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Non-Right-Orderable 3-Manifold Groups

R. Roberts and J. Shareshian

Abstract. 'We exhibit infinitely many hyperbolic 3-manifold groups that are not right-orderable.

1 Introduction

Orderability of groups has been studied for some time, and recent attention has
been paid to orderability of fundamental groups of 3-manifolds, notably in the pa-
per [BRWO02] of Boyer, Rolfsen and Wiest. In that paper, the authors determine ex-
actly which nonhyperbolic, compact, P?-irreducible 3-manifolds have right order-
able fundamental groups. As mentioned in [BRWO02], some hyperbolic 3-manifolds
have right orderable fundamental groups while others do not. The first examples of
hyperbolic 3-manifolds with non-right-orderable fundamental groups appeared in
[RSS03,DPT05, Fen07] and an early preprint version of this paper. (A group is right
orderable if and only if it is left orderable.)

In both [RSS03] and [Fen07], the groups considered have presentations of the
form

G=(t,a,bla’ =a™ b 'a” b =a " t’[a,b]? = 1),

where m, p, q are integers and p, q are relatively prime. In [RSS03], the case that m <
—3and % € [1, 00) is analyzed. In [Fen07], the case thatm < —4 and |p — 2¢q| =1
is examined.

In this paper, we investigate the more general case where G = G(¢, p, q) has pre-
sentation

G={t,a,bla’ = a® b = b*,1P[a,b) = 1),

where ¢, is any automorphism of the rank two free group F = F(a, b) such that

e [a,b]** = [a,b],and

* the automorphism ¢; of the abelianization F/[F, F] = Z & Z induced by ¢, lies in
SL,(Z), with | Trace(¢s)| > 2.

In other words, ¢, is induced by an orientation preserving pseudo-Anosov homeo-

morphism ¢ of a once punctured torus (see [Nil17, FH82, CJR84,Ind06]). We show

that if either Trace(¢;) < —2 and g € [1,00] or Trace(¢y) > 2 and (p,q) = (1,0),

then G(¢, p, q) is not right orderable.
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As noted in [DPTO05], there is some overlap between the latter case and the work
of Dabkowski, Przytycki, and Togha. Indeed, if

¢>u[} ﬂ,

then the manifold denoted by Mf;)_zl in [DPT05] has fundamental group G(¢", 1, 0).

Let us pause here to explain some notation and conventions we used above and
will use throughout the paper. For g € F and ¢ € Aut(F), we write g¥ for the
image of g under the action of ¢. The action of Aut(F) on F, along with all other
group actions described in this paper, will be from the right, so if ¢); and then 1,
from Aut(F) are applied to g € F, the resulting element is ¢¥1%2. For a group G and
g, h € G, we write ¢" for h~'gh. We write [g, h] for ghg™'h~'.

A group is called a 3-manifold group if it can be realized as the fundamental group
of a 3-manifold. The groups G(¢, p,q) described above are 3-manifold groups and
their study in [RSS03, Fen07] and the current paper was motivated by questions aris-
ing from the study of Reebless foliations and essential laminations in the associated
3-manifolds. In general, there is an interesting interplay between the existence of
Reebless foliations or, more generally, essential laminations in a 3-manifold M and
the existence of nontrivial actions of 7r; (M) on associated (not necessarily Hausdorff)
1-manifolds and trees.

Let us describe in more detail the construction of 3-manifolds with fundamental
groups G(¢, p, q). Let T be a once-punctured torus (a compact surface of genus one
with boundary OT =2 S'), and let ¢: T — T be a homeomorphism. The punctured
torus bundle M(¢) is the quotient space

M(@) == (T x [0,1])/((x,0) ~ (¢(x), 1)).

The map ¢ induces automorphisms ¢, of F = m,(T), well-defined up to an inner
automorphism of F, and ¢; of H(T) = 7 @ /Z. The following facts are well known
(see [Nil7, FH82, CJR84, RSS03, Ind06]).

