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Abstract

List homomorphisms are functions that are parallelizable using the divide-and-conquer

paradigm. We study the problem of finding homomorphic representations of functions in

the Bird–Meertens constructive theory of lists, by means of term rewriting and theorem

proving techniques. A previous work proved that to each pair of leftward and rightward

sequential representations of a function, based on cons- and snoc-lists, respectively, there

is also a representation as a homomorphism. Our contribution is a mechanizable method

to extract the homomorphism representation from a pair of sequential representations. The

method is decomposed to a generalization problem and an inductive claim, both solvable by

term rewriting techniques. To solve the former we present a sound generalization procedure

which yields the required representation, and terminates under reasonable assumptions. The

inductive claim is provable automatically. We illustrate the method and the procedure by the

systematic parallelization of the scan-function (parallel prefix) and of the maximum segment

sum problem.

Capsule Review

This paper presents a rewriting technique that automates the construction of concat-list homo-

morphisms from cons- and snoc-list honomorphism (Bird’s third homomorphism theorem).

Examples worked through by hand are given. Implementation of the technique described

here would provide a powerful, but low complexity, way to derive complex programs. The

result is particularly important because concat-list homomorphisms have a natural parallel

implementation.

1 Introduction

This paper applies term rewriting and theorem proving techniques to formal rea-

soning about functional programs, specifically to program parallelization. It builds

upon a rich body of research done in the framework of the Bird-Meertens formal-

ism (BMF) (Bird, 1988; Skillicorn, 1994). Parallelism is tackled in BMF via the

notion of homomorphism which captures a data-parallel form of the divide-and-

conquer paradigm. A classification of divide-and-conquer forms suitable for static

parallelization is proposed in Gorlatch and Bischof (1997).

ã A preliminary version of this paper was presented at the ALP’97 Conference, Southampton, UK.
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To use homomorphisms in the design of parallel programs, two tasks must be

solved: (1) Extraction: for a given function find its representation as a homomor-

phism or adjust it to a homomorphic form; (2) Implementation: for different classes

of homomorphisms, find an efficient way of implementing them on parallel ma-

chines. For both tasks, we aim at a systematic approach which would lead to a

practically relevant parallel programming methodology (Gorlatch, 1996a; Gorlatch,

1996b; Gorlatch and Bischof, 1997). A systematic extraction method, proposed by

Gorlatch (1996b), proceeds by generalizing two sequential representations of the

function: on the cons and snoc lists. This so-called CS method (for ‘Cons and

Snoc’) has proven to be powerful enough for a class of almost-homomorphisms which

include famous problems like maximum segment sum and parsing the multi-bracket

languages as examples.

This paper makes a further step in solving the extraction problem. Our con-

tributions are, first, a precise formulation of the CS approach to the extraction

problem via term generalization and, second, a generalization procedure within the

Bird–Meertens theory of lists, to be used in the CS method. We propose a new,

mechanizable algorithm of generalization based on term rewriting, with the desirable

properties of soundness, reliability and termination.

The paper is structured as follows. Section 2 introduces the BMF notation

and the notion of homomorphism. In section 3, we formulate the CS method of

homomorphism extraction through term generalization. A formal embedding of the

BMF theory of lists into the term rewriting framework is done in section 4. In

section 5, we derive a generalization calculus for the theory of lists and formulate

an algorithm of generalization. The presentation is illustrated by a running example

– the scan function, also known as the parallel prefix (Blelloch, 1989). For this

practically relevant function, we first demonstrate the non-triviality of the extraction

problem, then we show how the CS method works for it and, finally, in section 6

we apply the proposed generalization algorithm which successfully extracts the

homomorphic form of scan. In section 7, we demonstrate the application of the

CS method and the generalization algorithm on a more demanding case study –

the famous MSS (maximum segment sum) problem. Finally, section 8 studies the

termination property of the presented generalization algorithm.

2 BMF and homomorphisms

We restrict ourselves to non-empty lists, which can be constructed starting from sin-

gletons [a] via list concatenation ++. The BMF expressions are built using functional

composition denoted by ◦, and two second-order functions:

map f : map of unary function f, i.e. map f [x1, · · · , xn] = [fx1, · · · , fxn];
red (�) : reduce over a binary associative operation �,

red (�) [x1, · · · , xn] = x1 � x2 � · · · � xn.
Definition 2.1

A list function h is a homomorphism iff there exists a binary associative combine
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operator �∗ , such that for all lists x and y:

h (x++ y) = h (x) �∗ h (y) (1)

hence, the value of h on a list depends in a certain way (using �∗ ) on the values of h

on the pieces of the list. The computations of h(x) and h(y) in (1) are independent

and can be carried out in parallel.

Theorem 1 (Bird, 1988 )

Function h is a homomorphism iff there exists a binary associative combine operator

�∗ such that

h = red (�∗ ) ◦ (map f) (2)

where f is defined by f (a) = h ([a]).

The theorem provides a standard parallelization pattern for all homomorphisms

as a composition of two stages. A further refinement of (2) into coarse-grain SPMD

parallel programs is studied elsewhere (Gorlatch, 1996a; Gorlatch and Bischof,

1997). Thus, a function is a homomorphism iff it is well parallelizable.

Example 1 (Scan as a homomorphism)

Our illustrating example in the paper is the scan-function which, for associative �
and a list, computes ‘prefix sums’. On a list of four elements, e.g. it acts as follows:

scan (�) [a, b, c, d] = [a, (a� b), (a� b� c), (a� b� c� d)]
Function scan has a surprisingly wide area of applications, including evaluation of

polynomials, searching, etc. (Blelloch, 1989); its parallelization has been extensively

studied and meanwhile belongs to the folklore of parallel computing.

Function scan is a homomorphism with combine operator �∗ :

scan (�) (x++ y) = S1 �∗ S2 = S1 ++ (map ((last S1)�) S2) , (3)

where S1 = scan (�) x , S2 = scan (�) y.

Here, so-called sectioning is exploited in that we fix one argument of � and obtain

the unary function ((last S1)�), which can be mapped.

Whereas the desired parallel (homomorphic) representations use list concatena-

tion, more traditional sequential functional programming is based on the constructors

cons and snoc. We use the following notation:

·: for cons, which attaches an element at the front of the list,

:· for snoc, which attaches the element at the list’s end.

Our goal is to use sequential representations of a given function to extract its parallel

homomorphic representation.

Definition 2.2

List function h is called leftwards (lw) iff there exists a binary operation ⊕ such that

h (a ·: y) = a ⊕ h(y) for all elements a and lists y. Dually, function h is rightwards

(rw) iff, for some ⊗, h (y :· a) = h(y)⊗ a.
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Note that ⊕ and ⊗ may be non-associative, so many functions are either lw

or rw or both. The following theorem combines the so-called second and third

homomorphism theorems considered folk theorems in the BMF community.

Theorem 2

A function on lists is a homomorphism iff it is both leftwards and rightwards.

Unfortunately, as pointed out by Barnard et al. (1991) and Gibbons (1996), the

theorem does not provide a method to construct the homomorphic representation of

a function from its leftwards and rightwards definitions. The extraction task can be

thus formulated as finding the combine operation �∗ from operations ⊕ and/or ⊗.

