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A swimming bacterium in a two-fluid model of a
polymer solution
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We analyse the motion of a flagellated bacterium in a two-fluid medium using slender body
theory. The two-fluid model is useful for describing a body moving through a complex
fluid with a microstructure whose length scale is comparable to the characteristic scale
of the body. This is true for bacterial motion in biological fluids (entangled polymer
solutions), where the entanglement results in a porous microstructure with typical pore
diameters comparable to or larger than the flagellar bundle diameter, but smaller than the
diameter of the bacterial head. Thus, the polymer and solvent satisfy different boundary
conditions on the flagellar bundle and move with different velocities close to it. This gives
rise to a screening length LB within which the fluids exchange momentum and the relative
velocity between the two fluids decays. In this work, both the solvent and polymer of
the two-fluid medium are modelled as Newtonian fluids with different viscosities μs and
μp (viscosity ratio λ = μp/μs), thereby capturing the effects solely introduced by the
microstructure of the complex fluid. From our calculations, we observe an increased drag
anisotropy for a rigid, slender flagellar bundle moving through this two-fluid medium,
resulting in an enhanced swimming velocity of the organism. The results are sensitive
to the interaction between the bundle and the polymer, and we discuss two physical
scenarios corresponding to two types of interaction. Our model provides an explanation for
the experimentally observed enhancement of swimming velocity of bacteria in entangled
polymer solutions and motivates further experimental investigations.
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1. Introduction

Pathogenic bacteria are a persistent threat to human health incurring a heavy cost on the
healthcare system (Jean et al. 1996). The motility of bacteria is an essential mechanism
with which pathogens reach the membranes of susceptible cells or form harmful biofilms
on tissues and implants (Ottemann & Miller 1997; Jarrell & McBride 2008; Kearns 2010).
The majority of the cells and tissues prone to pathogenic infections in the human body are
lined with a multi-scale complex biological fluid. For instance, the mucosal surfaces in the
body including the epithelial cells in the respiratory tract, the human intestines, the urinary
tract, the eyes etc. are lined with a slimy hydro-gel known as mucus (McShane et al.
2021). These are complex fluids, meaning that they possess a microstructure (a porous,
mesh-like polymer network resulting from entanglement) and often exhibit non-Newtonian
rheology, which is a function of length scale. Therefore, a fundamental understanding of
how the rheology and microstructure of biological fluids affect the motion of a swimming
bacterium has applications ranging from designing therapeutic techniques by changing
the properties of the biological fluids (Werlang, Carcarmo-Oyarce & Ribbeck 2019) to
designing synthetic swimmers for targeted drug delivery (Huang et al. 2019; Xiea et al.
2020; Ghosh & Ghosh 2021), and developing gene regulatory programs for bacteria to
name a few.

In this work, we develop a two-fluid model, where the complex fluid is modelled as
a coupled, interpenetrating medium of two Newtonian fluids, and we analyse the motion
of a flagellated bacterium (like Escherichia coli) in it. This Newtonian model captures
the effect of the microstructure present in these complex biological fluids by allowing
for a relative motion between the solvent and polymer. This differential motion is relevant
because the length scale of the the entangled polymer network in such fluids is comparable
to the diameter of the flagellar bundle of the bacterium. This results in the bundle forcing
the solvent and the polymer differently, leading to differential response of the two fluids.
The model can be easily extended to a complex fluid with non-Newtonian rheology,
using which, the combined effects of microstructure and non-Newtonian rheology of
the complex biological fluid on the swimming bacterium can be analysed by numerical
simulations.

