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Much faster heat/mass than momentum
transport in rotating Couette flows
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Heat and mass transport are generally closely correlated to momentum transport in
shear flows. This so-called Reynolds analogy between advective heat or mass transport
and momentum transport hinders efficiency improvements in engineering heat and mass
transfer applications. I show through direct numerical simulations that in plane Couette
and Taylor–Couette flow, rotation can strongly influence wall-to-wall passive tracer
transport and make it much faster than momentum transport, clearly in violation of
the Reynolds analogy. This difference between passive tracer transport, representative
of heat/mass transport, and momentum transport is observed in steady flows with large
counter-rotating vortices at low Reynolds numbers as well as in fully turbulent flows at
higher Reynolds numbers. It is especially large near the neutral (Rayleigh’s) stability
limit. The rotation-induced Coriolis force strongly damps the streamwise/azimuthal
velocity fluctuations when this limit is approached, while tracer fluctuations are much
less affected. Accordingly, momentum transport is much more reduced than tracer
transport, showing that the Coriolis force breaks the Reynolds analogy. At higher Reynolds
numbers, this strong advective transport dissimilarity is accompanied by approximate limit
cycle dynamics with intense low-frequency bursts of turbulence when approaching the
neutral stability limit. The study demonstrates that simple body forces can cause clear
dissimilarities between heat/mass and momentum transport in shear flows.

Key words: rotating turbulence, Taylor–Couette flow

1. Introduction

Advective transport of heat and mass by fluid motions is fundamental to planetary and
astrophysical processes and many engineering applications (Balbus & Hawley 1998; Kays,
Crawford & Weigand 2005). Efficient advective transport contributes to energy savings in
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buildings (Lake, Rezaie & Beyerlein 2017), process industry (Keil 2018) and data centres
(Alben 2017), and can be obtained by, e.g., applying wall roughness (Zhu et al. 2019) and
flow control (Yamamoto, Hasegawa & Kasagi 2013; Kaithakkal, Kametani & Hasegawa
2020). In particular, optimal transport given minimal power input generates energy savings
in applications (Alben 2017; Motoki, Kawahara & Shimizu 2018), but optimization is
challenging since flow vortices and eddies generally transport momentum and heat/mass
at similar rates. This so-called Reynolds analogy between transport of momentum and
heat/mass was postulated by Reynolds (1874), and applies to many shear flows (Kays
1994; Kays et al. 2005; Pirozzoli, Bernardini & Orlandi 2016) including astrophysical
flows (Guan & Gammie 2009) when Prandtl numbers are close to unity (Ziefuß &
Mehdizadeh 2020). The Reynolds analogy is used for modelling advective transport in
engineering (Kays et al. 2005), geophysical (Bretherton & Park 2009) and astrophysical
flows (Birnsteil, Dullemond & Brauer 2010), but implies that higher heat/mass transfer
goes together with higher momentum transfer and thus power input (Yamamoto et al.
2013).

In recent theoretical studies, incompressible steady flows are computed that maximize
heat transfer for a given power input (Hassanzadeh, Chini & Doering 2014; Alben 2017;
Motoki et al. 2018; Souza, Tobasco & Doering 2020). Motoki et al. (2018) consider plane
Couette flow and show that the optimized flow has a much higher heat transfer for a
given power input than ordinary turbulent flow. The computed optimized flows are not
required to obey known momentum equations in these theoretical studies – that is, these
optimal flows can be obtained applying a body force, but the body force can be arbitrary
and does not (necessarily) have a familiar form. It is therefore not clear if this optimal
transport is realizable, although Alben (2017) and Motoki et al. (2018) suggest that optimal
flows can be approached by applying smart forcing or control techniques. I show through
direct numerical simulations (DNSs) that in existing flows, namely incompressible plane
Couette flow (PCF) and Taylor–Couette flow (TCF) subject to a Coriolis force, passive
tracer transport can be much faster than momentum transport, in violation of the Reynolds
analogy. It is thus possible to significantly change the ratio of wall-to-wall heat/mass to
momentum transport by a simple Coriolis body force. Momentum transport in Couette
flows has been explored extensively (Salewski & Eckhardt 2015; Grossmann, Lohse &
Sun 2016) owing to its relevance for, e.g., astrophysics. TCF with heat or mass transport
finds applications in, for example, cooling of electrical motors (Fénot et al. 2011) and
chemical reactors and bioreactors (Nemri, Charton & Climent 2016).