Definition 2.3

Function h is called left-homomorphic (lh) iff there exists �∗ such that, for arbitrary

list x and element a, the following holds: h (a ·: y) = h ([a]) �∗ h (y). The definition

of a right-homomorphic (rh) function is dual.

Evidently, every lh (rh) function is also lw (rw, resp.), but not vice versa.

Theorem 3

If function h is a homomorphism then h is both lh and rh with the same combine

operator. If function h is lh or rh, and the combine operator is associative, then h is

a homomorphism with this combine operator.

Gorlatch (1995) proves a slightly stronger proposition.

Theorem 3 suggests a possible way to find a homomorphic representation: con-

struct a cons definition of the function in the lh format (or, dually, find an rh

representation on snoc lists) and prove that the combine operation is associative.

Sometimes this simple method is successful (e.g. for the function which computes

the length of a list (Gorlatch, 1996b)), but already for scan it does not work:

Example 1 (Continued; extraction for Scan)

The sequential cons definition of scan is as follows:

scan (�) (a ·: y) = a ·: (map (a�) (scan (�) y)) (4)

Representation (4) does not match the lh format because a is used where only

scan [a] is allowed. We have to guess which of possible substitutes for a: scan [a],

head (scan (�) [a]), last (scan (�) [a]), etc. should be used. We run into a similar

problem for a snoc definition:

scan (�) (x :· b) = (scan (�) x) :· (last (scan (�) x)� b) (5)

We believe we have shown that the problem of extracting a homomorphism is

nontrivial. For the scan function, it even led to errors in published parallel algorithms

and required a formal correctness proof (O’Donnell, 1994).

3 CS method: Extraction by generalization

In the previous section, we have seen some unsuccessful attempts to arrive at an

associative combine operator, starting from either a cons or a snoc representation
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of a function. The idea of the proposed CS method (for ‘Cons and Snoc’) is to take

both representations and generalize them.

Definition 3.1

A term tG is called a generalizer of terms t1 and t2 in the equational theory E (E-

generalizer) if there are substitutions σ1, σ2, such that tG.σ1 ↔∗E t1 and tG.σ2 ↔∗E t2.

Here,↔∗E denotes the semantic equality (conversion relation) in the equational theory

E, and t.σ denotes the result of applying substitution σ to term t. Generalization is

the dual to unification and is sometimes also called ‘anti-unification’ (Heinz, 1994).

Let us assume that function h is a homomorphism, i.e. (1) holds, and tH denotes

a term over u and v that defines �∗ :

u �∗ v ↔ tH (6)

The homomorphism extraction problem can be formally specified as follows:

Given: A cons and a snoc definition of h:

h([a])↔ tB and h([b])↔ t′B
h(a ·: y)↔ tC h(x :· b)↔ tS

Wanted: A definition u �∗ v ↔ tH , such that h(x++ y)↔ h(x) �∗ h(y).

Since h is a homomorphism, then according to Theorem 3, it is both lh and rh with

combine operator �∗ , so that we can rewrite the definitions into the following:

tB �∗ h(y)↔ tC and h(x) �∗ t′B ↔ tS (7)

At the same time, the following two terms, built from tH by substitutions: tL =

tH .{u 7→ h([a]), v 7→ h(y)} and tR = tH .{u 7→ h(x), v 7→ h([b])}, are semantically equal

variants of all cons and snoc definitions of h, respectively.

Figure 1(a) illustrates the relations between the introduced terms tH , tC , tS , tL
and tR . Dotted arrows indicate application of substitutions; solid arrows indicate

conversion steps. Each substitution is applied to two terms – this is a simultaneous

generalization problem. To work with the established notion of generalizer, we

introduce a fresh binary function symbol, ⇀, and model each pair (s↔ t) of terms

as a single term s ⇀ t, called a rule term. With this encoding we get the view of

Figure 1(b).

The following theorem states that a generalization of the rule terms built of (7)

yields term tH from (6) – the wanted piece of the definition of h as a homomorphism.

Theorem 4

Let E be the theory of lists and let t′B = tB.{a 7→ b}. If two rule terms, tB �∗ h(y) ⇀ tC
and h(x) �∗ t′B ⇀ tS , have an E-generalizer, u �∗ v ⇀ tH , w.r.t. σ1 = {u 7→ tB, v 7→
h(y)} and σ2 = {u 7→ h(x), v 7→ t′B}, and the operation �∗ thus defined is associative,

then: (1) The cons, snoc, and ++ definitions define the same function h. (2) Function

h is lh and rh, with f(a) = tB . (3) Function h is a homomorphism with �∗ as combine

operation.
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tB �∗ h(y) ←−−−→
(7)

tC
∗←−−−→
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tH .σ1 tL
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(6)
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tS
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(a) as a simultaneous generalization problem

tB �∗ h(y) ⇀ tC

∗
xyE

h([a]) �∗ h(y) ⇀ tL

ppppppp
p6
σ1

u �∗ v ⇀ tH

ppppppp
p
?
σ2

h(x) �∗ h([b]) ⇀ tR

∗
xyE

h(x) �∗ t′B ⇀ tS

(b) using rule
term encoding

Fig. 1. The relationships of the terms after a successful generalization; here:

σ1 = {u 7→ tB, v 7→ h(y)}, σ2 = {u 7→ h(x), v 7→ t′B}.

Proof

The first claim follows by Theorem 5(3) in section 4. For the second claim, one

shows h(a ·: y)↔ tC ↔ tB �∗ h(y)↔ h([a]) �∗ h(y) and h(x :· b)↔ tS ↔ h(x) �∗ t′B ↔
h(x) �∗ h([b]). The third claim is equivalent to it by Theorem 3. q

Note that Theorem 4 does not assume that the cons- and the snoc-definitions

define the same h; it rather establishes this property.

The generalization in Theorem 4 is called the CS-generalization: it is the key step

of the following CS method of homomorphism extraction.

The CS Method

1. The user is asked to provide two sequential definitions for a given function: a

cons term tC and a snoc term tS .

2. A successful CS-generalization, applied to the rule terms tB �∗ h(y) ⇀ tC and

h(x) �∗ t′B ⇀ tS , yields a rule term u �∗ v ⇀ tH .

3. If associativity of �∗ defined by tH can be proven inductively then, by Theo-

rem 4, �∗ is the desired combine operator.

Example 1 (Continued )

For scan, the rule terms follow from (4),(5):

[a] �∗ scan (�) y ⇀ a ·: (map (a�) (scan (�) y))

scan (�) x �∗ [b] ⇀ (scan (�) x) :· (last (scan (�) x)� b)
As demonstrated further in section 6, their CS-generalization yields the desired

combine operator of scan.
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To apply the CS method practically, the generalization step of the method must

be mechanized, i.e. an algorithm is required that yields the most special generalizer

of two terms.

4 Expressing the CS method in term rewriting

Obviously, there is always a (most general) generalizer: a variable, x0, since x0.σ1 =

t1 and x0.σ2 = t2 where σ1 =def {x0 7→ t1} and σ2 =def {x0 7→ t2}. So it is

obvious that people prefer the most special generalizer, provided there is one. In

this respect, generalization is the dual to unification and is sometimes also called

‘anti-unification’ (Heinz, 1994). Plotkin has closely studied the special-case relation

between terms (Plotkin, 1970). In the case where E is empty, there are most general

syntactic unifiers and most special syntactic generalizers.