The motion of swimming microorganisms in Newtonian fluids has been a well-studied
problem for decades (Berg & Anderson 1973; Purcell 1977; Lauga & Powers 2009;
Subramanian & Nott 2011). Microorganisms, owing to their small size, essentially swim
in a low-Reynolds-number (Re) environment, where viscous effects dominate inertial
effects. In this Stokesian regime, the fluid flow is quasi-steady and linear making the
flow (kinematically) reversible. Therefore, the usual macroscopic swimming strategies,
like periodic paddling motion, are ineffective and will result in no net motion (Ludwig
1930). To overcome this, microorganisms have evolved several successful propulsion
strategies. There are many variations of these strategies among swimming microorganisms
and several types of organisms exist that swim in low-Reynolds-number environments
using different means (Lauga & Powers 2009; Subramanian & Nott 2011). In this work,
we restrict our attention to the motion of flagellated bacteria, like Escherichia coli (E. coli).

Berg & Anderson (1973) showed that bacteria like E. coli break the Stokesian symmetry
by means of a rotating appendage – the flagellar bundle, made up of multiple individual
flagellar filaments. The flagellum is a slender filament attached to the head of the bacterium
by a hook and rotated by a molecular motor (Berg 2003). E. coli have prolate spheroidal
heads of typical length 2–3 μm and width 1–2 μm. The flagellar filament of E. coli has
a diameter of ≈20 nm and traces out a helix with contour length ≈10 μm. In the absence
of external forces and moments, the helix is typically left-handed with a pitch ≈2.5 μm
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and a helical diameter ≈0.5 μm (Turner, Ryu & Berg 2000). There are typically ∼5–8
flagellar filaments per cell of E. coli. When all the motors rotate in the same direction,
all the filaments wrap into a helical bundle of diameter ≈60–80 nm and rotate in unison.
This generates thrust due to an anisotropy in the drag experienced by the flagellar bundle
(Lauga & Powers 2009), propelling the bacterium forward – the motion being called a run.
When one or more of the motors reverse, the corresponding filaments leave the bundle
and undergo ‘polymorphic’ transformations which change the swimming direction of the
cell – this process being called tumbling. Thus, bacteria exhibit run and tumble motions
in a fluid medium. This motion of bacteria in Newtonian fluids has been successfully
modelled by resistive force theory (RFT) (Gray & Hancock 1955; Chwang & Wu 1971)
and slender body theory (SBT) (Batchelor 1970; Cox 1970; Johnson 1980), which treat the
helical flagellar bundle as a slender fibre moving through a viscous fluid. Recently, these
theories for slender objects have been experimentally verified by Rodenborn et al. (2013),
by comparing experimentally measured values of thrust, drag and torque on a slender
helical fibre that was rotated and translated in a viscous fluid with those values predicted
by the theories.

While the preceding discussion addressed bacterial motion in Newtonian fluids,
bacterial motility in complex fluids is still an open question in many ways. There are
several interesting characteristics exhibited by swimming bacteria in complex fluids
(Spagnolie & Underhill 2023). While the class of complex fluids is enormous, most of the
attention so far has been centred on one type of complex fluid, namely, polymer solutions.
The major motivation for this is that several biological fluids, which these organisms
typically encounter, are polymer solutions (Lauga & Powers 2009). In these fluids, for
instance, bacteria are known to swim in straighter trajectories (Patteson et al. 2015), exhibit
less frequent tumbling (Qu & Breuer 2020) and form a flagellar bundle more rapidly (Qu
et al. 2018).