¢ The fundamental group m(M(¢)) has presentation
(1.1) (t,a,bla" = a” b = b**).

¢ The automorphism ¢, maps [a, b] to one of its conjugates in F if ¢ preserves
orientation, and to a conjugate of [b, a] in F otherwise.

e If « € Aut(F) fixes [a, b], then there is some ¢ such that ¢, = «. Moreover,
for each A € Aut(H,(T)) = GL,(Z), there is some o« € Aut(F) that fixes [a, b]
and induces A on F/[F, F]. Therefore, for each A € GL,(Z), there is some ¢ with
¢y = A.

e The manifolds M(¢) and M(1)) are homeomorphic if and only if ¢; is conjugate
to one of 9y, wt_ "in GL,(Z). (This is due to Murasugi.)

* M(¢) is orientable if and only if ¢y € SL,(Z).

Now OM(¢) is a torus, and we can construct closed 3-manifolds M (¢, p, q) by per-
forming Dehn filling along OM(¢). We now briefly describe the construction of these
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manifolds, referring the reader to [Rol90] for general facts about Dehn surgery. We

will be interested in simple closed curves on IM(¢) that are images under the stan-

dard covering map c: R* — OM(¢) of lines with rational slopes. Fixing a coordinate
system on R?, we say that a simple closed curve ¥ on IM(¢) has slope p/q € QU{oo}
if c7!(7) is a line of slope p/q in R?. It is known (see for example [CJR84,nd06])

that the presentation (II) determines a unique choice of coordinate system on R?

for which the following claims hold true.

e Foranyx € [0, 1], the fiber T x {x} in M(¢) intersects IM(¢) in a simple closed
curve 7. The line ¢~ !(7y) has slope zero in R%.

* We may assume that the base point x; used to determine 7 (M) lies on OM(¢).
There is a simple closed curve 7 C OM(¢) through xy that represents ¢ in the
presentation given above. The line ¢~ !(7) has infinite slope in R?.

IfIis a line of rational slope p/q in R?, then ¢(I) is a simple closed curve on OM(¢).
We perform p/q-Dehn surgery on M(¢), obtaining the closed 3-manifold M(¢, p, q)
as follows. Let X = D? x S! be a solid torus (here D? is a closed disc). Fix y € S! and
let f: 9X — OM(¢) be a homeomorphism satisfying f(OD* x {y}) = c(I). Then
the homeomorphism type of the quotient space

M(¢, p,q) == (M(¢) UX)/(x ~ f(x))

does not depend on the choice of y or f. When p and q are relatively prime, we have

Wl(M(anpvq)) = G(¢aP7‘1)

Now we explain how, given a conjugacy class [C] in SL,(Z), we will choose A €
[C] and o € Aut(F) that fixes [a, b] and induces A on F/[F, F]. By the comments
above, there is some ¢ with ¢, = « (so ¢; = A) and, having fixed [C], the homeo-
morphism type of M(¢) does not depend on our choice of A and «. Set

-1 0 1 1 1 0
e I R R

SoN,U,L € SLy(Z). For asequence A = (ky, 1y, ..., k;, 1) of positive integers, set

Xy = [[UNLE
i=1
Then (see [FH82, CJR84,Ha92,Ind06]) every A € SL,(7) satisfying | Trace(A)| > 2
is conjugate in GL,(Z) to Xy or NX, for some such sequence. In particular, if
Trace(A) > 2, then A is conjugate to some X, while if Trace(A) < —2, then A is
conjugate to some NX,. Define N, U, L € Aut(F) by

a =la,bla, PN =ab a7,
a% = ab, b =0,
a“ =a b* = ba

https://doi.org/10.4153/CMB-2010-076-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2010-076-4

Non-Right-Orderable 3-Manifold Groups 709

Direct computation shows that
[a,0)™ = [a,0)"" = [a,b]" = [a,b].

