≥ 1 or (p, q) = (1, 0). Let f : G−(Λ, p, q) →
Homeo+(R) be a homomorphism. Then Image( f ) has a global fixed point.

Our proofs of Theorems 1.6 and 1.7 use induction on the parameter r appearing in
the sequence Λ = (k1, l1, . . . , kr, lr). We find it interesting that this technique works,
as it is unclear that there is any close algebraic similarity between Ge(Λ, p, q) and
Ge(Γ, p, q) when Γ is obtained from Λ = (k1, l1, . . . , kr, lr) by appending kr+1, lr+1.

2 The Proof of Theorem 1.6

To prove Theorem 1.6, let us assume for contradiction that, with φ = φ+
Λ

as in the
theorem, there exists a homomorphism f : F → Homeo+(R) satisfying f (a) = f (aφ)
and f (b) = f (bφ), whose image has no global fixed point. For x ∈ R and g ∈ F, we
write xg for x f (g).

Lemma 2.1 For each x ∈ R, we have xa 6= x and xb 6= x.

Proof Fix x ∈ R and assume for contradiction that xa = x. If xb = x, then x is a
global fixed point for Image( f ), a contradiction. Say xb > x. Since aφ is a product of
positive powers of a and b, we have xaφ > x, contradicting f (a) = f (aφ). A similar
argument shows that we cannot have xb < x, and further arguments of the same type
supply contradictions under the initial assumption that xb = x.

Using Lemma 2.1 and the Intermediate Value Theorem, we see that either xa > x

for all x ∈ R or xa < x for all x ∈ R, and the same holds for b. We cannot have xa > x

and xb > x for all x ∈ R, since from this we can derive xaφ > xa for all x ∈ R, con-
tradicting f (a) = f (aφ). Similarly, we cannot have xa < x and xb < x for all x ∈ R.
If xa < x and xb > x for all x ∈ R, we may conjugate Image( f ) by any orientation
reversing homeomorphism of R to get a homomorphism f − : F → Homeo+(R) sat-
isfying f −(a) = f −(aφ), f −(b) = f −(bφ), x f −(a) > x, and x f −(b) < x, whose
image has no global fixed point. Therefore, we may continue under the following
assumption without loss of generality.

Assumption 2.2 For all x ∈ R, we have xa > x and xb < x.

Let us now examine the case r = 1, so φ = U
k1L

l1 . In this case, we calculate that

aφ
= a(bal1 )k1(2.1)

and

bφ
= bal1 .(2.2)

Since f (bφ) = f (b), it follows from (2.2) that f (al1 ) = 1, and we cannot have xa > x

for all x ∈ R, contradicting Assumption 2.2. Thus we proceed under the following
assumption.

Assumption 2.3 We have r ≥ 2.
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Now we introduce some useful notation. Having fixed φ = φ+
Λ

, we define, for
1 ≤ i ≤ j ≤ r,

φ(i, j) :=
j∏

h=i

U
khL

lh .

Lemma 2.4 We have

aφ
= aφ(2,r)

(bφ)k1(2.3)

and

bφ
= bφ(2,r)

(aφ(2,r)

)l1 .(2.4)

Proof We proceed by induction on r. The base case is r = 2. In this case, we use
(2.1) and (2.2) to get

aφ
= (a(bal1 )k1 )U

k2 L
l2

= aU
k2 L

l2
((bal1 )U

k2 L
l2

)k1

= aφ(2,2)

((bU
k1 L

l1
)U

k2 L
l2

)k1 = aφ(2,2)

(bφ)k1

and

bφ
= (bal1 )U

k2 L
l2

= bU
k2 L

l2
(aU

k2 L
l2

)l1 = bφ(2,2)

(aφ(2,2)

)l1

as claimed. Now assume r > 2. Using our inductive hypothesis, we get

aφ
= (aφ(1,r−1)

)U
kr L

lr

= (aφ(2,r−1)

(bφ(1,r−1)

)k1 )U
kr L

lr

= (aφ(2,r−1)

)U
kr L

lr

((bφ(1,r−1)

)U
kr L

lr

)k1 = aφ(2,r)

(bφ)k1

and

bφ
= (bφ(1,r−1)

)U
kr L

lr

= (bφ(2,r−1)

(aφ(2,r−1)

)l1 )U
kr L

lr

= (bφ(2,r−1)

)U
kr L

lr

((aφ(2,r−1)

)U
kr L

lr

)l1 = bφ(2,r)

(aφ(2,r)

)l1 .