A fundamental understanding of the aforementioned phenomena necessitates a thorough
understanding of the swimming motion of bacteria in polymer solutions. Polymer
solutions are non-Newtonian fluids possessing three primary characteristics, namely:
(i) viscoelasticity; (ii) shear-dependent viscosity; and (iii) a microstructure, and several
studies have tried to understand the relative importance of these factors on the swimming
motion of bacteria. Earlier theoretical studies on simple geometries, like waving sheets
(Lauga 2007) and waving filaments (Fu, Powers & Wolgemuth 2007a; Fu, Wolgemuth &
Powers 2009) in viscoelastic polymer solutions with shear-independent viscosities (Boger
fluids) as the swimming media, showed that the propulsive velocities of the sheets and
fibres are smaller in viscoelastic fluids than in Newtonian solvents since the polymer
solutions always have a larger viscosity than the Newtonian solvents (even with shear
thinning). However, later theoretical studies (Teran, Fauci & Shelley 2010; Spagnolie,
Liu & Powers 2013; Riley & Lauga 2014; Thomases & Guy 2014) on undulating sheets
and helices, and experimental studies (Liu, Powers & Breuer 2011; Espinosa-Garcia,
Lauga & Zenir 2013) on artificial swimmers, extended the results of the earlier ones
to show that swimming enhancement can result in a viscoelastic (Boger) media due
to several factors like large amplitude oscillations (Liu et al. 2011; Spagnolie et al.
2013), stress-singularities at filament/sheet ends (Teran et al. 2010), dynamic balance
of stresses (Riley & Lauga 2014), flexibility (Espinosa-Garcia et al. 2013) and (elastic)
stress-asymmetry (Thomases & Guy 2014). These results suggested that in viscoelastic
media, the motion of microswimmers is highly dependent on the geometry of the
swimmer, the generated waveform and the relaxation time of the medium, owing to its
nonlinearity.
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Experiments with actual bacteria, such as E. coli, in shear-thinning, viscoelastic polymer
solutions reported specifically that they swim at higher speeds than in Newtonian liquids
having the same shear viscosity (Berg & Turner 1979; Patteson et al. 2015; Qu et al. 2018).
These studies proposed that shear-thinning of the polymer near the flagellar bundle, owing
to its fast rotation, contributes most to the observed swimming enhancement of bacteria
for polymers with small relaxation times (low De; De being the Deborah number defined
as the ratio of the polymer relaxation time to the flow time scale), while viscoelastic effects
like normal stress differences and elastic stresses contribute significantly to enhancement
with high relaxation time polymers (high De) (Qu & Breuer 2020). This has motivated
theoretical models (Man & Lauga 2015) that use a two-layer approximation of the polymer
solutions at low De – with a layer of lower viscosity near the flagellar bundle and a layer
of larger viscosity on the scale of the cell – and explain the observed experimental results.
The experiments and the theoretical model mentioned above correspond to viscoelastic
polymer solutions, with small polymer concentrations (c < c∗; c is polymer concentration
and c∗ is overlap concentration) as the swimming media, but biological fluids are usually
concentrated polymer solutions (c ≥ c∗).

There are not many experimental or theoretical studies that address the fluid mechanics
of bacterial motion in concentrated polymer solutions. Berg & Turner (1979) first showed
that bacteria can swim with higher velocities in concentrated polymer solutions, compared
with polymer solutions of short chained polymers having the same viscosity, but they
wrongly attributed this enhancement to the presence of bacteria-sized pores in the polymer
network, which do not exist. Magariyama & Kudo (2002) used this idea to develop a
theory, which used different viscosities (resistances) for translation and rotation of both the
head and flagellar bundle in a fluid medium modelling the entangled polymer solution, and
predicted qualitatively similar trends for swimming velocity, but their model also resulted
in a non-physical trend, wherein the angular velocity of the bacterial head was found to
increase with viscosity.

More recently, an experimental study by Martinez et al. (2014) also showed that an
enhancement in swimming speed is observed in a concentrated polymer solution (c ∼ c∗),
and the explanation offered was a combination of shear thinning and depletion of polymers
from the vicinity of the flagellar bundle, essentially making the flagellar bundle swim
through a fluid of small viscosity. However, this explanation is not consistent with the fact
that for the polymer solution used in the experiment (Martinez et al. 2014), rheological
measurements do not show significant shear thinning at the shear rates assumed near the
flagellar bundle. Moreover, the authors do not provide any explanation for depletion of
polymers near the flagellar bundle. A computational work by Zottl & Yeomans (2019) on
a bacterium swimming through a concentrated polymer solution showed an enhancement
due to depletion of polymers near the flagellar bundle. The authors used coarse-grained
molecular dynamics (MD) simulations, where the polymer was modelled as a chain of
spherical (monomer) beads which were large, resulting in a few degrees of freedom for
the chain, and the observed depletion near the bundle may therefore be an overestimate
that does not correspond to the actual scenario.