In contrast to unification, properties and methods for generalization for non-

empty E have not received enough attention in the literature. A few generalization

methods have been exercised for use in inductive theorem proving, i.e. the systematic

construction of a term rewriting system of counting functions on the basis of an

effective enumeration of elements (Lange, 1989; Smith, 1993). For our purpose to

extract homomorphisms one can do simpler. There is no need to adapt the given

equational theory, nor to introduce new functions. We start from Comon et al. (1994)

and Jouannaud (1990), where a resolvant presentation of the equational theory to

get a generalization algorithm is used; our generalization calculus differs basically

by the use of rewrite derivations instead of conversions.

We will adopt term rewriting methods for this step, so let us first embed a fragment

of the Bird-Meertens theory of lists in term rewriting theory.

To this end, we henceforth restrict ourselves to first-order terms whence we

suppress higher order parameters, and consider a fixed associative operation �. In

our running example, we replace scan (�) x by scn(x), and map (a�) (x) by mp(a, x).

Moreover, from now on we use rewrite rules f(t1, . . . , tn)→ t0 instead of conversion

rules f(t1, . . . , tn) ↔ t0 in order to account for oriented replacement, i.e. rewriting:

a rewrite rule may be used to replace a term t of the form C[f(t1, . . . , tn)] by t′ of

the form C[t0], a fact expressed by t→ t′. By C[t] we indicate that t appears in the

context C . If R is a system of such rewrite rules, then one writes t →R t
′ for the

application of a rule from R somewhere in t, yielding a term t′. Relation ↔∗R is the

equivalence closure of →R , i.e. the smallest binary relation on terms that contains

→R and is reflexive, symmetric, and transitive.

To be able to reason in the rewriting framework, we have to fix a few term

rewriting systems: The term rewriting system R, the conversion relation ↔R of

which will be the ‘semantic equality’, and term rewriting systems Rcons, Rsnoc, and

Rconc for the three versions of definitions of h.

We start with the oriented associativity rules of � and ++:

a� (b� c)→ (a� b)� c (A�)

x++ (y ++ z)→ (x++ y) ++ z (A++)
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The symbols ·: and :· and their defining rules

a ·: y → [a] ++ y and x :· b→ x++ [b]

will not appear explicitly in our method. Rather, we replace throughout t ·: t′ and

t :· t′ by [t] ++ t′ and t++ [t′], respectively.

To keep things simple, let us assume that h is not mutually recursive, i.e. that the

call relation does not contain cycles of length greater than one. Next we assume

given a term rewriting system, Rbase, to contain suitable rules for the functions

that are called by h. We may by an inductive argument assume that all auxiliary

functions on lists are homomorphisms and that the extraction has already been

done for them. In other words, each function h′ called by h is given by means of [.]

and ++, and the right hand side of its definition does not use x and y unless in h′(x)

and h′(y), respectively. (For functions in more than one parameter, we assume that

parallelization is done for the last parameter, which is a list.)

Given a term rewriting system Rbase and terms tB , tC , tS , tH , we define a term

rewriting system R to describe the conversion relation, ↔∗R , that will serve as the

‘semantic equality’, ↔∗E; and three term rewriting systems, Rcons, Rsnoc, and Rconc, for

reasoning about the cons, snoc, and ++ definitions of h, respectively:

R = A� ∪ A++ ∪ Rbase
R0 = R ∪ {h([a])→ tB, h(x++ y)→ h(x) �∗ h(y)}

Rcons = R0 ∪ {tB �∗ h(y)→ tC}
Rsnoc = R0 ∪ {h(x) �∗ t′B → tS}
Rconc = R0 ∪ {u �∗ v → tH}

Here, t′B = tB.{a 7→ b} is just the term tB where a is renamed by b.

Example 1 (Continued )

Function scn calls functions mp and last. So, Rbase becomes

last[a]→ a (8)

last(x++ y)→ last y (9)

mp(a, [b])→ [a� b] (10)

mp(a, x++ y)→ mp(a, x) ++ mp(a, y) (11)

Next we get tB = [a], and accordingly, t′B = [b], next tC = [a] ++ mp(a, scn(y)), and

tS = scn(x) ++ [last(scn(x))� b].

R0 = R ∪
{

scn([a])→ [a]

scn(x++ y)→ scn(x) �∗ scn(y)

Rcons = R0 ∪ {[a] �∗ scn(y)→ [a] ++ mp(a, scn(y))}
Rsnoc = R0 ∪ {scn(x) �∗ [b]→ scn(x) ++ [last(scn(x))� b]}

We are aiming at tH such that Rconc defines the same function h as do Rcons and

Rsnoc.
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A ground term is a term that does not contain any (free) variable. The inductive

theory of a term rewriting system, R, is the set of all formal equations s↔ t between

terms such that s.σ ↔∗R t.σ holds for all substitutions σ such that s.σ and t.σ are

ground. A term rewriting system R′ is called a conservative extension of R if every

equation s ↔ t in the inductive theory of R′, where s and t are terms over the

signature of R, is already in the inductive theory of R (e.g. see Bachmair, 1989).

Theorem 5 (Reliability)

Let the term rewriting systems R, Rcons, Rsnoc, and Rconc be defined as above. If the two

rule terms tB �∗ h(y) ⇀ tC and h(x) �∗ t′B ⇀ tS have an R-generalizer, u �∗ v ⇀ tH ,

w.r.t. the substitutions σ1 = {u 7→ tB, v 7→ h(y)} and σ2 = {u 7→ h(x), v 7→ t′B}, then

the following properties hold:

1. Relations ↔∗Rcons and ↔∗Rsnoc are included in relation ↔∗Rconc .
2. If �∗ is associative in the inductive theory of Rconc then Rconc is a conservative

extension of R.

3. If �∗ is associative in the inductive theory of Rconc then the inductive theories

of Rcons, Rsnoc, and Rconc coincide.

Proof

By the success of derivation we have a situation as depicted in Figure 1(b). The

only rule tB �∗ h(y) → tC in Rcons not in Rconc can be replaced by a conversion

(u �∗ v).σ1 →Rconc tH .σ1 ↔∗R tC in Rconc. This way every conversion in Rcons can be

translated into one in Rconc. By symmetry the same holds for conversions in Rsnoc.

For the second claim, let �∗ be associative in the inductive theory of R. Then Rconc
is a conservative extension of R as we show next. We first note that Rconc is ground

confluent modulo R, i.e. t↔∗Rconc t′ implies t→∗Rconc↔∗R←∗Rconc t′ for all ground terms t,

t′. Specifically,

h((t1 ++ t2) ++ t3)
Rconc−−−−→ h(t1 ++ t2) �∗ h(t3) −−−−→ (h(t1) �∗ h(t2)) �∗ h(t3)

Rconc

y R

xy∗
h(t1 ++ (t2 ++ t3)) −−−−→ h(t1) �∗ h(t2 ++ t3) −−−−→ h(t1) �∗ (h(t2) �∗ h(t3))

and the proper rules in Rconc have a h or �∗ symbol at the left hand side. It is a folk

theorem in term rewriting that a ground confluent term rewriting system where every

‘new’ rewrite rule contains a ‘new’ symbol at the left hand side, is a conservative

extension of the ‘old’ system. This extends to ground confluence modulo the ‘old’

system in a straightforward way.