Corollary 2.5 For all x ∈ R, we have

(2.5) xalr
2∏

m=r

(aφ(m,r)

)lm−1 = x.

(By
∏2

m=r cm we mean the product crcr−1 · · · c2, for any c2, . . . , cr.)

Proof Applying (2.4) repeatedly, we get

bφ
= bφ(2,r)

(aφ(2,r)

)l1

= bφ(3,r)

(aφ(3,r)

)l2 (aφ(2,r)

)l1

= . . .

= bφ(r,r) 2∏
m=r

(aφ(m,r)

)lm−1 .

Now bφ(r,r)

= balr by (2.2), so (2.5) follows from f (bφ) = f (b).
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Corollary 2.6 For 1 ≤ m ≤ r and all x ∈ R, we have

(2.6) xaφ(m,r)

> x

and xbφ(m,r)

< x.

Proof We proceed by induction on m, the base case m = 1 being a restatement of

Assumption 2.2. Now assume m > 1. By inductive hypothesis, we have xaφ(m−1,r)

> x

and xbφ(m−1,r)

< x for all x ∈ R. Now by (2.3), we have (for each x ∈ R)

xaφ(m−1,r)

= xaφ(m,r)

(bφ(m−1,r)

)km−1 < xaφ(m,r)

,

so we must have xaφ(m,r)

> x for all x. Hence by (2.4), we have

xbφ(m−1,r)

= xbφ(m,r)

(aφ(m,r)

)l1 > xbφ(m,r)

,

so we must have xbφ(m,r)

< x.

Combining Corollaries 2.5 and 2.6, we obtain the contradiction that proves The-
orem 1.6. Indeed, by Assumption 2.2 and (2.6), we have

xalr
2∏

m=r

(aφ(m,r)

)lm−1 > x

for all x ∈ R, contradicting (2.5).

3 The Proof of Theorem 1.7

We will begin by proving Theorem 1.7 under the following assumption and then
explain how to adjust the given proof to handle the case (p, q) = (1, 0).

Assumption 3.1 We have p ≥ q ≥ 1.

Now we introduce some additional notation. Fix Λ = (k1, l1, . . . , kr, lr) and let
φ = φ−

Λ
. For 1 ≤ i ≤ j ≤ r, set

Λ
(i, j) := (ki , li , . . . , k j , l j)

and
φ(i, j) := φ−

Λ(i, j) = Nφ(i, j).

For i > j, set φ(i, j) = 1. Now define

uΛ := (b−1)φ(2,r) , vΛ := (a−1)φ(2,r) , and wΛ := vl1−1
Λ

uΛvΛ.

We call a nonidentity element g of the free group F(a, b) totally negative if we can
write g in reduced form as

g =

s∏
i=1

aρi bθi

with ρi , θi ≤ 0 for all i ∈ [s].
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Lemma 3.2 Each of uΛ, vΛ, wΛ ∈ F(a, b) is totally negative. Also,

aφ
= [a, b] vΛwk1

Λ
and(3.1)

bφ
= wΛ.(3.2)

Proof We proceed by induction on r. If r = 1, direct calculation gives

aφ
= [a, b] a−1(a1−l1 b−1a−1)k1

and (since bN
= b−1[a, b]−1)

bφ
= a1−l1 b−1a−1.

Hence the claim holds in this case. Now assume that r > 1. We have

φ = φ(1,r−1)U
kr L

lr

and φ(2,r) = φ(2,r−1)U
kr L

lr . It follows immediately that

uΛ = uU
kr L

lr

Λ(1,r−1)
and(3.3)

vΛ = vU
kr L

lr

Λ(1,r−1)
.(3.4)

It follows from (3.3) and (3.4) that wΛ = wU
kr L

lr

Λ(1,r−1)
. If g ∈ F(a, b) is totally negative,

then gU and gL are totally negative. It now follows from the inductive hypothesis
that uΛ, vΛ and wΛ are totally negative. Our inductive hypothesis also gives

aφ
= aφ(1,r−1)U

kr L
lr

= ([a, b]
U

kr L
lr

)vU
kr L

lr

Λ(1,r−1)
(wU

kr L
lr

Λ(1,r−1)
)k1 = [a, b] vΛwk1

Λ

and
bφ

= bφ(1,r−1)U
kr L

lr

= wU
kr L

lr

Λ(1,r−1)
= wΛ

as claimed.