Recently, the work of Kamdar et al. (2022) has shown that, in the dilute and semi-dilute
regimes, c � c∗, the colloidal nature of the polymer solutions quantitatively explain
the observed swimming enhancement in the aforementioned experiments, where the
enhancement scales with the radius of gyration of the polymer chains, and polymer
dynamics may not be essential for capturing the phenomena. This suggests that the length
scale of the polymer chains (microstructure) may be more relevant in this regime. Notably,
the results of Kamdar et al. (2022) with colloidal suspensions also quantitatively explain

1001 A8-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1069


Swimming bacteria in two-fluid model of polymer solutions

other features, namely, straighter trajectories of bacteria, reduced tumbling frequency etc.,
which were observed in the earlier experiments with dilute polymer solutions. Their
findings seem to imply that the length scale of the polymer chains (microstructure)
could be the most relevant parameter affecting the swimming velocity directly in dilute
and semi-dilute polymer solutions, while viscoelasticity leads to other consequences like
straight trajectories, reduced tumbling etc., which affect velocity indirectly.

In concentrated polymer solutions, the question of relative importance of these
characteristics on swimming motion is yet to be answered satisfactorily. Concentrated
polymer solutions also exhibit shear-dependent viscosity and viscoelastic stresses, and
crucially, they are entangled and possess a porous microstructure, where in some cases,
the pore sizes may be comparable to the thickness of the flagellar bundle, but not the
head of the bacterium. For instance, it is known that mucus has a microstructure that
resembles a mesh, where the mucin filaments form a complicated network of entangled
polymer fibres with pores (∼100 nm (in humans)–400 nm (in horses), see Kirch et al.
2012), which are larger than the flagellar bundle diameter (∼60–80 nm, see Turner et al.
2000) and are filled with the Newtonian solvent (Cone 2009; Lai et al. 2011). Notably,
unlike dilute solutions, their viscoelastic response and shear-dependent viscosity cannot
be explained by analogy to colloidal suspensions, and therefore the model of Kamdar et al.
(2022) cannot be applied. Also, the theoretical models mentioned earlier (Magariyama &
Kudo 2002; Martinez et al. 2014; Man & Lauga 2015; Zottl & Yeomans 2019) assume
bacteria-sized pores, significant shear thinning or depletion near the flagellar bundle,
and these assumptions are inappropriate for an entangled polymer solution like mucus.
In such a medium, rather than a physical depletion of polymers or shear thinning, one
has the flagellar bundle interacting differently with the solvent and polymer, exerting
different forces on them, owing to the porous polymer network with pores having nearly
the same size as the bundle diameter. This differential response results in a relative motion
between the solvent and polymer near the bundle. Some earlier studies of waving sheets
in entangled networks (Fu, Shenoy & Powers 2010; Wada 2010; Du et al. 2012) have used
this idea, with the polymer being treated as a purely elastic medium. A similar idea was
used in the computational study by Wrobel et al. (2016), where the polymer was modelled
as an elastic network constructed out of a collection of cross-linked regularised Stokeslets,
with the links between them being linearly viscoelastic. The theoretical studies have not
considered helical geometries, like the flagellar bundle of a bacterium, which requires a
slender body treatment, and the polymer network in biological fluids like mucus are not
perfectly elastic, as these studies assume.

