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Abstract

In this paper we give a proof of the Green–Osher inequality in relative geometry using the minimal convex
annulus, including the necessary and sufficient condition for the case of equality.
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1. Introduction

We denote by Rn the usual n-dimensional Euclidean space with the canonical inner
product 〈· , ·〉. A bounded closed convex set K in Rn is called a convex body if it has
nonempty interior. When n = 2, it is called a convex domain. The volume of a set
M ⊂ Rn is denoted by V(M). The Minkowski sum of convex bodies K and L, and the
Minkowski scalar product of K for t > 0 are, respectively, defined by

K + L = {x + y | x ∈ K, y ∈ L}

and
tK = {tx | x ∈ K}.

Minkowski found the following fundamental formula: the volume of the linear
combination of convex bodies K1, . . . , Km with nonnegative coefficients t1, . . . , tm is
a homogeneous polynomial of degree n with respect to t1, . . . , tm, that is,

V(t1K1 + · · · + tmKm) =

m∑
i1,...,in=1

V(Ki1 , . . . ,VKin
)ti1 · · · tin . (1.1)

The coefficient V(Ki1 , . . . ,Kin ) is the mixed volume of Ki1 , . . . ,Kin , and it is nonnegative
and symmetric in the indices and dependent only on Ki1 , . . . ,Kin . For a convex body K
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and the n-dimensional unit ball Bn, the Steiner polynomial is a special case of (1.1):

V(K + tBn) =

n∑
i=0

(
n
i

)
Wi(K)ti. (1.2)

The coefficient Wi(K) is called the ith quermassintegral, and it is the mixed volume of
n − i copies of K and i copies of Bn. Similar to (1.2), for a fixed convex body E, the
volume of the Minkowski sum K + tE gives the relative Steiner polynomial of K with
respect to E:

V(K + tE) =

n∑
i=0

(
n
i

)
Wi(K, E)ti, (1.3)

where the coefficient Wi(K, E) is called the ith relative quermassintegral of K with
respect to E.

The (relative) Steiner polynomial appears in many problems. In dimension three,
Hernández Cifre and Saorı́n [11] discussed the missing boundary of the Blaschke
diagram through the locations of the roots of the Steiner polynomial (1.2) for n = 3.
More detailed results on the locations of the roots of the (relative) Steiner polynomial
can be found in [10, 12]. Bonnesen-style inequalities are discussed in [14, 17].

Let K be a convex domain with perimeter L and area A and let rin and rout be the
inradius and outradius of K, respectively. The Bonnesen inequality (see [1, 2]) is

A − Ls + πs2 ≤ 0, s ∈ [rin, rout]. (1.4)

Using this and symmetrisation, Gage [4] successfully proved an inequality for the
total squared curvature for convex curves. Following his work, Green and Osher [8]
obtained a generalised formula with respect to the curvature of all C2 convex curves in
the plane. These inequalities play a critical role in the curve evolution problem (see,
for example, [5, 13]). For a fixed convex domain E, Böröczky et al. [3] rediscovered
the generalised case of (1.4) in relative geometry, that is,

AK − 2W(K, E)s + AE s2 ≤ 0, s ∈ [Rin,Rout], (1.5)

where AK and AE are the areas of K and E, W(K, E) is the relative quermassintegral of
K with respect to E and Rin and Rout are the inradius and outradius of K with respect
to E. Equality occurs in (1.5) when s = Rin if and only if K is the Minkowski sum of a
dilation of E and a line segment, and equality in (1.5) holds when s = Rout if and only
if E is the Minkowski sum of a dilation of K and a line segment. Peri et al. [15] proved
a stronger result:

AK − 2W(K, E)s + AE s2 ≤ 0, s ∈ [Rin(x0),Rout(x0)], (1.6)

where x0 is the centre of the minimal convex annulus of K with respect to E. (The
definitions of Rin(x0) and Rout(x0) can be found in Section 2.) Inequalities which
contain only support functions led to further advances in the curve evolution problem
in relative geometry (see [6, 7]) and the log-Brunn–Minkowski problem (cf. [3]).
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In this paper, inspired by the impressive work in [15], we give a simplified proof
of the Green–Osher inequality in relative geometry using the minimal convex annulus,
including the necessary and sufficient condition for the case of equality. In Section 2,
we present some basic concepts about convex domains. In Section 3, we derive the
Green–Osher inequality in relative geometry.