Moreover, N, U and £ induce the automorphisms N, U, and L respectively on the
abelianization of F.
Given a sequence A as above, set

o == JJUbLY € Aut(F), and ¢, = N, € Aut(F).
i=1
According to the discussion above, we may make the following assumption without
loss of generality, and the coordinate system on IR? described above is always chosen
having fixed ¢, as described therein.

Assumption 1.1 Let ¢ be an orientation preserving homeomorphism of the once-
punctured torus T.

(i) IfTrace(¢y) > 2, then thereis some A = (ki, h,. .., ky, I.) such that ¢, = ¢}.
(if) If Trace(¢y) < —2, then thereis some A = (ky, L, ..., k., 1I,) such that .. = ¢} .

Let Homeo™ (R) be the group of orientation preserving homeomorphisms of R.
Our main results are as follows.

Theorem 1.2 If ¢y € SLy(Z) and Trace(¢y) > 2, then there is no nontrivial homeo-
morphism from w1 (M(¢, 1,0)) to Homeo™ (R).

Theorem 1.3 If ¢y € SLy(Z) and Trace(¢y) < —2 and % € [1, ], then there is no
nontrivial homomorphism from w(M(¢, p, q)) to Homeo™ (R).

By Thurston’s hyperbolic Dehn surgery Theorem (see [Th79]), infinitely many of
the manifolds M(¢, p, q) appearing in Theorem[I3]are hyperbolic. In fact, the work
of Bleiler and Hodgson (see [BH96]) shows that for infinitely many ¢, the mani-
fold M(¢, p, q) is hyperbolic whenever (p,q) # (0,1). On the other hand, there
exist infinitely many hyperbolic 3-manifolds M = M(¢, p, q) admitting a nontrivial
homomorphism from 7;(M) to Homeo* (R). Indeed, such a homomorphism was
shown to exist when Trace(¢;) > 2 and g = 1 by Fenley in [Fen94].

Now we describe in more detail the applications of Theorems[[.2]land [[.3] Recall
that a foliation (see [CaCo099] for definitions and basic results on foliations) J of
a manifold M is called R-covered (see [P183]) if the leaf space L of the foliation F
of the universal cover M of M obtained by lifting F is homeomorphic to R. The
foliation JF is transversely orientable (sometimes called coorientable) if each leaf of
JF admits an oriented transversal in such a manner that the given orientations are
locally consistent. In any case, the action of 7r; (M) on M determines an action of
71 (M) on L by homeomorphisms, and if F is R-covered and transversely orientable
this action gives a nontrivial homomorphism from 7 (M) to Homeo* (R). Thus we
obtain Corollary[L.4] It is not hard to show that if ¢; € SL,(Z) then the abelianization
of G(¢, p, q) has order | p(Trace(¢) — 2)|. It follows that if p and Trace(¢y) are both
odd, then G(¢, p, q) has no subgroup of index two, and Corollary[L4]still holds when
we remove the phrase “transversely orientable”.
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Corollary 1.4 If ¢y € SL,(Z) and either

e Trace(¢y) < —2 and% € [1,00], or
e Trace(¢y) > 2 and (p,q) = (1,0),

then M(&, p, q) admits no transversely orientable R-covered foliation.

As mentioned above, it was shown in [RSS03] that certain of the M (¢, p, q) de-
scribed in Theorem [[3] admit no Reebless foliation and therefore no transversely
orientable R-covered foliation. On the other hand, it is known (see [Ha92]) that if
¢y € SL,(7) and either

(i) Trace(¢y) > 2and q # 0 or
(ii) % <1,
then M(¢, p, q) does admit a Reebless foliation.
A group G is right orderable if there exists a total ordering < on G such that for all
X, ¥, € G, we have x < y if and only if xg < yg. It is known ([Li99]) that a count-

able group G is right orderable if and only if there is an injective homomorphism
from G to Homeo* (R). Thus we have the following result.