The inductive theory of Rcons is included in the inductive theory of Rconc since its

conversion is. We have to prove the converse.

First, we assume associativity of �∗ in the inductive theory of Rconc. Then it follows

that the equation

tH . {u 7→ tH , v 7→ w} ↔ tH . {v 7→ tH . {u 7→ v, v 7→ w}} , (12)
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too, is in the inductive theory of Rconc: For arbitrary ground terms t1, t2, and t3, one

gets

tH .{u 7→ tH .{u 7→ t1, v 7→ t2}, v 7→ t3}
←Rconc (t1 �∗ t2) �∗ t3
↔∗Rconc t1 �∗ (t2 �∗ t3)

→Rconc tH .{u 7→ t1, v 7→ tH .{u 7→ t2, v 7→ t3}}
As Rconc is a conservative extension of R, we conclude that (12) is also in the

inductive theory of R.

Finally, we show that the only rule in Rconc \ Rcons is also an element of the

inductive theory of Rcons:

h(t++ t′)↔∗Rcons tH .{u 7→ h(t), v 7→ h(t′)}
holds for all ground terms t, t′.

We define R′ to be Rcons but the associativity of ++ (i.e. Rule (A++)) oriented in

the reverse direction. It is easy to show that R′ is terminating and that every ground

term has a R′-normal form of the shape [a] ++ t′′. We get that t++ t′ →∗R′ [a] ++ t′′ for

suitable a and t′′. Hence there is the conversion

h(t++ t′)

↔∗Rcons h([a] ++ t′′)

→Rcons tC .{y 7→ t′′}
←∗R tH .{u 7→ tB, v 7→ h(y)}.{y 7→ t′′}

= tH .{u 7→ tB, v 7→ h(t′′)}
←∗Rcons tH .{u 7→ h([a]), v 7→ h(t′′)}
↔∗Rcons tH .{u 7→ h(t), v 7→ h(t′)}

We have thus shown that h(u ++ v) ↔ tH is in the inductive theory of Rcons, and

so that Rconc is included in the inductive theory of Rcons. This finishes the proof of

Claim (3). q

In other words, a generalizer of a certain shape and an inductive proof provide a

solution to the homomorphism extraction problem.

Most special generalizers need not exist, as the following example shows.

Example 2

Given a term rewriting system R for the doubling function d on non-negative

integers,

d(0)→ 0

d(s(x))→ s(s(d(x)))

where s denotes the successor function, we may pose the generalization problem

https://doi.org/10.1017/S0956796899003536 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003536


Parallelizing functional programs by generalization 659

If f(u′1, . . . , u
′
m)

ε−→
R

∗
ui and f(v′1, . . . , v

′
m)

ε−→
R

∗
vi then (13)

σ1‖{xi 7→ ui} σ2‖{xi 7→ vi} t0

σ1‖τ1 σ2‖τ2 t0.{xi 7→ f(x′1, . . . , x
′
m)}

where τ1 = {x′1 7→ u′1, . . . , x′m 7→ u′m} and τ2 = {x′1 7→ v′1, . . . , x′m 7→ v′m}.
Fig. 2. ‘Ancestor decomposition’ rule.

σ1‖{xi 7→ u, xj 7→ u} σ2‖{xi 7→ v, xj 7→ v} t0

σ1‖{xi 7→ u} σ2‖{xi 7→ v} t0.{xj 7→ xi}

Fig. 3. ‘Agreement’ rule.

for t1 = s(s(0)) and t2 = s(s(s(s(0)))) in R. We get two, incomparable, solutions:

t0 = s(s(y)) with σ1 = {y 7→ 0} and σ2 = {y 7→ s(s(0))}, as opposed to t0 = d(z)

with σ1 = {z 7→ s(0)} and σ2 = {z 7→ s(s(0))}. For the first solution, no conversion is

needed, for the second, we have the two conversions

t0.σ1 = d(s(0))→R s(s(d(0)))→R s(s(0)) = t1, and

t0.σ2 = d(s(s(0)))→R s(s(d(s(0))))→R s(s(s(s(d(0)))))

→R s(s(s(s(0)))) = t2

For the same reason the calculus usually is not confluent (Huet, 1980). The example

also shows that it is reasonable to assume that the conversion is a rewrite derivation

from t0.σi to ti; we will exploit that in our algorithm.

5 A calculus for generalization

Following a good custom, we introduce our algorithm for generalization by means

of a calculus. The objects of our generalization calculus are configurations consisting

of three components: (σ1, σ2, t0), maintaining the invariant that t0 is a generalizer

of t1 and t2 via the substitutions σ1 and σ2, respectively. Starting from the initial

configuration ({x0 7→ t1}, {x0 7→ t2}, x0), where x0 is the most general generalizer, we

successively apply inference rules to specialize, until no more inference rule applies.

The basic idea is to repeat, as long as possible, the following step: extract a common

assignment of σ1 and σ2 and move it to t0. Every such step, while preserving the

generalization property of t0, adds more speciality to it until, finally, t0 is maximally

special.

We introduce two inference rules: ancestor decomposition and agreement, shown

in Figures 2 and 3, respectively. The formula t
ε−→
R

∗
t′ means that t rewrites in zero

or more steps to t′ where every rewrite step takes place at the root position, ε, of t.

For substitutions σ = {x1 7→ s1, . . . , xm 7→ sm}, τ = {y1 7→ t1, . . . , yn 7→ tn} for which

xi 6= yj for all i, j, their disjoint union is defined by σ‖τ = {x1 7→ s1, . . . , xm 7→
sm, y1 7→ t1, . . . , yn 7→ tn}.
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The ancestor decomposition rule in Figure 2 reconstructs a common top symbol

of a pair of terms, potentially after a few reverse rewrite steps at the top. First,

a common variable, xi, in the domain of the two substitutions is selected. If the

corresponding right-hand sides, ui and vi, have a common root function symbol, f,

then the rule splits xi 7→ f(u′1, . . . , u′m) into xi 7→ f(x′1, . . . , x′m) and x′j 7→ u′j , where x′j is

a fresh variable for each argument position j of f. Likewise, xi 7→ f(v′1, . . . , v′m) is split

to xi 7→ f(x′1, . . . , x′m) and x′j 7→ v′j . Their common assignment, xi 7→ f(x′1, . . . , x′m),

is transferred to t0. A term t such that t
ε−→
R

∗
t′ is called an ancestor of t′. To

enable conversion by R rules, we furthermore allow that ui or vi are replaced by

some ancestor thereof. In other words, we allow non-void rewrite derivations in

Condition (13).

The ‘agreement’ rule in Figure 3 joins variables that map to the same term.

Mappings xi 7→ u and xj 7→ u with common right-hand sides in the first substitution

can be split into xj 7→ xi and xi 7→ u. Likewise if, there are xi 7→ v and xj 7→ v in

the second substitution then they are split into xj 7→ xi and xi 7→ v. The common

assignment, xj 7→ xi, of the two is transferred to t0.