2. Preliminaries

Let K be a convex domain. A line l is called a support line of K if it passes through
at least one boundary point of K and if the entire convex domain K lies on one side of
l. Take a point O inside K as the origin of our frame. Let l(θ) be the support line of
K in the direction u(θ) = (cos θ, sin θ), where θ is the oriented angle from the positive
x-axis to the perpendicular line of l(θ). The support function of K is defined to be

p(θ) = sup
x∈K
〈x,u(θ)〉, u(θ) ∈ S 1.

It is easy to see that p(θ) is the signed distance of the support line l(θ) of K with exterior
normal vector u(θ) from the origin. Clearly, p, as a function of θ, is single-valued and
2π-periodic. For a fixed convex domain E with support function γ(θ), if p(θ) and γ(θ)
are continuously differentiable, then

W(K, E) =
1
2

∫ 2π

0
(p(θ)γ(θ) − p′(θ)γ′(θ)) dθ.

If p(θ) and γ(θ) are C2, then

W(K, E) =
1
2

∫ 2π

0
p(θ)(γ(θ) + γ′′(θ)) dθ =

1
2

∫ 2π

0
γ(θ)(p(θ) + p′′(θ)) dθ. (2.1)

The relative curvature of K with respect to E is given by

κ(θ) =
γ(θ) + γ′′(θ)
p(θ) + p′′(θ)

and the relative curvature radius of K with respect to E is

ρ(θ) =
p(θ) + p′′(θ)
γ(θ) + γ′′(θ)

.

For n = 2, (1.3) turns into

A(K + tE) = AK + 2W(K, E)t + AEt2, t ≥ 0.

From the mixed area inequality, W(K, E)2 − AK AE ≥ 0. Denote by t1, t2 (t1 ≥ t2) the
two roots of the relative Steiner polynomial of K with respect to E, that is,

t1 = −
W(K, E)

AE
+

δ

AE
, t2 = −

W(K, E)
AE

−
δ

AE
,
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where δ =
√

W(K, E)2 − AK AE ≥ 0. Let

Rin = max{r > 0 | x + rE ⊆ K,∃ x ∈ K}

and
Rout = min{r > 0 | x + rE ⊇ K,∃ x ∈ K}

be the inradius and outradius of K with respect to E, respectively. For x ∈ K, set

Rin(x) = max{r ≥ 0 | x + rE ⊆ K}

and
Rout(x) = min{r > 0 | x + rE ⊇ K}.

The convex annulus of centre x is defined by

Ax(E) = {y ∈ R2 | y ∈ x + Rout(x)E and y < int(x + Rin(x)E)}.

When the convex annulus Ax(E) contains K and Rout(x) − Rin(x) attains its minimum,
the corresponding convex annulus is called the minimal convex annulus of K with
respect to E. If E is smooth and strictly convex, then the minimal convex annulus of
K with respect to E has a unique centre (see [16]) and the centre is denoted by x0.

Definition 2.1 [8]. Consider

sup
{∫

I
ρ(θ)γ(θ)(γ(θ) + γ′′(θ)) dθ

∣∣∣∣∣ I ⊂ S 1,

∫
I
γ(θ)(γ(θ) + γ′′(θ)) dθ = AE

}
.

Let I1 denote the smallest subset of S 1 with measure AE and realising the above
supremum, and let I2 be its complement. There exists an a ∈ R+ such that

I1 ⊆ {θ | ρ(θ) ≥ a}, I2 ⊆ {θ | ρ(θ) ≤ a}.

Set

ρi =
1

AE

∫
Ii

ρ(θ)γ(θ)(γ(θ) + γ′′(θ)) dθ, i = 1, 2.

Then

ρ1 + ρ2 =
2W(K, E)

AE
and ρ1 ≥ ρ2

and there is a b ≥ 0 such that

ρ1 =
W(K, E)

AE
+ b and ρ2 =

W(K, E)
AE

− b.

3. The Green–Osher inequality in relative geometry

We will provide a different proof of the Green–Osher inequality in relative
geometry, using the next proposition and the method of [15].
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Proposition 3.1. Let K, E be two convex domains with E symmetric. If K, E are
smooth and strictly convex, and K, E are not homothetic, then

−t1 < Rin(x0) <
W(K, E)

AE
< Rout(x0) < −t2,

where x0 is the centre of the minimal convex annulus of K with respect to E.

To prove the above proposition, we need the following lemma, which is a direct
consequence of [15, Lemmas 1 and 2].