Corollary 1.5 If ¢; € SL,(Z) and either

e Trace(¢y) < —2and p > q > 1or(p,q) = (1,0) or
* Trace(¢y) > 2and (p,q) = (1,0),

then m(M(¢, p, q)) is not right orderable.

We prove Theorems[[.2]and [[.3] as follows. Given coprime integers p,q, and e €
{+,—}, and a sequence A = (ki,I},... k1), let G°(A, p,q) be the group with
generators f, a, b subject to the relations
(R1) t~'at = a%,

(R2) t~ bt = b,
(R3) t? [a,b]T = 1.

Thus, if ¢ is a homeomorphism of the once punctured torus S and ¢.. = ¢4, then
m(M(¢, p,q)) = G°(A, p, q). Note that G°(A, 1, 0) is the group with generators a, b
subject to the relations

(S1) a = a%,

(S2) b = b%.
We say that a subgroup G of Homeo(R) has a global fixed point if there is some
x € R such that xo = x for each ¢ € G. Let G be a nontrivial subgroup of

Homeo™ (R). Then the set of global fixed points of G is not dense in R. Therefore,
there is some G-invariant interval (x, y) C R such that G has no global fixed point
in (x, y). Thus, Theorems[[.2]and [[3]follow immediately from the following results,
whose proofs appear in the next two sections.

Theorem 1.6 Let A = (ki,I,... k1) be a sequence of positive integers and let

¢ = ¢L. Let f: F — Homeo" (R) be a homomorphism such that f(a) = f(a®) and
f(b) = f(b?). The Image(f) has a global fixed point.
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Theorem 1.7 Let A = (ky,li,... k1) be a sequence of positive integers. Let p,q
be relatively prime integers with p > q > 1 or (p,q) = (1,0). Let f: G~ (A, p,q) —
Homeo™ (R) be a homomorphism. Then Image( f) has a global fixed point.

Our proofs of Theorems[L.6land[[.7luse induction on the parameter r appearing in
the sequence A = (ky, 11, ..., k;, I,). We find it interesting that this technique works,
as it is unclear that there is any close algebraic similarity between G°(A, p,q) and
G‘(T, p,q) when I is obtained from A = (ki, 1, ...,k I;) by appending k1, L+1.

2 The Proof of Theorem 1.6

To prove Theorem let us assume for contradiction that, with ¢ = ¢} as in the
theorem, there exists a homomorphism f: F — Homeo™ (R) satisfying f(a) = f(a®)
and f(b) = f(b?), whose image has no global fixed point. For x € Rand g € F, we
write xg for xf(g).

Lemma 2.1 Foreach x € R, we have xa # x and xb # x.

Proof Fix x € R and assume for contradiction that xa = x. If xb = x, then x is a
global fixed point for Image( f), a contradiction. Say xb > x. Since a? is a product of
positive powers of a and b, we have xa® > x, contradicting f(a) = f(a®). A similar
argument shows that we cannot have xb < x, and further arguments of the same type
supply contradictions under the initial assumption that xb = x. ]

Using Lemma[Z.I]and the Intermediate Value Theorem, we see that either xa > x
forallx € Rorxa < xforallx € R, and the same holds for b. We cannot have xa > x
and xb > x for all x € R, since from this we can derive xa® > xa for all x € R, con-
tradicting f(a) = f(a®). Similarly, we cannot have xa < x and xb < x for all x € R.
If xa < x and xb > x for all x € R, we may conjugate Image( f) by any orientation
reversing homeomorphism of R to get a homomorphism f~: F — Homeo" (R) sat-
isfying f~(a) = f~(a®), f~(b) = f~(b®), xf~(a) > x, and xf ~(b) < x, whose
image has no global fixed point. Therefore, we may continue under the following
assumption without loss of generality.

Assumption 2.2 Forallx € R, we have xa > x and xb < x.

Let us now examine the case r = 1,50 ¢ = Uk L In this case, we calculate that

(2.1) a® = a(bah)k
and
(2.2) b = bah.