In this work, we propose a two-fluid model to accurately capture this differential
response of solvent and polymer, caused by the microstructure in an entangled polymer
solution like mucus. In our model, the polymer and solvent are both treated as Newtonian
fluids with different viscosities μp and μs; λ = μp/μs being the viscosity ratio. This
Newtonian approximation for the polymer is valid if the polymer has small non-Newtonian
effects, with De � 1, an assumption that is fairly representative of the polymer solutions
used in the experiments of Martinez et al. (2014) and Qu & Breuer (2020). In such a
scenario, the flagellar bundle directly forces the solvent present in the pores, which then
transmits the stresses to the polymer. These two fluids therefore move relative to each other
leading to a Darcy drag term in the governing equations and hence a screening length LB,
within which the relative velocity of the two fluids decays. The resulting equations for the
relative velocity of the solvent and polymer are similar to the Brinkman equations for flow
through porous media (Brinkman 1947). Some earlier studies have studied the motion of
a slender body (Howells 1998; Leshansky 2009) and a bacterium (Chen et al. 2021) in a
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Brinkman medium using RFT. There have also been a slender body treatment of helical
fibres (Ho, Leiderman & Olsen 2019) and a study of squirmers in Brinkman medium
(Nganguia & Pak 2018). In these studies, the pores result from a sparse random distribution
of rigid bodies, whereas in this study, the porous structure results from polymers, which
are also subject to motion.

We first analyse the motion of a slender helical fibre in such a medium using SBT
and then use RFT to analyse the motion of a bacterium with a helical flagellar bundle
in this medium. Our analysis indicates that bacterial motion is sensitive to the nature of
the interaction between the flagellar bundle and the polymer, and predicts an increased
drag anisotropy. This, in turn, leads to an enhancement in the swimming speed, compared
with the case where the polymer solution is treated as a continuum mixture – a Newtonian
medium with viscosity μs(1 + λ). We model two physical scenarios, corresponding to two
possible polymer–flagellar bundle interactions: (i) a case where the polymer slips past the
bundle and (ii) a case where the polymer is not subject to any direct continuum forcing by
the bundle (no interaction).

2. Two-fluid model of the polymer solution

In this section, we describe the two-fluid model of a polymer solution and analyse the
motion of a sphere through it to explain its features. Two-fluid models for polymer
solutions were first introduced by Doi (1990). While typical mixture models of polymer
solutions assume that the polymers and solvent move with a common velocity, Doi’s
two-fluid model allows for relative motion between the polymer and the solvent, owing
to the fact that under certain conditions, inhomogeneous fluid flow can create polymer
concentration gradients and lead to diffusion of polymers relative to the solvent flow.
The model describes a polymer solution composed of a Newtonian solvent phase with
viscosity μs and a polymer phase with the two phases coexisting as interpenetrating
continua. In general, the model permits a non-uniform concentration for the polymer, while
treating the polymer as a non-Newtonian medium. Such models have been successfully
used in other phenomena involving entangled polymer solutions, where such a differential
response in solvent and polymer may arise (e.g. electroconvection of electrolytes with
polymer additives Tikekar et al. 2018, shear banding phenomenon in concentrated polymer
solutions Cromer et al. 2013 and swelling of polymeric gels Wang, Li & Hu 1997). In all
these cases, a non-equilibrium forcing results in the polymer having a different velocity
than the solvent. The predictions of these models have also been shown to match with
experimental observations (Doi 2009; Burroughs et al. 2021).

In this work, the polymer is modelled as a Newtonian fluid with uniform concentration
(as this fairly represents the conditions found in earlier experiments by Martinez et al.
2014; Qu & Breuer 2020), having a different viscosityμp, where the viscosity is equivalent
to the polymer’s contribution to the zero-shear viscosity of the polymer solution. The
polymer and the solvent are allowed to move relative to each other and the inertial effects
in both fluids are considered to be negligible, with the Reynolds number (Re) based on both
μs and μp being small; Re � 1. Here, the non-equilibrium condition between the polymer
and solvent is created by the different forces they experience at the boundary of the rotating
flagellar bundle, because of the microstructure ‘seen’ by the flagellar bundle. Unlike Doi
(1990), we consider the polymer to have a constant concentration and an incompressible
mass conservation equation. This condition can be approximated in the model of Doi
(1990) if the osmotic susceptibility of the polymer is small, so that the osmotic pressure
(termed pp here) takes on whatever values are needed to impose the incompressibility of
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the polymer phase. The governing equations of our two-fluid model are given by