Lemma 3.2. Let K, E be two smooth and strictly convex domains with E symmetric
and let x0 be the centre of the minimal convex annulus of K with respect to E.
If a, b ∈ ∂K ∩ ∂(x0 + Rin(x0)E) and A, B ∈ ∂K ∩ ∂(x0 + Rout(x0)E) are such that the
intersection of the segments [a, b] and [A, B] is not empty, then there exists a line l
satisfying:

(i) l ∩ K is a line segment with x0 as its midpoint;
(ii) the points a and b lie on different sides of l, and so do A and B.

Proof of Proposition 3.1. Let p(θ) and γ(θ) be the support functions of K and E. If
K is centrally symmetric, then Rin = Rin(x0) and Rout = Rout(x0). It follows from (1.5)
that

AK − 2W(K, E)Rin(x0) + AER2
in(x0) = AK − 2W(K, E)Rin + AER2

in < 0

and

AK − 2W(K, E)Rout(x0) + AER2
out(x0) = AK − 2W(K, E)Rout + AER2

out < 0,

which implies the result.
Suppose that K is not centrally symmetric. By Lemma 3.2, there exists a line l

through x0 such that l ∩ K is a segment with midpoint x0 and the pairs a, b and A, B
lie in different regions l+, l−, where l+ and l− are two closed half-planes separated by l
(with the points a, b, A, B as in Lemma 3.2). Suppose that l cuts K into the two regions
K+, K−, respectively lying in l+, l−. Consider the two regions K1 and K2 obtained
from K+ and K− by a symmetry with centre x0. As K1 and K2 are not necessarily
convex, denote the convex hulls of K1 and K2 by K′1 and K′2, with support functions
p1(θ) and p2(θ), respectively. By the symmetrisation procedure, it is clear that Rin(x0)
and Rout(x0) are the same for K, K′1 and K′2. For i = 1, 2,

AK′i − 2W(K′i , E)s + AE s2 < 0, s ∈ [Rin(x0),Rout(x0)]. (3.1)
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Let w(θ), w1(θ) and w2(θ) be the width functions of K, K′1 and K′2. Since K′1 and
K′2 are symmetric with respect to x0, wi(θ) = 2pi(θ) for i = 1, 2. It follows from the
construction of K′1 and K′2 that p1(θ) + p2(θ) ≤ w(θ) (cf. [15, page 353 (6)]) and, then,
from the symmetry of W and (2.1),

W(K, E) =
1
2

∫ 2π

0
p(θ)(γ(θ) + γ′′(θ)) dθ =

1
4

∫ 2π

0
w(θ)(γ(θ) + γ′′(θ)) dθ.

Thus,

W(K′1, E) + W(K′2, E) =
1
4

∫ 2π

0
(w1(θ) + w2(θ))(γ(θ) + γ′′(θ)) dθ

=
1
2

∫ 2π

0
(p1(θ) + p2(θ))(γ(θ) + γ′′(θ)) dθ

≤
1
2

∫ 2π

0
w(θ)(γ(θ) + γ′′(θ)) dθ = 2W(K, E).

Together with (3.1) and the fact AK′1 + AK′2 ≥ AK1 + AK2 = 2AK , this yields

AK − 2W(K, E)s + AE s2 < 0, s ∈ [Rin(x0),Rout(x0)].

Hence, −t1 < Rin(x0) < W(K, E)/AE < Rout(x0) < −t2. �

The next proposition also plays a role in the proof of the Green–Osher inequality in
relative geometry. We deal with it by means of the minimal convex annulus.

Proposition 3.3. If K, E are two smooth and strictly convex domains and E is
symmetric, then

ρ1 ≥ −t2. (3.2)

Moreover, if K and E are not homothetic, then

ρ1 > −t2. (3.3)

Proof. Let p(θ) and γ(θ) be the support functions of K and E. It is well known that
the centre, x0, of the minimal convex annulus of K with respect to E is unique when
E is smooth and strictly convex (cf. [16]). From (1.6) and the mixed area inequality
W(K, E)2 − AK AE ≥ 0, it follows that

−t1 ≤ Rin(x0) ≤ Rout(x0) ≤ −t2.

Choose x0 as the origin; then Rin(x0)γ(θ) ≤ p(θ) ≤ Rout(x0)γ(θ), which implies that

−
δ

AE
γ(θ) ≤ p(θ) −

W(K, E)
AE

γ(θ) ≤
δ

AE
γ(θ), δ =

√
W(K, E)2 − AK AE ≥ 0.