Since f(b?) = f(b), it follows from (Z.2)) that f(all) = 1, and we cannot have xa > x
for all x € R, contradicting Assumption Thus we proceed under the following
assumption.

Assumption 2.3 Wehaver > 2.
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Now we introduce some useful notation. Having fixed ¢ = ¢}, we define, for
1<i<j<r

) o 7T 2k b
$ih = [T UM LH,
h=i

Lemma 2.4 We have

(2.3) a® = a®”" (p%)k
and
(2.4) b = b (09" )h

Proof We proceed by induction on r. The base case is r = 2. In this case, we use

2) and Z.2) to get
a@ _ (a(ball )kl )ukZLIZ _ aukZLIZ ((ball )ukZLIZ )k1
= a7 (U UL Y 0 ok

and

| kypl ky pl ky p I (2,2) (2,2)
b = (ball)uzﬂz _ buzﬁz(au 252)11 — b¢ (ad) )ll

as claimed. Now assume r > 2. Using our inductive hypothesis, we get
(=1 (b ol (2.—1) (1r—1) kr gl
a’ =" U =@ e )Y
((2,r—1) kr p Iy (1r—1) ke 1y (2,r)
=@ )@ )TEN = et ")

and

b¢ _ (bé(l.r—l))uerlr (b¢(2'r71)(a¢(2'r71))ll)Uk'LI'
_ (b(p(Z,rfl))uer[r((ad)(ZJfl))ukrnlr)ll _ bé(z.r)(ad)(z,r))ll ) -
Corollary 2.5 Forallx € R, we have
lr 2 (b("l”) IWI*I JE—
(2.5) xa" T] (a"")1 = x,
m=r

(By an:r ¢m we mean the product ¢,¢,—1 - - - ¢, for any ¢, . .., ¢,.)
Proof Applying (2:4) repeatedly, we get
b = b (@)

_ b¢(3,r) (a¢(3‘r))lz (ad’(z‘”)ll

5 (m,r)

(/)(m) 2 & L1
=v"" [ )=
m=r

Now %" = bak by 2.2), so [2.3) follows from f(b?) = f(b). [ ]
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Corollary 2.6 Forl < m < randallx € R, we have

(2.6) xa®"" > x

(m,r)
and xb? < x.

Proof We proceed by induction on m, the base case m = 1 being a restatement of
. . . . (m—1,r)
Assumption[Z2} Now assume m > 1. By inductive hypothesis, we have xa®"~ " > x

m—1,r)

and xb” < x for all x € R. Now by (2.3)), we have (for each x € R)
xa(b(mflj) _ xad)(rmr) (b</)(m—lﬁr) )km—l < xa(ﬁj(m.r) 7

so we must have xa®"” > x for all x. Hence by (2.4), we have

m—1,r) [ (m,r)

= xb?

m,r)
)

( (m,r) (
xb? @) > xb?

so we must have xb*"” < x. [ |
Combining Corollaries Z5land 2.6} we obtain the contradiction that proves The-
orem[L.6 Indeed, by AssumptionZ2land (2.6]), we have

2
(m.r)
xa” H (a¢"’ )lmfl > x
m=r

for all x € R, contradicting (2.5).

3 The Proof of Theorem[1.7]

We will begin by proving Theorem [I.7] under the following assumption and then
explain how to adjust the given proof to handle the case (p,q) = (1, 0).

Assumption 3.1 Wehavep > q > 1.

Now we introduce some additional notation. Fix A = (ki,1;,..., k., I.) and let
¢p=¢,.Forl <i<j<r,set

A = (ki Ly .. k)

and N
bi.j) = (/5;@]‘) = N‘ﬁ(w)-
Fori > j, set ¢ j) = 1. Now define

up = (b~ H%en oy = (a7 % and wy = kaluAvA.