2. Governing equations and numerical procedure

TCF is a shear flow created between two rotating concentric cylinders, while PCF is
the small-gap limit d/ri → 0 (η = ri/ro → 1) of TCF, where d is the gap between the
cylinders/walls and ri and ro the inner and outer radii, respectively. In these flows I study
passive tracer transport, mimicking heat and mass transport when the temperature/mass
does not affect the flow. Hereafter, the passive tracer is called temperature for convenience,
but the only body force affecting the flow is the Coriolis force, which does not perform
any work.

Fluid motion and passive tracer transport in the PCF and TCF DNSs are governed by
the Navier–Stokes and advection–diffusion equations,

∂U
∂t

+ U · ∇U = −∇P + 1
Re

∇2U − R�(ez × U), (2.1)
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∂T
∂t

+ U · ∇T = 1
PrRe

∇2T, (2.2)

together with ∇ · U = 0. The imposed azimuthal (streamwise) velocity and temperature
at the inner and outer no-slip and iso-thermal walls, ±Uw and ±Tw, respectively, are
constant. Velocity U is normalized by Uw, temperature T by Tw and length by d. The
modified non-dimensional pressure P includes the centrifugal force (Salewski & Eckhardt
2015). The rotation axis, defined by the unit vector ez, is the spanwise and central axis
in PCF and TCF, respectively, as in Brauckmann, Salewski & Eckhardt (2016), and is
parallel with the mean flow vorticity. Sketches of the flow geometries are presented in
the supplementary material available at https://doi.org/10.1017/jfm.2020.1176. A Reynolds
number Re = �Ud/ν and rotation number R� = 2Ωd/�U, where �U = 2Uw, ν is the
kinematic viscosity and Ω is the imposed system rotation, characterize the flow. R� is
defined such that it is negative for cyclonic flows (same sign for shear and rotation) and
positive for anti-cyclonic flows. These parameters are equivalent to the shear Reynolds
and rotation numbers used by Dubrulle et al. (2005) and Brauckmann et al. (2016). The
rotating reference frame for TCF can naturally be translated back to a laboratory reference
frame (Ezeta et al. 2020). Pr = ν/α is the Prandtl number with α the thermal diffusivity.

From (2.1) and (2.2), it follows that in PCF the wall-to-wall mean dimensionless
momentum Jm = 〈UV〉 − ∂y〈U〉/Re and heat fluxes Jh = 〈VT〉 − ∂y〈T〉/(RePr) are
conserved, and in TCF the angular velocity flux Jm = r3(〈Vω〉 − ∂r〈ω〉/Re) and heat
current Jh = r[〈VT〉 − ∂r〈T〉/(RePr)] are conserved (Brauckmann et al. 2016). Here,
ω = U/r is the angular velocity, U and V the streamwise (azimuthal) and wall-normal
(radial) velocity, and 〈· · · 〉 denotes averaging over time and area at constant wall-normal
(radial) distance in PCF (TCF). The Nusselt numbers Num = Jm/Jm

lam and Nuh = Jh/Jh
lam

quantify the wall-to-wall (angular) momentum transport (Brauckmann et al. 2016) and
heat transport, respectively. The subscript ‘lam’ implies the molecular (conductive) flux
for laminar flow. For laminar PCF, Jm

lam = −1/Re and Jh
lam = −1/RePr. For laminar

TCF, Jm
lam = −2η/(Re(1 − η)2) (Brauckmann et al. 2016) and Jh

lam = 2/(RePr ln η). Num
specifies the force (torque) needed to shear the flow in units of that in laminar PCF (TCF),
and Nuh is the heat flux in units of that in laminar flow.