On I1, ρ(θ) − a ≥ 0. Combined with the above inequality, this yields

−

(
p(θ) −

W(K, E)
AE

γ(θ)
)

(ρ(θ) − a) ≤
δ

AE
γ(θ)(ρ(θ) − a).
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By integrating this over the interval I1,

−
1

AE

∫
I1

(
p(θ) −

W(K, E)
AE

γ(θ)
)
(ρ(θ) − a)(γ(θ) + γ′′(θ)) dθ ≤

δ

AE
(ρ1 − a). (3.4)

Similarly, ρ(θ) − a ≤ 0 on I2, so

−

(
p(θ) −

W(K, E)
AE

γ(θ)
)

(ρ(θ) − a) ≤ −
δ

AE
γ(θ)(ρ(θ) − a)

and, integrating this over the interval I2, gives

−
1

AE

∫
I2

(
p(θ) −

W(K, E)
AE

γ(θ)
)
(ρ(θ) − a)(γ(θ) + γ′′(θ)) dθ ≤ −

δ

AE
(ρ2 − a). (3.5)

From (3.4) and (3.5),

−
1

AE

∫ 2π

0

(
p(θ) −

W(K, E)
AE

γ(θ)
)
(ρ(θ) − a)(γ(θ) + γ′′(θ)) dθ ≤

2bδ
AE

.

The left-hand side can be simplified to

2(W(K, E)2 − AK AE)
A2

E

=
2δ2

A2
E

;

thus, b ≥ δ/AE ≥ 0, that is, ρ1 ≥ −t2.
If K and E are not homothetic, by Proposition 3.1,

−t1 < Rin(x0) < Rout(x0) < −t2.

Since Rin(x0)γ(θ) ≤ p(θ) ≤ Rout(x0)γ(θ),

−
δ

AE
γ(θ) < p(θ) −

W(K, E)
AE

γ(θ) <
δ

AE
γ(θ), δ =

√
W(K, E)2 − AK AE > 0.

For I1 and I2, ρ(θ) ≡ a holds on at most one interval, unless K and E are homothetic.
Without loss of generality, assume that ρ(θ) > a on a subinterval I′1 of I1. On I′1,
ρ(θ) > a and

−

(
p(θ) −

W(K, E)
AE

γ(θ)
)

(ρ(θ) − a) <
δ

AE
γ(θ)(ρ(θ) − a).

Integrating this expression over the interval I1 yields

−
1

AE

∫
I1

(
p(θ) −

W(K, E)
AE

γ(θ)
)
(ρ(θ) − a)(γ(θ) + γ′′(θ)) dθ <

δ

AE
(ρ1 − a),

which, together with (3.5), gives

−
1

AE

∫ 2π

0

(
p(θ) −

W(K, E)
AE

γ(θ)
)
(ρ(θ) − a)(γ(θ) + γ′′(θ)) dθ <

2bδ
AE

.

By a similar argument, b > δ/AE > 0, which implies that ρ1 > −t2. �
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In order to deal with the equality case of the Green–Osher inequality in relative
geometry, we will need the following lemma.

Lemma 3.4. Let K, E be two smooth and strictly convex domains. If K and E are not
homothetic, then

ρ1 > ρ2.

Proof. By Definition 2.1, ρ1 ≥ ρ2. To prove this lemma, it is enough to prove
that K and E are homothetic when ρ1 = ρ2. If ρ1 = ρ2, then, for any I ⊂ S 1 and∫

I γ(θ)(γ(θ) + γ′′(θ)) dθ = AE ,∫
I
ρ(θ)γ(θ)(γ(θ) + γ′′(θ)) dθ = W(K, E). (3.6)

Set

A =

{
θ

∣∣∣∣∣ ρ(θ) >
W(K, E)

AE

}
, B =

{
θ

∣∣∣∣∣ ρ(θ) <
W(K, E)

AE

}
, C = S 1 \ (A ∪ B).