We call a nonidentity element g of the free group F(a, b) totally negative if we can
write g in reduced form as

S
g= H a’ b

i=1

with p;,0; < 0foralli € [s].
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Lemma 3.2 Each of uy, vy, wa € F(a, b) is totally negative. Also,
(3.1) a® = [a, b] 1/,\w},<\l and
(3.2) b = wy.
Proof We proceed by induction on r. If r = 1, direct calculation gives
a® = [a,b]a Y@ a" R
and (since ¥ = b~ '[a,b] ")
b =a'"hp gl
Hence the claim holds in this case. Now assume that r > 1. We have
¢ = g —yUL"
and ¢ ) = qb(zvr_l)uk%l'. It follows immediately that

(3.3) uy = ul' %7 and
(3.4) = v}\lkrflr .

It follows from (IE) and (3.4) that wy = WA vt ogf g € F(a, D) is totally negative,
then g% and g* are totally negative. It now follows from the inductive hypothesis
that uy, vj and wy are totally negative. Our inductive hypothesis also gives

Uk wkr ol ke p Iy Uk ol
a? = a?0r- W = ([, bW )Y (KR Yk = (g, b] vy

Aar—1

and ki 1 k; !

b __ (,")(1‘,,1)1[ T urLr

b =b =Wx,, , = WA
as claimed. [ |
Lemma 3.3 Ifr > 2, then

]
(3.5) Uy = v,i A,
and
k
(3.6) VA = UX VA,
Proof Again we use induction on r. If r = 2, then uy,, = (b~1H)%2 = p~1,
g @n

and similarly, vy, = a~'. Now direct calculation gives uy = a=2b~! and vy =

(a~kb~1)kg~1 and the claim of the lemma holds in this case. Now assume r > 2.
Using the inductive hypothesis, we get

_ o ukgh umv Lo ubghy L
Un = Uy, = WA,y ) A2.r71)) — Ay UA
and
I ey LR VLGN ukw k;
VA = Vau,—y = WMag,o )=y Aoy — UaVAen
as claimed. [ |
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Corollary 3.4 There is no homomorphism 1 : F(a,b) — Homeo" (R) satisfying all
of the conditions

(i) xip(a) > xforallx € R,

(i) xp(b) < xforallx € R,

(iii) x(up) < x forallx € R, and
(iv) xp(vp) > xforallx € R.

Proof Again we use induction on r. As noted above, if r = 1, we have uy, = p!
and conditions (ii) and (iii) cannot be satisfied simultaneously. Now assume r > 1.
By equation (3.6) of Lemma [B.3] if (iii) and (iv) are both satisfied, then we have
xtp(va,,) > x forall x € R. Now (iii) and equation of Lemma [3.3] force
x(uy,,,) < x forall x € R. This means that conditions (i)-(iv) are satisfied if we
replace A with A, ), which contradicts our inductive hypothesis. [ |

Now we prove Theorem [[7] Assume (for contradiction) that f: G~ (A, p,q) —
Homeo*(R) is a homomorphism whose image has no global fixed point. We
write t, a, b, up, va, wy for the respective images of t,a, b, uy, vy, wn € F(a,b,t) in
G~ (A, p,q). Set

a:= f(a), B:=f(b), ~v:=f(ab]), 7:=f@),
we= f(up), v:=/f(vp), and w:= f(wy).

Since ¢ fixes [a, b], we know that 7 and v commute. The following simple result
will be of great use.

Lemma 3.5 Let g, h be elements of a group G such that gh = hg and there exist
relatively prime integers p, q with gP = h™4. Then there is some k € G such that g = k1
and h = k™P.

To prove Lemma we simply take integers r,s with rp + sq = 1 and verify
that k = g°h™" has the desired properties. The next corollary, which we will use
repeatedly, follows immediately.

Corollary 3.6 There is some k € Homeo® (R) such that 7 = klandy = k™ F. In
particular, if p > q > 1, then, for any x € R, one of the following conditions holds.
(K1) xk = x17 =x7 =%,

(K2) sy ' <xr <xn <x<xk ! <xr ! <xv,or

(K3) oy <xr77 ' <axn™l <x<xr <xr < xy~!