Occasionally we will justify an application of the ancestor decomposition rule by

a remark of the form ‘AncDec for xi; f; t
ε−→
R

∗
t′’, or just ‘AncDec for xi; f’ if the

rewrite derivation t
ε−→
R

∗
t′ is void, i.e. t = t′. To justify an application of the agreement

rule we will put a remark like ‘Agr for xi, xj ’.

It is fairly easy to prove that our calculus is sound in the following sense:

Theorem 6 (Soundness)

For every inference step (σ1, σ2, t0) ` (σ′1, σ′2, t′0), we have t0.σ1 ←∗R t′0.σ′1 and t0.σ2 ←∗R
t′0.σ′2.

Corollary 1

If t0 is a generalizer of t1 and t2 w.r.t. the term rewriting system R, and (σ1, σ2, t0) `
(σ′1, σ′2, t′0) is an inference step, then t′0 is a more special generalizer of t1 and t2
w.r.t. R.

We conjecture that under reasonable assumptions there is a completeness result as

well. However, for practical applicability we will have to strengthen Condition (13)

of the ancestor decomposition rule such that completeness is lost anyway. So we

leave the completeness question open.

6 Generalization for scan

To turn our generalization calculus into an algorithm, one has to decide on a rule

application strategy, and prove its termination. We adopt the strategy to prefer the

‘agreement’ rule, and then to choose the smallest index i for which an inference

rule applies. If only the ‘ancestor decomposition’ rule applies, we branch for every

pair of rewrites that justifies Condition (13) at index i. We are going to study the

termination property of this algorithm in section 8, but first let us see how it works.
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For an arbitrary function h, the generalization process starts from the configuration

with the rule terms given by tB �∗ h(y) ⇀ tC and h(x) �∗ t′B ⇀ tS . The first two steps

in the generalization are always the same, independently of the particular function

h:

{
x0 7→ (tB �∗ h(y) ⇀ tC)

} {
x0 7→ (h(x) �∗ t′B ⇀ tS )

}
x0

` (AncDec for x0; ⇀){
x′1 7→ tB �∗ h(y)

x′2 7→ tC

} {
x′1 7→ h(x) �∗ t′B

x′2 7→ tS

}
x′1 ⇀ x′2

` (AncDec for x′1; �∗ )
x′3 7→ tB

x′4 7→ h(y)

x′2 7→ tC



x′3 7→ h(x)

x′4 7→ t′B
x′2 7→ tS

 x′3 �∗ x′4 ⇀ x2

Here, x′1, x′2, x′3, x′4 are fresh variables introduced by the two applications of the

ancestor decomposition rule. Since the two inference steps shown above have to be

done for every function, we omit them in the sequel, and start generalization for an

arbitrary function h from the following configuration, which is obtained from the

latter by simple variable renaming:


x1 7→ tB

x2 7→ h(y)

x3 7→ tC



x1 7→ h(x)

x2 7→ t′B
x3 7→ tS

 x1 �∗ x2 ⇀ x3 (14)

Example 1 (Continued )

Now let us study our scan example to see how our calculus operates. Here we have,

according to (4)–(5):

tC = ([a] �∗ scn(y) ⇀ [a] ++ mp(a, scn(y)))

tS = (scn(x) �∗ [b] ⇀ scn(x) ++ [last(scn(x))� b])
tB = [a]

t′B = [b]
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Generalization proceeds as follows:
x1 7→ [a]

x2 7→ scn(y)

x3 7→ [a] ++

mp(a, scn(y)))




x1 7→ scn(x)

x2 7→ [b]

x3 7→ scn(x) ++

[last(scn(x))� b]

 x1 �∗ x2 ⇀ x3

` (AncDec for x3; ++)
x1 7→ [a]

x2 7→ scn(y)

x4 7→ [a]

x5 7→ mp(a, scn(y)))




x1 7→ scn(x)

x2 7→ [b]

x4 7→ scn(x)

x5 7→ [last(scn(x))� b]

 x1 �∗ x2 ⇀ x4 ++ x5

` (Agr for x1, x4)
x1 7→ [a]

x2 7→ scn(y)

x5 7→ mp(a, scn(y)))




x1 7→ scn(x)

x2 7→ [b]

x5 7→ [last(scn(x))� b]

 x1 �∗ x2 ⇀ x1 ++ x5

` (AncDec for x5; mp; mp(last(scn(x)), [b])
ε−−→

(10)

∗
[last(scn(x))� b])

x1 7→ [a]

x2 7→ scn(y)

x6 7→ a

x7 7→ scn(y)




x1 7→ scn(x)

x2 7→ [b]

x6 7→ last(scn(x))

x7 7→ [b]

 x1 �∗ x2 ⇀ x1 ++ mp(x6, x7)

` (Agr for x2, x7)
x1 7→ [a]

x2 7→ scn(y)

x6 7→ a




x1 7→ scn(x)

x2 7→ [b]

x6 7→ last(scn(x))

 x1 �∗ x2 ⇀ x1 ++ mp(x6, x2)

` (AncDec for x6; last; last([a])
ε−→

(8)

∗
a)

x1 7→ [a]

x2 7→ scn(y)

x8 7→ [a]



x1 7→ scn(x)

x2 7→ [b]

x8 7→ scn(x)

 x1 �∗ x2 ⇀ x1 ++ mp(last(x8), x2)

` (Agr for x1, x8){
x1 7→ [a]

x2 7→ scn(y)

} {
x1 7→ scn(x)

x2 7→ [b]

}
x1 �∗ x2 ⇀ x1 ++ mp(last(x1), x2)

It remains to prove the associativity of the obtained operator �∗ :

u �∗ v ↔ u ++ map (last (u)�) v (15)

The inductive proof of associativity may be carried out by a mechanized inductive

theorem prover. In our scn example, we have used the semi-automatic inductive

prover TiP (Fraus and Hußmann, 1992; Geser, 1995) to produce a proof of associa-

tivity of �∗ based on the lemmas

last(mp(a, x))→ a� last x and mp(a, mp(b, x))→ mp(a� b, x)
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and, in turn, a proof of each lemma. The three proofs are obtained by rewriting

induction, without any user interaction.

Therefore, scan is a homomorphism in the sense of (2), with �∗ defined by (15)

and f = [.], where function [.] creates singleton list of an element.

7 Case study: The MSS problem

Many practical non-homomorphic functions are so-called almost-homomorphisms

(name coined by M. Cole): they are convertible to a composition of a homomorphism

and some adjusting function.

Actually, every function h can be tupled together with the identity function,

resulting in the function g = 〈 h , id 〉. Obviously, such g is a homomorphism:

g (x ++ y) = g x �∗ g y, where (u, x) �∗ (v, y) =
(
h (x ++ y) , x ++ y

)
. The original

function is computed from g by projection, h = π1 ◦ g, where π1 yields the first

component of a tuple. This seems to provide an amazingly simple way of computing

every function in parallel as a homomorphism, followed by a simple projection. A

closer look at operator �∗ reveals the snag: it does not make use of the computed

values, u and v, and computes function h from scratch!