∇ · us = 0, ∇ · up = 0 = 0, (2.1)

μs∇2us − ∇ps − ξ(us − up) = 0, (2.2)

μp∇2up − ∇pp + ξ(us − up) = 0, (2.3)

where us, up, ps and pp correspond to the solvent and polymer phase velocities and
pressures, respectively, and ξ is the Darcy resistance coefficient defined as ξ = μs/L2

B,
where LB is the screening length of the two-fluid medium. As noted earlier, the form of
the equations is similar to Brinkman’s equations in a porous medium (Brinkman 1947),
except that here, the polymers forming the porous network are capable of flowing. Thus,
LB can be considered to be the length scale of hydrodynamic coupling in the polymer
solution, which is O(φ−1/2 logφ1/2), φ being the polymer volume fraction, if the polymers
are assumed to be fibres of finite length randomly oriented in space (Howells 1998). The
above equations can be written in dimensionless form as

∇ · us = 0, ∇ · up = 0, (2.4)

∇2us − ∇ps − 1
L2

B
(us − up) = 0, (2.5)

λ∇2up − λ∇pp + 1
L2

B
(us − up) = 0, (2.6)

where we have non-dimensionalised the lengths with a characteristic length scale l, the
velocity with characteristic velocity scale U, and the solvent and polymer pressures with
μsU/l and μpU/l. Note that LB in (2.5), (2.6) is dimensionless (equal to LB/l) and should
be considered as such in the sections that follow, unless otherwise stated.

2.1. A translating and rotating sphere in the two-fluid medium
Before embarking on the more challenging problems of studying the motion of a helix and
then a bacterium in the two-fluid medium, we first study a sphere of radius ‘a’ moving
with a velocity U and rotating with an angular velocity ω through the quiescent two-fluid
medium to gain insights into the response of the medium. A similar problem has been
solved by Fu, Shenoy & Powers (2007b) for a sphere translating in a a purely elastic
polymer, and by Moradi, Shi & Nazockdast (2022) for a sphere moving in a linearly
viscoelastic polymer. Our model considers a Newtonian polymer phase. As mentioned in
the introduction, our calculations consider two sets of boundary conditions corresponding
to two physical scenarios: (i) the polymer slipping past the solid body and (ii) the polymer
not interacting with the solid body. The first case is relevant when the body moves through
an entangled polymer solution with pore sizes comparable to the characteristic length scale
of the body (in this example, this is the sphere diameter 2a) and the second case is relevant
when the pore size is much larger than the characteristic length scale of the body, so that
the polymer is not directly forced by the moving body, but is forced indirectly by the
solvent which is affected by the motion. The solvent satisfies no-slip in both cases. Thus,
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the boundary conditions for the first case are

us,up → 0 as r → ∞, (2.7)

us = U + ω × r at r = a, (2.8)

up · n = U · n at r = a, (2.9)

(I − nn) · (σ p · n) = 0 at r = a, (2.10)

which are respectively the far-field conditions, no slip condition for the solvent, no
penetration condition for the polymer and zero tangential polymer stress on the sphere
surface (a completely slipping polymer). Here, r = |r| is the radial distance and n = r/r
is the unit normal. Therefore, the polymer will not resist tangential motion (shearing) but
will resist normal motion (pressure).