To study the influence of Coriolis forces on momentum and heat transfer, I have carried
out several DNS series at constant Re up to 40 000 with varying R� – i.e. eight DNS
series of PCF at a constant Re = 240, 400, 800, 1600, 3200, 6400, 17 200 and 40 000,
respectively, and eight DNS series of TCF at a constant Re = 400, 1152, 2593, 3889, 8750,
19 688, 29 531 and 40 000, respectively, all at varying R�. The supplementary material
presents tables with Re and R� parameters of all DNSs. In PCF, Pr = 1 and in TCF,
Pr = 0.7 and η = 0.714.

The governing equations for PCF are solved with a Fourier–Fourier–Chebyshev
algorithm, with periodic boundary conditions in the streamwise and spanwise directions
(Chevalier et al. 2014). The computational domain sizes are 6πd and 2πd in the streamwise
and spanwise directions, respectively, which is large enough to accommodate several pairs
of counter-rotating large-scale vortices. The governing equations for TCF in cylindrical
coordinates are solved with a Fourier–Fourier-finite-difference algorithm (Boersma 2011;
Peeters et al. 2016), with periodic boundary conditions in the axial and azimuthal
directions. In the radial direction, a sixth-order compact-finite-difference scheme is used.
Like others, I do not simulate the flow around the entire cylinder but use a domain with
reduced size in the azimuthal direction. Previously, it has been verified that changing the
domain size has little effect on the computed torque (Brauckmann & Eckhardt 2013;
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Re 400 1152 2593 3889 8750 19 688 29 531 40 000
Lθ /d 6π 6π 6π 6π π π π 3π

Lz/d 2 2 2 2 2 2 2 4π/3

Table 1. Domain size in the DNSs of TCF. Lθ is the azimuthal domain size at the centreline, and Lz is the
axial domain size.

Brauckmann et al. 2016). The computational domain size in the DNSs of TCF, listed
in table 1, is basically the same as in the DNSs of Brauckmann & Eckhardt (2013) up
to Re = 29 531 and wide enough to capture at least one pair of counter-rotating Taylor
vortices. In the DNSs at Re = 40 000, the domain is significantly larger.

The resolution increases with Re to keep the grid spacing in terms of viscous wall units
within acceptable bounds. At Re = 40 000, the streamwise and spanwise grid spacings in
the PCF DNSs are �x+ ≤ 13 and �z+ ≤ 6.5, respectively, and in the TCF DNSs, the
azimuthal and axial grid spacings are �x+ = 12.4 and �z+ = 5.9, respectively at R� =
0.3 and smaller at higher R�. This is the grid spacing in terms of Fourier modes and
viscous wall units, comparable to the grid spacing in other well-resolved DNSs of wall
flows (Lee & Moser 2015). The number of Chebyshev modes or radial grid points with
near-wall clustering is 192 or more at this Re.

The DNSs of PCF and TCF are either initialized with perturbations to trigger vortices
or with the fields of a DNS at another R�. They are run for a sufficiently long time to
reach a statistically stationary state and then run for a long period to obtain well-converged
statistics. I have verified that the Nusselt numbers do not change when the DNSs are
continued. For several DNSs of PCF, I have also validated that changing the domain size
and resolution does not affect the results. The DNS results of TCF for Num agree well
with previous DNSs of Brauckmann & Eckhardt (2013) and Ostilla et al. (2013). These
validations are presented in the supplementary material.

3. Results

Figure 1(a,b) shows that momentum transfer in terms of Num naturally grows with Re
but also varies with R� in the DNSs owing to changing flow features (Salewski &
Eckhardt 2015; Grossmann et al. 2016). At R� = 0, PCF is linearly stable yet turbulent
when Re � 1600 owing to subcritical transition and therefore Num > 1. TCF is linearly
unstable and Num > 1 if R� = 0 at all Re (Dubrulle et al. 2005). In both flows, Num
first grows with R� due to destabilization by anticyclonic rotation and then declines
towards unity for R� → 1 when the flow approaches the linearly stability limit Rc

� and
relaminarizes (Dubrulle et al. 2005). Disturbances and turbulence cannot sustain beyond
Rc