Fortunately, there are also examples where a conversion to a ‘true’ tuple homo-

morphism exists. Cole reports several elegant case studies (Cole, 1994), where the

main remaining difficulty is to guess which auxiliary functions must be included in

a tuple and to find the combine operator. Usually, this requires a lot of ingenuity

from the developer, hence a more systematic approach is desired. Cole says:

“It is of interest to ask how easily the resulting algorithms might have been derived in a

more strictly formal setting.”

We will demonstrate that the CS method allows us to systematically construct

almost-homomorphisms, known from the literature.

We consider solution of the maximum segment sum (mss) problem – a programming

pearl (Bentley, 1984), studied by many authors (Bird, 1988; Cole, 1994; Skillicorn,

1994; Smith, 1987). Given a list of integers, function mss finds the contiguous, non-

empty list segment whose members have the largest sum among all such segments

and returns this sum. For example, in the notation of Cole (1994):

mss [ 2,−4, 2,−1, 6,−3 ] = 7

where the result is contributed by the segment [2,−1, 6].

Let us apply the CS method to the MSS problem. First, we have to express

function mss over cons lists. For some element a and list y, it may well be the case

that mss (a ·: y) = a ↑ mss (y), where ↑ returns the larger of its two arguments. But

we must not overlook the possibility that the true segment of interest includes both

a and some initial segment of y. To cater for that, we have to introduce auxiliary

function mis which yields the sum of the maximum initial segment:

mss (a ·: y) = a ↑ (a+ mis (y)) ↑ mss (y) (16)

The next step of the CS method, snoc definition, requires the introduction of
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auxiliary function mcs, yielding the sum of the maximum concluding segment. The

obtained cons definition of mss is as follows:

mss (x :· b) = mss (x) ↑ (mcs (x) + b) ↑ b (17)

The value of mss on a singleton list is the element itself:

mss [a] = a (18)

To get a closed definition of mss, we need to define the auxiliary functions, mis

and mcs, on both cons and snoc lists. Trying to find these definitions, we see that

the concluding segment of a ·: y may be the whole list, so we need its sum, which

no (combination) of the functions from the triple can yield. Therefore, we have to

introduce one more auxiliary function, ts (for total sum).

As the result, we arrive at the quadruple of functions: 〈mss,mis,mcs, ts〉 . The

functional program for mss consists now of definitions of four functions of the

quadruple:

mss [a] = a

mss (a ·: y) = a ↑ (a+ mis (y)) ↑ mss (y)

mss (x :· b) = mss (x) ↑ (mcs (x) + b)↑ b
mis [a] = a

mis (a ·: y) = a ↑ (a+ mis (y))

mis (x :· b) = mis (x) ↑ (ts (x) + b)

mcs [a] = a

mcs (a ·: y) = (a+ ts (y)) ↑ mcs (y)

mcs (x :· b) = (mcs (x) + b) ↑ b
ts [a] = a

ts (a ·: y) = a+ ts (y)

ts (x :· b) = ts (x) + b

Since functions in the quadruple are depending on each other, they should be

generalized together. To keep the presentation clear enough, we demonstrate the

generalization process in parts; and then comment on how these parts work together

in the generalization process.

Let us start with the simple case of function ts which does not depend upon any
other function:
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x1 7→ a

x2 7→ ts (y)

x3 7→ a+ ts (y)




x1 7→ ts (x)

x2 7→ b

x3 7→ ts (x) + b

 x1 �∗ x2 ⇀ x3

` (AncDec for x3; +)
x1 7→ a

x2 7→ ts (y)

x4 7→ a

x5 7→ ts (y)



x1 7→ ts (x)

x2 7→ b

x4 7→ ts (x)

x5 7→ b

 x1 �∗ x2 ⇀ x4 + x5

` (Agr for x1, x4)
x1 7→ a

x2 7→ ts (y)

x5 7→ ts (y)



x1 7→ ts (x)

x2 7→ b

x5 7→ b

 x1 �∗ x2 ⇀ x1 + x5

` (Agr for x2, x5){
x1 7→ a

x2 7→ ts (y)

} {
x1 7→ ts (x)

x2 7→ b

}
x1 �∗ x2 ⇀ x1 + x2

Thus, ts is a homomorphism with + as the combine operator.

Let us now consider the most complicated function in the quadruple, mss. Like

mis and mcs, it depends on other functions. We start to generalize mss as usual, and

then show how this dependency will be taken care of.

The generalization algorithm proceeds for mss as shown in Figure 4.

We have arrived at a point where every applicable inference rule misses the target,

but the desired final form is still not reached. The reason is that two other functions

mis and mcs, are used in the definition of mss. To cater for that, we modify the

generalization algorithm in a natural way: in addition to variables x1, x2 of (14) for

the function under generalization h, we introduce a pair of variables xg1 , x
g
2 for each

function g, such that g is used in the definition of h. In case of mss, we enrich the

configuration obtained in Figure 4 by variables for mis and mcs, and proceed with

generalization as shown in Figure 5.

The generalization is successful, and the right-hand side of the third component

of the obtained configuration yields the combine operator of the function mss from

the quadruple:

mss (x++ y) = mss (x) ↑ (mcs (x) + mis (y)) ↑ mss (y) (19)

The generalization for the remaining two auxiliary functions, mis and mcs, proceeds

analogously, with an additional variable introduced for function ts which both of

them depend upon. From the presented generalization for ts and mss, it should be

clear that all four functions of the quadruple can be generalized together, with two

variables x1 and x2 introduced for each of them.

The resulting combine operator for the quadruple is of the form:

(mss (x),mis (x),mcs (x), ts (x)) �∗ (mss (y),mis (y),mcs (y), ts (y)) =(
mss (x) ↑ (mcs (x) + mis (y)) ↑ mss (y) , mis (x) ↑ (ts (x) + mis (y)) , (20)

mcs (y) ↑ (mcs (x) + ts (y)) , ts (x) + ts (y)
)
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x1 7→ a

x2 7→ mss (y)

x3 7→a ↑ (a+ mis (y)) ↑
mss (y)




x1 7→ mss (x)

x2 7→ b

x3 7→mss (x) ↑
(mcs (x) + b) ↑ b

 x1 �∗ x2 ⇀ x3

` (AncDec for x3; ↑)
x1 7→ a

x2 7→ mss (y)

x4 7→ a ↑ (a+ mis (y))

x5 7→ mss(y)




x1 7→ mss (x)

x2 7→ b

x4 7→ mss (x) ↑ (mcs (x) + b)

x5 7→ b

 x1 �∗ x2 ⇀ x4 ↑ x5

` (Agr for x2, x5)
x1 7→ a

x2 7→ mss (y)

x4 7→ a ↑ (a+ mis (y))




x1 7→ mss (x)

x2 7→ b

x4 7→ mss (x) ↑ (mcs (x) + b)

 x1 �∗ x2 ⇀ x4 ↑ x2

` (AncDec for x4; ↑)
x1 7→ a

x2 7→ mss (y)

x6 7→ a

x7 7→ a+ mis (y)




x1 7→ mss (x)

x2 7→ b

x6 7→ mss (x)

x7 7→ mcs (x) + b

 x1 �∗ x2 ⇀ x6 ↑ x7 ↑ x2

` (Agr for x1, x6)
x1 7→ a

x2 7→ mss (y)

x7 7→ a+ mis (y)




x1 7→ mss (x)

x2 7→ b

x7 7→ mcs (x) + b

 x1 �∗ x2 ⇀ x1 ↑ x7 ↑ x2

` (AncDec for x7; +)
x1 7→ a

x2 7→ mss (y)

x8 7→ a

x9 7→ mis (y)



x1 7→ mss (x)

x2 7→ b

x8 7→ mcs (x)

x9 7→ b

 x1 �∗ x2 ⇀ x1 ↑ (x8 + x9) ↑ x2

Fig. 4. Generalization for mss: first part.