The solution procedure and the exact expressions for the velocities and pressures for both
fluids are given in supplementary Appendix A available at https://doi.org/10.1017/jfm.
2024.1069, and the procedure involves solving the above set of coupled partial differential
equations by defining two new fields um = us + λup and ud = up − us (similarly for
pm, pd and other variables). These two fields define a mixture field satisfying Stokes
equations and a difference field satisfying Brinkman equations, for which solutions are
easily derived. Figure 1 shows the normalised drag force on a translating sphere and
the torque on a rotating sphere as functions of the screening length LB/a for different
values of λ, where the normalisation is with respect to drag and torque in the solvent
(of viscosity μs). From the figure, we see that as the screening length approaches zero,
the dimensional drag on the sphere approaches 6πμs|U |(1 + λ)a for translation and the
torque approaches 8πμsa3(1 + λ)|ω| for the case of rotation. These are the corresponding
values for drag and torque, in a medium that is a mixture of the two fluids (same as a
single-fluid medium with viscosity μs(1 + λ); hereby just referred to as the mixture). This
suggests that for LB/a → 0, the medium behaves like a mixture implying that there is no
relative motion between the two fluids, even if one of them is allowed to slip past the
solid boundary, i.e. taking this limit is the same as using a no-slip boundary condition
for both fluids. The other limit of LB/a → ∞ corresponds to the decoupled solvent and
polymer acting independently of each other, which results in a dimensional drag and torque
of 6πμs|U |(1 + 2λ/3)a and 8πμsa3(1 + 2λ/3)|ω|, respectively. The factor 2/3 arises
because, in this limit, the sphere acts like a bubble moving through the polymer on account
of the zero tangential stress condition on the polymer. This calculation shows that one can
go from a mixture-like behaviour to a completely decoupled behaviour of the two fluids
using the two-fluid model.

A similar calculation can be done for the second case, where there is no polymer–sphere
interaction with the boundary conditions now given by

us,up → 0 as r → ∞, (2.11)

us = U + ω × r at r = a, (2.12)

σ p · n = 0 at r = a. (2.13)

For this case, the plots of normalised drag and torque are given in figure 2, which are
similar to those in figure 1 (the torque on the sphere being exactly the same). The primary
difference between this scenario and the previous one arises in the drag force acting on
the sphere in the limit of LB/a → ∞, for which the drag on the sphere is 6πμs|U |a. This
is consistent with the fact that the polymer is not forced by the sphere and in the limit of
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Figure 1. Plots of (a) drag force normalised by FN = 6πUμsa on a sphere of radius a translating with velocity
U and (b) torque normalised by TN = 8πμsa3ω on a sphere rotating with angular velocity ω in a two-fluid
medium with a slipping polymer, as a function of LB/a.
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Figure 2. Plots of (a) drag force normalised by FN = 6πUμsa on a sphere of radius a translating with velocity
U and (b) torque normalised by TN = 8πμsa3ω on a sphere rotating with angular velocity ω in a two-fluid
medium with no polymer–sphere interaction, as a function of LB/a.

large screening length, where the fluids act independently, only the solvent contributes to
the drag.

The takeaway from this sample calculation is that, using the two-fluid model, one can
go from mixture-like behaviour (a single fluid with viscosity μs + μp – similar to the
canonical treatment of polymer solutions) to completely decoupled behaviour of the two
fluids by varying LB. Thus, the screening length LB is equivalent to the characteristic length
scale of the microstructure in the polymer solution. In the next section, we derive solutions
for a slender helical fibre moving through the two-fluid medium, satisfying the same two
sets of boundary conditions as the sphere, and analyse the effect of microstructure on its
motion.

2.2. Fundamental solutions of the two-fluid equations
To derive the SBT in the two-fluid medium, we need the fundamental solutions for the
two-fluid equations, which are derived here. The dimensionless governing equations are
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now given by

∇2us − ∇ps − 1
L2

B
(us − up) = F sδ(r), (2.14)

λ∇2up − λ∇pp + 1
L2

B
(us − up) = λF pδ(r), (2.15)

with arbitrary forcing on both the solvent (F s) and the polymer (F p). The solution can be
found by writing the above equation in terms of a mixture flow and difference flow, given
by

∇2um − ∇pm = F mδ(r), (2.16)

∇2ud − ∇pp − 1 + λ
λL2

B
(ud) = F dδ(r), (2.17)

where um = us + λup and likewise for pm and F m, and ud = up − us and similar
definitions follow for pd and F d. Since the mixture flow and difference flow equations
are the well-known Stokes and Brinkman equations, one can find the Green’s function for
the two-fluid medium using the Green’s functions of the Stokes (GSt) and Brinkman (GBr)
media. Thus, this Green’s function is a tensor G consisting of four elements namely GSS,
GSP, GPS and GPP, i.e.