Lemma 3.7 Thereis nox € R such that xao = x.

Proof Assume for contradiction that there is some x € R satisfying xa = x. Note

first that we cannot have x3 = x, since this would force xy = x, which in turn would

force x7 = x (by Corollary[3.6]), making x a global fixed point for Image( f).
Moreover, since v5 and wy are totally negative words in a, b, we see that

e ifx0 < xthenxw > xand xv > x, and
e ifx0 > xthenxw < xand xv < x.
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We can therefore conclude that x7 # x. Indeed, if x7 = x, then x87 = x7~!87 =
xw. However, this is impossible, because if x3 > x, then xw = x07 > x7 = x, and
similarly, if x5 < x, then xw < x.

We may now assume without loss of generality that x7 > x. (As we argued earlier,
ifxT < x, we may conjugate Image( ) by an orientation reversing homeomorphism.)
Now case (K3) of Corollary[B.@ holds.

If x3 > x, then x7 7137 = xw < x, 50 (x771)3 < x7~L. Similarly, if x3 < x,
then (x771)3 > x7~!. In either case, the Intermediate Value Theorem guarantees
that there is some y € (x7 !, x) such that y3 = y.

Note that ya: # y. In fact, since yy~! = yBafla™! = (ya)3 'a™!, we must
have ya > y. (Otherwise, yy~! < x, which gives y < xy < x7~1, a contradiction.)
Similarly, xy = (x3)a~!37! forces x3 < x. In summary, we have

e xt!' <y <ya<x
Now relation (R1), along with (3.1) and (3.2), gives

w iy i  lar = xwf = (xr Y gR T
< yphr = yr.
Since v, is totally negative in a and b, we have y < yv~!. It now follows that

1

y,yf 7’71 < (y]/il)’yil'ril <x1/71fy*1 1

-
<yal<y.

It follows that yy~! < y7. Thus case (K2) of Corollary 3.8 holds, and we have
yT < y.Nowx7~! < y forcesx < y7 < y, giving the desired contradiction. ]

By Lemma[3.7land the Intermediate Value Theorem, either xa > x for all x € R
or xa < x for all x € R. Now we may assume without loss of generality (once again
using conjugation by an orientation reversing homeomorphism if necessary) that we
have

(1) xa > xforall x € R.
Relation (R1) and (B.I) give

1

vkt = vl lar =y lar

=77 1Baf™ T = (7' 1) BT ).

So, since @ and vw*' are conjugate in Homeo* (R), it follows from our assumption
xa > x for all x € R that

(3.7) xvwh > x

for all x € R. Since vwh is totally negative and xar > x for all x € R we must have
(2) x8 < xforallx € R.
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By (B2), w and (3 are conjugate in Homeo™ (R). Therefore,
(3.8) xw < x

for all x € R. Combining this with (3.7)), we get

(4) xv > xforallx € R.

We know that w = v/~ v, and combining this with (4) and (B.8]) gives
(3) xpp < xforallx € R.

Now (i)—(iv) give a contradiction to Corollary[3.4] and this completes the proof of
Theorem[I.Zlunder Assumption[3.1

Finally, assume that (p,q) = (1,0). We retain the notation introduced above.
Note that Corollary[3.4] and its proof do not involve (p, q). Therefore, the corollary
holds under our assumption. Lemma [3.7] also holds. Indeed, if xax = x, then we
cannot have x3 = x, as G (A, p, q) is generated by a and b. We may assume that
x3 > x. Since b? is totally negative, we have xf(b?) < x. This contradicts b = b°.
So, we may assume that xac > x for all x € R. Now we may proceed as we did when
p > q > 1. We have (since 7 = 1) vk = BaBY, so xvwh > x for all x. This forces
xf < x for all x, which in turn forces xv > x and xpu < x for all x as it did before,

and our proof is complete. ]
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