Lemma 3.3 If r ≥ 2, then

uΛ = vl2
Λ(2,r)

uΛ(2,r)
(3.5)

and

vΛ = uk2

Λ
vΛ(2,r)

(3.6)

Proof Again we use induction on r. If r = 2, then uΛ(2,r)
= (b−1)φ(3,2) = b−1,

and similarly, vΛ(2,r)
= a−1. Now direct calculation gives uΛ = a−l2 b−1 and vΛ =

(a−l2 b−1)k2 a−1, and the claim of the lemma holds in this case. Now assume r > 2.
Using the inductive hypothesis, we get

uΛ = uU
kr L

lr

Λ(1,r−1)
= (vU

kr L
lr

Λ(2,r−1)
)l2 (uU

kr L
lr

Λ(2,r−1)
) = vl2

Λ(2,r)
uΛ(2,r)

and

vΛ = vU
kr L

lr

Λ(1,r−1)
= (uU

kr L
lr

Λ(1,r−1)
)k2 vU

kr L
lr

Λ(2,r−1)
= uk2

Λ
vΛ(2,r)

as claimed.
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Corollary 3.4 There is no homomorphism ψ : F(a, b) → Homeo+(R) satisfying all

of the conditions

(i) xψ(a) > x for all x ∈ R,

(ii) xψ(b) < x for all x ∈ R,

(iii) xψ(uΛ) < x for all x ∈ R, and

(iv) xψ(vΛ) > x for all x ∈ R.

Proof Again we use induction on r. As noted above, if r = 1, we have uΛ = b−1

and conditions (ii) and (iii) cannot be satisfied simultaneously. Now assume r > 1.
By equation (3.6) of Lemma 3.3, if (iii) and (iv) are both satisfied, then we have
xψ(vΛ(2,r)

) > x for all x ∈ R. Now (iii) and equation (3.5) of Lemma 3.3 force
xψ(uΛ(2,r)

) < x for all x ∈ R. This means that conditions (i)–(iv) are satisfied if we
replace Λ with Λ(2,r), which contradicts our inductive hypothesis.

Now we prove Theorem 1.7. Assume (for contradiction) that f : G−(Λ, p, q) →
Homeo+(R) is a homomorphism whose image has no global fixed point. We
write t, a, b, uΛ, vΛ, wΛ for the respective images of t, a, b, uΛ, vΛ, wΛ ∈ F(a, b, t) in
G−(Λ, p, q). Set

α := f (a), β := f (b), γ := f ([a, b]), τ := f (t),

µ := f (uΛ), ν := f (vΛ), and ω := f (wΛ).

Since φ fixes [a, b], we know that τ and γ commute. The following simple result
will be of great use.

Lemma 3.5 Let g, h be elements of a group G such that gh = hg and there exist

relatively prime integers p, q with g p
= h−q. Then there is some k ∈ G such that g = kq

and h = k−p.

To prove Lemma 3.5, we simply take integers r, s with rp + sq = 1 and verify
that k = gsh−r has the desired properties. The next corollary, which we will use
repeatedly, follows immediately.

Corollary 3.6 There is some κ ∈ Homeo+(R) such that τ = κq and γ = κ−p. In

particular, if p ≥ q ≥ 1, then, for any x ∈ R, one of the following conditions holds.

(K1) xκ = xτ = xγ = x,

(K2) xγ−1 ≤ xτ ≤ xκ < x < xκ−1 ≤ xτ−1 ≤ xγ, or

(K3) xγ ≤ xτ−1 ≤ xκ−1 < x < xκ ≤ xτ ≤ xγ−1

Lemma 3.7 There is no x ∈ R such that xα = x.