�, even at higher Re (Ostilla-Mónoci et al. 2014b). Momentum transport is maximal
around R� = 0.2 in PCF and around R� = 0.3 to 0.1 at low to high Re in TCF, consistent
with previous numerical (Brauckmann & Eckhardt 2013; Salewski & Eckhardt 2015;
Brauckmann et al. 2016) and experimental observations (van Gils et al. 2011). This
broad maximum is linked to intermittent bursts in the outer layer in TCF and to strong
vortical motions in PCF (Brauckmann & Eckhardt 2013; Brauckmann et al. 2016). Another
narrow maximum in Num caused by shear instabilities appears in PCF at R� ≈ 0.02 when
Re � 104 (Brauckmann & Eckhardt 2013), but my DNSs do not cover this narrow region
near R� = 0 and therefore do not reveal this second maximum. With rising Re, the narrow
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Figure 1. (a) Num and (c) Nuh for PCF. (b) Num and (d) Nuh for TCF. Each line/colour represents a different
constant Re, and dots denote DNS results. The horizontal dashed line marks Num, Nuh = 1. Arrows show trends
for increasing Re listed in § 2.

maximum overtakes the broad maximum, which disappears in TCF with η = 0.91 if Re is
higher than in my DNSs (Ezeta et al. 2020).

Heat transfer in terms of Nuh behaves similarly to Num at low R� but differently at higher
R� (figure 1c,d). Its maximum is higher and at higher R� for almost all Re, demonstrating
that flow structures causing optimal momentum transport do not necessarily cause optimal
heat transport. At higher Re, Nuh is maximal near R� = 0.5 in both PCF and TCF and
then sharply declines when R� → 1 and the flow relaminarizes. This means that in a
laboratory instead of a rotating frame of reference, maximal momentum transfer in higher
Re TCF happens with moderate counter-rotation, whereas maximal heat transfer happens
with co-rotating inner and outer cylinders. The growths of the maximum Num and Nuh over
all R� at fixed Re show similar trends with Re in PCF and TCF and follow Num, Nuh ∼
Re0.6 at higher Re (figure 2). Experiments show that for Re > 3 × 104, the scaling Num ∼
Re0.78 for all R� in TCF (Ostilla-Mónoci et al. 2014a,b). It is therefore possible that at
higher Re, the maximum Nuh follows a different scaling than Nuh ∼ Re0.6 observed here.

The ratio HTE = Nuh/Num, shown in figure 3, is a measure of heat transfer efficiency
since Num is proportional to the power input (van Gils et al. 2011).An equivalent measure
is considered in heat transfer optimization studies by Yamamoto et al. (2013), Motoki
et al. (2018) and Kaithakkal et al. (2020). A high similarity between momentum and heat
transport can be expected at R� = 0 in PCF because Pr = 1, and momentum and heat
transport are similarly forced. This is vindicated by the DNSs: the difference between
Nuh and Num is not more than 2 % at all Re and accordingly HTE 	 1, meaning that the
Reynolds analogy perfectly applies. HTE is somewhat smaller in TCF at R� = 0 because
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Figure 2. Maximum value of Num and Nuh over R� at fixed Re in PCF and TCF as function of Re. The dotted
black line shows the scaling Nu ∼ Re0.6.