Since �∗ is associative, our quadruple is the homomorphism with �∗ defined by (20)

and f providing the result of the quadruple singleton:

f a = 〈mss,mis,mcs, ts〉 [a] = (a , a , a , a) (21)

The target function mss is therefore computable as follows:

mss = π1 ◦ red (�∗ ) ◦ (map f) (22)

where �∗ and f are defined by (20),(21), and π1 yields the first component of a

quadruple.

Let us estimate the parallel time complexity of the derived homomorphic algorithm

(22) for the MSS problem. Since both function f and operator �∗ require a constant

number of communicated elements and executed operators, the total time on n

processors is O(log n). The number of processors can be reduced to n/ log n by

simulating lower levels of the tree sequentially, based on Brent’s theorem (Quinn,

1994). Therefore, the direct tree-like algorithm is both time and cost optimal.
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x1 7→ a

x2 7→ mss (y)

x8 7→ a

x9 7→ mis (y)

xmis
1 7→ a

xmis
2 7→ mis (y)

xmcs
1 7→ a

xmcs
2 7→ mcs (y)





x1 7→ mss (x)

x2 7→ b

x8 7→ mcs (x)

x9 7→ b

xmis
1 7→ mis (x)

xmis
2 7→ b

xmcs
1 7→ mcs (x)

xmcs
2 7→ b


x1 �∗ x2 ⇀ x1 ↑ (x8 + x9) ↑ x2

` (Agr for xmcs
1 , x8)

x1 7→ a

x2 7→ mss (y)

x9 7→ mis (y)

xmis
1 7→ a

xmis
2 7→ mis (y)

xmcs
1 7→ a

xmcs
2 7→ mcs (y)





x1 7→ mss (x)

x2 7→ b

x9 7→ b

xmis
1 7→ mis (x)

xmis
2 7→ b

xmcs
1 7→ mcs (x)

xmcs
2 7→ b


x1 �∗ x2 ⇀ x1 ↑ (xmcs

1 + x9) ↑ x2

` (Agr for xmis
2 , x9)

x1 7→ a

x2 7→ mss (y)

xmis
1 7→ a

xmis
2 7→ mis (y)

xmcs
1 7→ a

xmcs
2 7→ mcs y





x1 7→ mss (x)

x2 7→ b

xmis
1 7→ mis (x)

xmis
2 7→ b

xmcs
1 7→ mcs (x)

xmcs
2 7→ b


x1 �∗ x2 ⇀ x1 ↑ (xmcs

1 + xmis
2 ) ↑ x2

Fig. 5. Generalization for mss: second part.

8 The termination property

Of course one would like the generalization procedure to terminate, i.e. be an

algorithm. The procedure, however, does not always terminate.

To get on the safe side, we replace Condition (13) of the ancestor decomposition

rule by:

f(u′1, . . . , u′m)
ε−→
R

X

ui, f(v′1, . . . , v′m)
ε−→
R

Y

vi, X + Y 6 1 (23)

Here t
ε−→
R

X
t′ means that t rewrites in exactly X steps to t′ where each step takes place

at the root position, ε, of t. We call the resulting calculus the restricted generalization

calculus.

In the restricted generalization calculus, as opposed to the unrestricted, the an-

cestor decomposition rule is finitely branching, and its applicable instances are

computable, provided that R contains no erasing rules, i.e. rules l → r where l

contains a variable not in r. For instance, Rule (9) is erasing: it has x on its left, but

not on its right-hand side.

Condition (23) is not as hard in practice as it may seem. Observe, for instance,

that the derivations for both scan and MSS are within the restricted generalization

calculus. The restricted generalization calculus is not complete for the simple fact
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that many function definitions need recursion and so an unbounded number of steps

in the ancestor decomposition rule.

Even in the restricted generalization calculus there are non-terminating deriva-

tions.

Example 3

Let s be the successor and p the predecessor on integers, together with the rewrite

rules

p(s(x))→ x s(p(x))→ x .

Then we get the infinite derivation

({x 7→ s(0)}, {x 7→ p(p(0))}, x)

` ({x′ 7→ s(s(0))}, {x′ 7→ p(0)}, p(x′))
` ({x′′ 7→ s(0)}, {x′′ 7→ p(p(0))}, s(p(x′′)))
` · · ·

The standard way to get finiteness of derivations, and so termination of the

procedure, is to take care that derivations (σ1
1 , σ

1
2 , t

1
0) ` (σ2

1 , σ
2
2 , t

2
0) ` · · · satisfy

(σi1, σ
i
2, t

i
0) � (σi+1

1 , σi+1
2 , ti+1

0 ) for an appropriate well-founded order � on triples.

In term rewriting, finiteness of rewrite derivations is ensured by the requirement

l > r for every rule l → r in R, where > is a suitable termination order: a well-

founded order on terms that is closed under contexts and substitution applications.

The knowledge l > r however is useless for our purposes, since we need to apply

rules in their reverse direction. It is not realistic to require r > l instead; this property

is usually violated. For instance, l = last[a], r = a does not satisfy r > l for any

termination order since no term can be greater than a superterm.

Now we observe that not only do we apply the rule in the reverse direction, but

also strip the top symbol off the left hand side. Stripping off the top symbol can be

considered a decrease, provided that the reverse rule application does not harm it.

Definition 8.1

Let > be an order on pairs of terms. A term rewriting system R is called reversely

guarded by > if for every rewrite rule f(l1, . . . , lm)→ r in R, both (r, f(x1, . . . , xm)) >

(lj , xj) and (f(x1, . . . , xm), r) > (xj, lj) hold for all 1 6 j 6 n.

Theorem 7 (Termination)

Let > be a well-founded order on pairs of terms, closed under substitution applica-

tion, that extends the component-wise subterm order. If R is reversely guarded by

> then the restricted generalization calculus admits no infinite derivations.

Proof

We show that for every inference step (σ1, σ2, t0) ` (σ′1, σ′2, t′0) in the calculus, we have

(σ1, σ2, t0) � (σ′1, σ′2, t′0) where � is a well-founded order on triples defined below.

Let > be a well-founded order on pairs of terms, closed under substitution

application, that extends the component-wise subterm order. Let >mult denote the

extension of > to finite multisets of pairs of terms. Finally, let � be defined as

follows:
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({x1 7→ u1, . . . , xm 7→ um}, {x1 7→ v1, . . . , xm 7→ vm}, t0) �
({x′1 7→ u′1, . . . , x′n 7→ u′n}, {x′1 7→ v′1, . . . , x′n 7→ v′n}, t′0), if

{{(u1, v1), . . . , (um, vm)}} >mult {{(u′1, v′1), . . . , (u′n, v′n)}}
This leaves to prove that each inference step strictly decreases the triple w.r.t. �. For

the ‘agreement’ rule, we get that a pair (u, v) is deleted from the multiset, an obvious

decrease by definition of multiset extension.