Proof Assume for contradiction that there is some x ∈ R satisfying xα = x. Note
first that we cannot have xβ = x, since this would force xγ = x, which in turn would
force xτ = x (by Corollary 3.6), making x a global fixed point for Image( f ).

Moreover, since vΛ and wΛ are totally negative words in a, b, we see that

• if xβ < x then xω > x and xν > x, and
• if xβ > x then xω < x and xν < x.
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We can therefore conclude that xτ 6= x. Indeed, if xτ = x, then xβτ = xτ−1βτ =

xω. However, this is impossible, because if xβ > x, then xω = xβτ > xτ = x, and
similarly, if xβ < x, then xω < x.

We may now assume without loss of generality that xτ > x. (As we argued earlier,
if xτ < x, we may conjugate Image( f ) by an orientation reversing homeomorphism.)
Now case (K3) of Corollary 3.6 holds.

If xβ > x, then xτ−1βτ = xω < x, so (xτ−1)β < xτ−1. Similarly, if xβ < x,
then (xτ−1)β > xτ−1. In either case, the Intermediate Value Theorem guarantees
that there is some y ∈ (xτ−1, x) such that yβ = y.

Note that yα 6= y. In fact, since yγ−1
= yβαβ−1α−1

= (yα)β−1α−1, we must
have yα > y. (Otherwise, yγ−1 < x, which gives y < xγ ≤ xτ−1, a contradiction.)
Similarly, xγ = (xβ)α−1β−1 forces xβ < x. In summary, we have

• xτ−1 < y < yα < x.

Now relation (R1), along with (3.1) and (3.2), gives

xν−1γ−1τ−1ατ = xωk1 = (xτ−1)βk1τ

< yβk1τ = yτ .

Since vΛ is totally negative in a and b, we have y < yν−1. It now follows that

yγ−1τ−1 < (yν−1)γ−1τ−1 < xν−1γ−1τ−1

< yα−1 < y.

It follows that yγ−1 < yτ . Thus case (K2) of Corollary 3.6 holds, and we have
yτ < y. Now xτ−1 < y forces x < yτ < y, giving the desired contradiction.

By Lemma 3.7 and the Intermediate Value Theorem, either xα > x for all x ∈ R

or xα < x for all x ∈ R. Now we may assume without loss of generality (once again
using conjugation by an orientation reversing homeomorphism if necessary) that we
have

(1) xα > x for all x ∈ R.

Relation (R1) and (3.1) give

νωk1 = γ−1τ−1ατ = τ−1γ−1ατ

= τ−1βαβ−1τ = (β−1τ )−1α(β−1τ ).

So, since α and νωk1 are conjugate in Homeo+(R), it follows from our assumption
xα > x for all x ∈ R that

(3.7) xνωk1 > x

for all x ∈ R. Since νωk1 is totally negative and xα > x for all x ∈ R we must have

(2) xβ < x for all x ∈ R.
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By (3.2), ω and β are conjugate in Homeo+(R). Therefore,

(3.8) xω < x

for all x ∈ R. Combining this with (3.7), we get

(4) xν > x for all x ∈ R.

We know that ω = ν l1−1µν, and combining this with (4) and (3.8) gives

(3) xµ < x for all x ∈ R.

Now (i)–(iv) give a contradiction to Corollary 3.4, and this completes the proof of
Theorem 1.7 under Assumption 3.1.

Finally, assume that (p, q) = (1, 0). We retain the notation introduced above.
Note that Corollary 3.4 and its proof do not involve (p, q). Therefore, the corollary
holds under our assumption. Lemma 3.7 also holds. Indeed, if xα = x, then we
cannot have xβ = x, as G−(Λ, p, q) is generated by a and b. We may assume that
xβ > x. Since bφ is totally negative, we have x f (bφ) < x. This contradicts b = bφ.
So, we may assume that xα > x for all x ∈ R. Now we may proceed as we did when
p ≥ q ≥ 1. We have (since τ = 1) νωk1 = βαβ−1, so xνωk1 > x for all x. This forces
xβ < x for all x, which in turn forces xν > x and xµ < x for all x as it did before,
and our proof is complete.
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