Pr < 1, but it is still near unity so that the Reynolds analogy approximately holds. Clear
differences in heat and momentum transport emerge for increasing R�. HTE rapidly grows
with R� in PCF and TCF and reaches a maximum around R� ≈ 0.85–0.99 at low to high
Re before abruptly dropping to unity for R� ≥ 1. Its maximum grows from about two at
the lowest Re to eight and more than six at Re = 40 000 in PCF and TCF, respectively
(figures 3 and 4a). In TCF, the maximum HTE seems to level off at higher Re, while
in PCF it continues to grow. TCF with a fixed outer and rotating inner cylinder in a
laboratory frame corresponds to R� = 1 − η = 0.29 and has a HTE ≤ 1.18 over all Re
considered here, much less than the maximum possible HTE. Note that Couette flow is
linearly unstable very near R� = 1 (Nagata 1990; Esser & Grossmann 1996), so flow
motions can be sustained even very near R� = 1. Figure 4(b) shows that the HTE has
a similar trend in PCF and TCF near R� = 1 for Re ≥ 17 200. DNS results for TCF at
the three Re are hardly distinguishable since they overlap, although the computational
domain sizes are different, suggesting the results are indifferent to this aspect. Some of
the dissimilarities between heat transfer in PCF and TCF can be attributed to the different
values of Pr in the two cases. DNSs of heat transfer in turbulent channel flow support
that Nuh ∼ Pr1/2 for Pr near unity (Pirozzoli et al. 2016), indicating that Nuh and HTE
are a factor 0.7−1/2 larger in TCF if Pr = 1, as in PCF, instead of 0.7, as used here. The
differences observed in, e.g., figures 2 and 4 between PCF and TCF results indeed largely
disappear (not shown here), and Nuh is almost unity in TCF at R� = 0 after this scaling.

Results for HTE can be compared to theoretical optimal heat transport for Pr = 1 in
PCF with an arbitrary body force calculated by Motoki et al. (2018), who maximized heat
and momentum transport dissimilarity by optimizing the ratio of total scalar dissipation
to total energy dissipation εS/εE. For rotating PCF, with no energy input by the Coriolis
force, HTE is equivalent to εS/εE. If Re ≤ 800 and rotating PCF is streamwise-invariant
as discussed later, εS/εE calculated by Motoki et al. (2018) is nearly equal to the maximal
HTE found here, implying that heat transport in rotating PCF is near optimal. At higher
Re, results diverge: the optimal εS/εE calculated by Motoki et al. (2018) at Re = 1600,
6400 and 40 000, shown in their figure 7, is respectively 1.6, 2.6 and 3.1 times higher than
the maximal HTE in rotating PCF. Their optimal heat transfer rate is also higher than in
turbulent PCF without body forces. Thus, even though the dissimilarity between heat and
momentum can be large in rotating PCF, it is theoretically possible to enhance it further
through other body forces. Another factor which may contribute to the observed difference
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Figure 3. HTE as function of R� in (a) PCF and (b) TCF. Each line/colour represents a different constant Re.
Arrows show trends for increasing Re listed in § 2, and dots signify DNS results. The black line in (a) shows
the high-Re limit.
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Figure 4. (a) Maximum HTE over R� at fixed Re in PCF and TCF as function of Re. (b) Log–log plot of HTE
versus 1 − R� in PCF at Re = 17 200 and 40 000 and TCF at Re = 19 688, 25 531 and 40 000. The black solid
line shows the high-Re limit HTE = 1/(1 − R�). Nuh/Nur

h versus Num/Nur
m at fixed Re for (c) PCF and (d)

TCF. Nur
m,h is the reference Nusselt number corresponding to the non-rotating case (R� = 0) in PCF and the

fixed outer cylinder case (R� = 1 − η = 0.29) in TCF. R� increases in the counterclockwise direction.
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Figure 5. (a) Profiles of 〈U〉 and 〈T〉 in PCF at Re = 40 000 and R� = 0 and 0.9. (b) Profiles of the
root-mean-square of the streamwise and wall-normal velocity fluctuations u′ and v′, respectively, and
temperature fluctuation θ ′ in PCF at (Re; R�) = (40 000; 0.98). Mean and fluctuating velocity and temperature
are scaled by Uw and Tw, respectively, and y is the distance to the wall (y/d = 0 or 1 at the walls).

is that rotating PCF is unsteady and turbulent for Re > 800, whereas Motoki et al. (2018)
only considered optimal heat transport in steady PCF.