For the application of the ‘ancestor decomposition’ rule, we note that a pair (ui, vi)

is removed, and the pairs (u′1, v′1), . . . , (u′m, v′m) are added. Let R be reversely guarded

by >. We claim that (ui, vi) > (u′j , v′j) holds for all 1 6 j 6 m.

In the case where no step is made, we have ui = f(u′1, . . . , u′m) and vi = f(v′1, . . . , v′m)

whence u′j and v′j are subterms of ui and vi, respectively. So (ui, vi) > (u′j , v′j) by the

component-wise subterm property of >.

If f(u′1, . . . , u′m)
ε−→
R

ui and vi = f(v′1, . . . , v′m) then reverse guardedness

(ui, f(x1, . . . , xm)) > (u′j , xj) entails

(ui, vi) = (ui, f(v′1, . . . , v′m)) > (u′j , v′j)

by closure under application of the substitution {x1 7→ v′1, . . . , xm 7→ v′m}.
The remaining case is symmetric. We conclude that in each case the resulting

multiset is smaller w.r.t. �, so we are done. q

A term rewriting system that contains erasing rules is not reversely guarded. The

term rewriting system R for our scn function is therefore not reversely guarded. As

we argued for Condition (23), it is sensible to exclude erasing rules for computability

reasons.

Example 1 (Continued )

The term rewriting system R \ {(9)} is reversely guarded. To prove this, assign each

function symbol, f, its weight, a non-negative integer, #f. The weight #t of a term

t is defined to be the sum of all weights of function symbols in t. Now a relation >

on pairs of terms is defined as follows.

(t1, t2) > (t′1, t′2), if

every variable occurs in (t1, t2) at least as often as in (t′1, t′2), and

#t1 + #t2 > #t′1 + #t′2

It is straightforward to show that > is a well-founded order, closed under substitution

application, and that > contains the component-wise subterm relation.

To show reverse guardedness, we show #r+ 2#f > #l for every rule l → r where

the root symbol on the left is f. The weight assignment # last = 2 and #f = 1 for

all f else obviously does the job. Here is the reasoning for Rule (8):

#r + 2#f = 0 + 2 · 2 > 2 + 1 = #l

So every derivation in the restricted generalization calculus that refuses to use

Rule (9) is finite: We obtain an algorithm that computes a finite set of generalizers.

By the branching at each application of the ancestor decomposition rule the

complexity of the generalization algorithm may become exponential. But experience

shows that branching is harmless: Rarely is there more than one branch.
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Conclusion and discussion

Extraction of a homomorphism from a cons and a snoc definition of a function

on lists is a systematic, powerful technique for designing parallel programs. Its

advantage over the direct construction of a parallel solution is that, unlike the latter,

it does not rely heavily on the user’s intuition.

We have successfully applied two techniques from the area of term rewriting,

generalization and rewriting induction, to attack the nontrivial, intriguing extraction

problem. If the rules for cons and snoc are encoded in terms then each generalizer

of a certain form encodes the definition of the homomorphism. This, provided that

an associativity result can be proven inductively, e.g. by an automated inductive

theorem prover. We proved reliability of this method to extract a homomorphism.

We have introduced a simple, sound calculus for generalization of terms. We

impose a strategy and a sensible restriction on the calculus, under which we obtain

a terminating, deterministic procedure. There is an exponential upper bound in

worst-case time complexity, but the algorithm appears to perform almost linearly in

practice.

From a term rewriting point of view it is interesting to ask for properties such as

termination or confluence of the term rewriting systems. For an introductory text

to term rewriting see Klop (1992), for example. A term rewriting system terminates

if all its rewrite derivations are finite. A term rewriting system is confluent if all

pairs of branching rewrite derivations can be continued so as to join again. All term

rewriting systems Rcons, Rsnoc, Rconc in the scan example terminate, as can easily be

proven by recursive path order. None of these term rewriting systems, however, is

confluent. In other words, rewriting may compute different results, depending on

the chosen derivation strategy. The system Rconc extended by associativity of �∗ and

the two inductively proven lemmas is confluent, by the Knuth/Bendix critical pair

theorem. So the development of a homomorphic presentation yields a terminating,

confluent term rewriting system of a peculiar form.

Our work is, to the best of our knowledge, the very first successful mechaniza-

tion of the homomorphism extraction problem. We can imagine improvements of

the calculus, such as rewriting modulo associativity or a more powerful ancestor

decomposition rule which is able to ‘jump’ over a number of non-top rewrite steps,

together with an appropriately weakened application condition. Of course, the next

step is to implement the algorithm.

Space precludes describing the related work in detail, so we just mention the

most closely related approaches in both term rewriting and parallelizing functional

programs. Little research has been done on the generalization or anti-unification of

terms. We reported such work in section 4. The only reference available to us for

combining theorem proving with the Bird–Meertens calculus is (Martin and Nipkow,

1990): the authors used the Larch Prover to automatically verify Bird’s development

of the sequential maximum segment sum algorithm. Their approach differs from ours

in one essential point. The development of the parallel algorithm is still completely

up to the programmer. In the area of parallelization, data parallel languages such

as NESL (Blelloch, 1993) can also be viewed as implicitly parallelizing functions
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over lists. Our method can extend the power of compilers for such languages in

revealing the available parallelism automatically. Another approach is to delegate

parallelism management tasks to the runtime system, but to allow the programmer

the opportunity to give advice on a few critical aspects; relevant work includes

evaluation strategies (Trinder et al., 1998) and para-functional programming (Hudak,

1991). The skeleton approach (Cole, 1988) takes the view that implementing good

dynamic behavior on a parallel machine is hard, and encapsulates the commonly

encountered patterns of behavior using parallel higher-order functions like scan, red,

map considered in this paper. Parallel implementations of skeletons on particular

parallel architectures are prepackaged in the corresponding programming systems

such as SCL (Darlington et al., 1995) and P3L (Bacci et al., 1995). In contrast,

our approach does not require the user to express the problem using some fixed

collection of skeletons. The restriction of our approach is that it is based on a

fixed strategy of parallelism expressed by the homomorphy property. A promising

approach to integrate different arts of parallelism are abstract parallel machines

(O’Donnell and Rünger, 1997).

We have illustrated our method on two examples. The scan example, while being

very well-known in the functional community, was chosen to demonstrate the details

of generalization. Though parallel algorithms for scan are a common knowledge, an

automatic parallelization from only sequential representations is an original feature

of our approach. Our second example, the mss case study, is more elaborated. We

have demonstrated that the CS method is applicable to almost-homomorphisms if

extended by ‘tupling’ all auxiliary functions which arise in the process of building

closed cons and snoc definitions. For the mss problem, the result of systematically

applying the method coincides with the result obtained by Cole (1994) and Smith

(1987), but unlike them we have not used our intuition about parallelism in the

derivation process.
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