Then
∫

A γ(θ)(γ(θ) + γ′′(θ)) dθ < AE and
∫

B γ(θ)(γ(θ) + γ′′(θ)) dθ < AE .
Next, we have to prove that A = ∅ and B = ∅. If A , ∅, then there exists an interval

C′ ⊂ C such that
∫

A∪C′ γ(θ)(γ(θ) + γ′′(θ)) dθ = AE or
∫

B∪C′ γ(θ)(γ(θ) + γ′′(θ)) dθ = AE .
Without loss of generality, set

∫
A∪C′ γ(θ)(γ(θ) + γ′′(θ)) dθ = AE; then∫

A∪C′
ρ(θ)γ(θ)(γ(θ) + γ′′(θ)) dθ >

W(K, E)
AE

m(A) +
W(K, E)

AE
(AE − m(A)) = W(K, E),

where m(A) =
∫

A γ(θ)(γ(θ) + γ′′(θ)) dθ, which contradicts (3.6). Similarly, it can be
shown that B = ∅. �

Theorem 3.5. Let K, E be two smooth and strictly convex domains and E symmetric.
If p(θ) and γ(θ) are the support functions of K and E, ρ(θ) is the relative curvature
radius of K with respect to E and F(x) is a strictly convex function on (0,+∞), then

1
2AE

∫ 2π

0
F(ρ(θ))γ(θ)(γ(θ) + γ′′(θ)) dθ ≥

1
2

(F(−t1) + F(−t2)), (3.7)

where t1 and t2 are the two roots of the relative Steiner polynomial of K with respect
to E, and the equality in (3.7) holds if and only if K and E are homothetic.

Proof. Applying Jensen’s inequality to Ii (i = 1, 2) yields

1
AE

∫
Ii

F(ρ(θ))γ(θ)(γ(θ) + γ′′(θ)) dθ ≥ F(ρi).

So,
1

2AE

∫ 2π

0
F(ρ(θ))γ(θ)(γ(θ) + γ′′(θ)) dθ ≥

1
2

(F(ρ1) + F(ρ2)).
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Here, ρ1 = W(K, E)/AE + b, ρ2 = W(K, E)/AE − b with b ≥ 0. From (3.2), it follows
that b ≥ δ/AE ≥ 0. By the convexity of the function F(x) (see [8, Lemma 2.9]),

F(ρ1) + F(ρ2) = F
(W(K, E)

AE
+ b

)
+ F

(W(K, E)
AE

− b
)

≥ F
(W(K, E)

AE
+

δ

AE

)
+ F

(W(K, E)
AE

−
δ

AE

)
= F(−t1) + F(−t2).

Hence,
1

2AE

∫ 2π

0
F(ρ(θ))γ(θ)

(
γ(θ) + γ′′(θ)

)
dθ ≥

1
2

(F(−t1) + F(−t2)).

On the one hand, if K and E are homothetic, it is clear that equality holds in (3.7),
since −t1 = −t2 = ρ(θ). On the other hand, to prove that K and E are homothetic when
equality holds in (3.7), it is enough to show that, when K and E are not homothetic,

1
2AE

∫ 2π

0
F(ρ(θ))γ(θ)

(
γ(θ) + γ′′(θ)

)
dθ >

1
2

(F(−t1) + F(−t2)).

If K and E are not homothetic, δ =
√

W(K, E)2 − AK AE > 0. By Lemma 3.4, there
exists b > 0 such that ρ1 = W(K, E)/AE + b and ρ2 = W(K, E)/AE − b. Furthermore, it
follows from (3.3) that b > δ/AE > 0. Again, by the strict convexity of F(x),

F(ρ1) + F(ρ2) = F
(W(K, E)

AE
+ b

)
+ F

(W(K, E)
AE

− b
)

> F
(W(K, E)

AE
+

δ

AE

)
+ F

(W(K, E)
AE

−
δ

AE

)
= F(−t1) + F(−t2).

Therefore,

1
2AE

∫ 2π

0
F(ρ(θ))γ(θ)

(
γ(θ) + γ′′(θ)

)
dθ ≥

1
2

(F(ρ1) + F(ρ2)) >
1
2

(F(−t1) + F(−t2)),

which completes the proof. �

Remark 3.6. If R2 is equipped with a suitable Minkowski metric such that the
boundary of E becomes the isoperimetrix of the Minkowski plane, then the Minkowski
perimeter, L(K), of K is given by (cf. [9, page 310])

L(K) = 2W(K, E).

Following the notation of [6, (2.6)], set

A(K) = 2AK and α = 2AE .

The Minkowski element of arc length dσ at a point on the curve ∂K with Minkowski
unit tangent can be written as (cf. [6, (2.7)])

dσ = γ(θ)(p(θ) + p′′(θ)) dθ.
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With these observations, (3.7) turns into
1
α

∫ L

0
F(ρ(σ))

1
ρ(σ)

dσ ≥
1
2

(F(−t1) + F(−t2)),

which is an inequality in Minkowski geometry.
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