HTE defines the heat to momentum transfer ratio. In applications of advective heat/mass
transfer, one may seek to optimize other variables owing to constraints (Webb 1981;
Hesselgreaves 2000; Yamamoto et al. 2013) – for example, to enhance heat transfer for
equal power input or to reduce power input for equal heat transfer. Figure 4(c,d) therefore
show Nuh/Nur

h versus Num/Nur
m for PCF and TCF at fixed Re and varying R� for the

highest Re. Here, Nur
m,h are Nusselt numbers in the reference case at the same Re. For

PCF the non-rotating case (R� = 0) is taken as reference, whereas for TCF the fixed outer
cylinder case in a laboratory frame (R� = 1 − η = 0.29) is taken as reference because
of its experimental relevance. Cases left of the dotted line have a higher HTE than the
reference case. Some R� cases in PCF have the same wall-to-wall momentum transfer
(Num/Nur

m 	 1) but much higher heat transfer per unit area (Nuh/Nur
h > 1), or the same

heat transfer (Nuh/Nur
h 	 1) but much lower momentum transfer (Num/Nur

m < 1) than at
R� = 0 (figure 4c). At Re = 40 000 and R� = 0.5, Nuh/Nur

h = 1.4 and Num/Nur
m = 0.8,

giving a HTE = 1.8, and at R� = 0.9, Nuh/Nur
h 	 1 and Num/Nur

m 	 0.21, giving a
HTE = 4.7. In TCF only a few cases have a somewhat higher heat transfer and/or lower
momentum transfer than the reference case (figure 4d) since Nuh is already high at
R� = 0.29 (figure 1d). However, HTE can be much higher than 1.18 as in the reference
case, as shown before. When η increases, we can expect Nuh/Nur

h versus Num/Nur
m curves

for TCF to resemble curves for PCF if the fixed outer cylinder case is taken as reference
since this case corresponds to R� = 1 − η, which approaches zero.

In anticyclonic rotating Couette flows, heat is thus transported much faster than
momentum, in violation of the Reynolds analogy, when approaching the linear stability
limit Rc

� 	 1. Mean velocity and temperature profiles reflect the transport anomaly: at
R� = 0 these are barely distinguishable in PCF, but when R� → 1 the mean temperature
〈T〉 has a thin boundary layer and nearly linear centre profile and clearly differs from the
mean streamwise velocity 〈U〉, which approaches the linear laminar profile (figure 5a).
Here, 〈·〉 denotes averaging over time and wall-parallel planes. Mean velocity and
temperature profiles in TCF are not shown but behave similarly. The thermal boundary
layer becomes thinner with Re and changes more rapidly than the velocity boundary layer
for R� near Rc

�, leading to a growth of the maximum HTE.
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Insight into the transport anomaly and small streamwise velocity fluctuations and related
weak momentum transport at high R� is obtained by studying the action of the Coriolis
force. Consider the mean shear and Coriolis force term in the governing equation for
u in PCF, that is v(2Ω − ∂y〈U〉), where u and v are the streamwise and wall-normal
velocity fluctuations, respectively; if Ω > 0, the Coriolis force reduces production of u
by mean shear when v /= 0. Note that the absolute mean vorticity ∂y〈U〉 − 2Ω ≈ 0 about
the channel centre at sufficiently high R� (Brauckmann et al. 2016; Kawata & Alfredsson
2016) and in the whole channel if R� → 1. The Coriolis term in the Reynolds stress
transport equation of 〈uu〉 then counterbalances the production term, and the only term
producing 〈uu〉 is the pressure–strain correlation (Brethouwer 2017). If a fluid particle is
displaced in the wall-normal direction by vortical motions, the Coriolis force basically
accelerates or decelerates the particle so that its streamwise velocity approaches the
local mean velocity. Figure 5(b) confirms that u′ = 〈uu〉1/2 is small in PCF if R� → 1,
while v′ = 〈vv〉1/2 is larger because vortical motions survive as long as R� < Rc

� and
produce a high heat flux and intense temperature fluctuations that are not directly affected
by the Coriolis force. Observations in TCF (not shown) are again similar: the specific
angular momentum is nearly constant if R� → 1, implying neutral stability according to
Rayleigh’s criterion (Brauckmann et al. 2016) and strongly reduced azimuthal velocity
fluctuations.

Steady streamwise-invariant Taylor vortices are present at low Re. These are seen in
visualizations of the flow field (not shown here) and indicated by the visualizations of the
temperature field in figure 6(a,b). These vortices appear above the stability limit (Nagata
1990; Esser & Grossmann 1996) and echo structures producing optimal heat transport in
theoretical studies of PCF (Motoki et al. 2018). They transport considerable heat but little
momentum since streamwise velocity fluctuations are small when R� → 1, as discussed
above. For streamwise-invariant PCF with Pr = 1, one can further quantify this and derive
from (2.1) and (2.2)

û/Uw = (1 − R�)θ̂/Tw, (3.1)

where û and θ̂ are the streamwise velocity and temperature deviations from the laminar
situation, respectively. Further, using a variable transformation as in Zhang et al. (2019)
gives

HTE = 1 + R�

1 − R�

Num − 1
Num

. (3.2)

Eckhardt, Doering & Whitehead (2020) derive exact relations between heat and
momentum transport in two-dimensional Rayleigh–Bénard convection and rotating PCF
that are equivalent to (3.2). Relations (3.1) and (3.2) are exact as long as Re ≤ 800
and PCF is streamwise-invariant. Equation (3.1) shows that û declines relative to θ̂

when R� → 1; and (3.2) shows that HTE = 1 if R� = 0, but HTE > 1 if 0 < R� < 1
and Num > 1, so heat is transported more efficiently than momentum. Equation (3.2)
further suggests a growing HTE with Re as Num increases. In the high Re-limit, Num →
∞, and consequently HTE → 1/(1 − R�) for streamwise-invariant PCF. The simulated
HTE is lower because of finite Re and turbulence, but for 0 ≤ R� ≤ 0.25 when quasi
two-dimensional streamwise vortices dominate transport (Brauckmann et al. 2016), this
high-Re limit, shown by the black solid line in figure 3(a), closely matches DNSs.

In TCF both curvature and rotation play a role. In the rotating reference frame,
the centripetal/Coriolis acceleration terms caused by streamline curvature in the
non-dimensional equations of motion for TCF in cylindrical coordinates scale with
the curvature number RC = (1 − η)/

√
η – see the supplementary material and
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(b)(a)

(c) (d )

Figure 6. Snapshot of the instantaneous temperature fluctuation field at (a,b) Re = 400 and R� = 0.9 and
(c,d) Re = 40 000 and R� = 0.99 in (a,c) PCF and (b,d) TCF in a cross-stream plane. In (b) the full and in
(a,c,d) a part of the spanwise/axial domain is shown.

Dubrulle et al. (2005) and Brauckmann et al. (2016). Curvature effects should therefore
disappear if η → 1 and consequently RC → 0. TCF properties are indeed similar to those
of PCF, and profiles of Num as a function of R� collapse for η ≥ 0.9 if Re is equal, see
Brauckmann et al. (2016), confirming that Re and R� appropriately describe Couette flows
and the TCF to PCF transition. We can then also expect heat transfer in PCF and TCF with
η ≥ 0.9 to be similar if both Re and R� are equal. By contrast, when η < 0.9 and R�

is low, curvature effects are important. TCF is then continuously turbulent in the inner
partition while strongly intermittent in the outer partition due to a stabilizing influence of
curvature (see Brauckmann et al. (2016)), and this affects momentum transfer.

However, beyond a critical R�, TCF is fully turbulent in the outer partition as well,
and curvature effects are again less important. Consider the ratio of the curvature and
rotation terms in the equations of motion given by RCU/(2R�), where U is the streamwise
velocity scaled by Uw – see the supplementary material for details. When R� is sufficiently
high, this ratio is less than unity, and therefore rotation influences should dominate even
if η < 0.9. For R� � 0.2, Num collapses for η ≥ 0.71 and Re as well as R� are equal, as
shown by Brauckmann et al. (2016) for moderate Re, which agrees with that idea. Also in
the present study, Num as function of R� in PCF and TCF collapse for Re = 400 and 40 000
and R� � 0.3. This is not explicitly shown but can be inferred by comparing figures 1(a)
and 1(b). In the other cases Re is different, which complicates a comparison. When rotation
influences dominate and Num is similar, we can expect that Nuh is also similar in PCF and
TCF. That appears to be true for the present cases once the differences in Pr have been
accounted for. For lower R�, curvature effects are noticeable and cause differences in Num
and Nuh in TCF and PCF, see figure 1. HTE seems to be less affected by curvature for
R� ≥ 0, although it could possibly cause a difference in heat and momentum transfer.

To summarize, streamline curvature has a noticeable effect on heat and mass transfer
when it partly stabilizes TCF for η < 0.9 and sufficiently low R�. When η ≥ 0.9 or when
R� is sufficiently high and stabilization of TCF in the outer partition does not occur,
curvature effects appear to have a small or negligible influence on heat and momentum
transfer.
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Figure 7. (a) Time series of K in PCF at R� = 0.97 and TCF at R� = 0.98 and Re = 40 000. Time is
non-dimensionalized by the shear rate S = �U/d. (b) Phase space plot of volume integrated K and enstrophy
ω2, and wall shear stress τw in PCF at Re = 40 000 and R� = 0.99. Yellow and blue colours indicate large and
small temperature fluctuations, respectively. (c) Frequency of the bursts non-dimensionalized by S for PCF and
TCF. The black solid line gives the growth rate of the most unstable mode in PCF predicted by linear theory.

Couette flows are fully turbulent at higher Re and also when HTE is maximal, leading
to plume-like thermal structures (figure 6c,d). Above Re ≈ 104, high values of HTE are
accompanied by strong recurring low-frequency bursts of turbulence in both PCF and TCF.
Such turbulent bursts are evident in time series of the volume-integrated turbulent kinetic
energy K (figure 7a) and emerge if R� � 0.94. These are persistent and approximately
periodic and come along with bursts of enstrophy and temperature fluctuations and
significant changes of shear stresses and heat fluxes at the wall. A phase-space plot
illustrates the approximate limit cycle dynamics (figure 7b). The burst frequency declines
for R� → 1 because the flow becomes more stable and follows a similar scaling in all cases
(figure 7c). During the approximate limit cycle oscillations, PCF and TCF are supercritical
and continuously though weakly turbulent between the bursts. I have verified that PCF is
also linearly unstable if the mean velocity profile from the DNSs is used in the stability
analysis, instead of the laminar one. The growth rate of the most unstable mode follows
a similar trend as the burst frequency (figure 7c), suggesting that the bursts are related to
linear instabilities.

4. Concluding remarks

The key conclusion of my study is that even a simple Coriolis body force can strongly
change heat/mass transfer rates and can make heat/mass transfer much faster than
momentum transfer in shear flows, as indicated theoretically recently (Alben 2017; Motoki
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et al. 2018). Optimization of heat/mass transfer by body forces is thus a promising avenue
for further research. The mechanism of momentum transport reduction by the Coriolis
force does not depend on Re, implying that the observed dissimilarity between momentum
and heat/mass transfer, found in both plane Couette and Taylor–Couette flow, persists
at higher Re. The highest dissimilarity happens in rotating Couette flows close to the
inviscid neutral stability state when momentum transfer is more strongly reduced than
heat/mass transfer. Also, other rotating shear flows tend to evolve towards the neutral
stability state (Métais et al. 1995; Barri & Andersson 2010), suggesting that heat and
mass are transported much faster than momentum in such flows. Dissimilarity between
momentum and heat transport is also found in rotating channel flow (Matsubara &
Alfredsson 1996; Brethouwer 2018, 2019), albeit in a limited region where the flow
approaches the zero-absolute-mean-vorticity state, and in shear flows with buoyancy forces
(Li & Bou-Zeid 2011; Pirozzoli et al. 2017). In DNS and rapid distortion theory of rotating
uniformly sheared turbulence, Brethouwer (2005) observed turbulent Prandtl numbers
much smaller than one when the zero-absolute-mean-vorticity state is approached, which
also implies fast heat transport. This all suggests that other engineering and astrophysical
flows also display dissimilarities between heat or mass transfer and momentum transfer.
Another implication of the present study is that heat and mass transfer modelling in flows
with body forces requires careful consideration since the Reynolds analogy can fail.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.1176.
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