G =
[

GSS GSP
GPS GPP

]
, (2.18)

where Gij gives the velocity of fluid i due to a force acting on fluid j. To find these
functions, one can write the equation for um and ud in terms of these functions and equate
it to the known Stokesian (GSt) and Brinkman (GBr) Green’s functions. This is given by

um = F m · GSt = F s · (GSS + λGSP)+ λF p · (GPS + λGPP), (2.19)

ud = F d · GBr = λF p · (GPP − GPS)− F s · (GSS − GSP). (2.20)

Solving (2.19)–(2.20) for the four elements of G, we get

GSS = 1
1 + λ(GSt + λGBr), (2.21)

GSP = 1
1 + λ(GSt − GBr), (2.22)

GPS = 1
1 + λ(GSt − GBr), (2.23)

GPP = 1
λ(1 + λ) (λGSt + GBr). (2.24)

Here, the Stokes and Brinkman Green’s functions (Howells 1974) are given by

GSt = 1
8π

(
I
r

+ nn
r

)
, (2.25)

GBr = (∇∇ − I∇2)

⎛
⎝2λL2

B

(
1 − e−(√(λ+1)/λ r)/LB

)
(λ+ 1)r

⎞
⎠ , (2.26)

where n = r/r.
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Swimming bacteria in two-fluid model of polymer solutions

Outer region ρ � a(s)

Matching region a(s) � ρ � l

Inner region ρ � l

z y
x

rC

ex

ez
ex

ey

ey ρ

θ

Figure 3. Local coordinate system for a general curved body; ez is along the tangent to the filament axis, ex is
along the normal and ey is pointed along the binormal to the centreline of the slender body (rc).

3. Slender body theory for the two-fluid medium

Herein, the velocity disturbance created by a slender fibre with a circular cross-section,
when placed in the two-fluid medium, is described using SBT. SBT allows for an
approximate solution of the flow produced by bodies which are long and thin in the
Stokesian regime (Batchelor 1970; Cox 1970; Keller & Rubinow 1976; Johnson 1980;
Borker & Koch 2019). The basic idea in SBT is to obtain the strength of a line of
singularities placed along the centreline of the slender filament that approximates the
field of interest around the filament far away from the cross-sectional surface, termed
as the outer region, i.e. a � ρ. Here, ρ is the radial distance from the centreline of the
slender filament and ‘a’ is a measure of the cross-sectional size of the particle at a certain
location along the centreline of the slender body as shown in figure 3. The singularity
for a Stokes flow problem is a point force. The strength of the singularities is found by
matching the field approximated in the outer region, termed as the outer solution, to a
field obtained from the inner region (ρ � l, where l is the length of the slender filament).
In the inner region, any curved slender body with O(1) curvature appears locally as a
straight infinite cylinder to a first approximation. The velocity field in the inner region is
therefore obtained by assuming flow over an infinite cylinder, which is two-dimensional.
Thus, the flow along and transverse to the cylinder is solved separately. Any coupling
between these flows arises due to the curvature and finite aspect ratio of the particle, and
leads to algebraic O(γ−2) corrections (γ = l/(2a) being the aspect ratio of the fibre) to
the velocity disturbance (Cox 1970; Johnson 1980) which are not considered here. Placing
higher order singularities along the centreline of the slender filament gives a better estimate
of the field of interest. In Stokes flow, these singularities would include doublets, rotlets,
sources, stresslets and quadrupoles (Cox 1970; Keller & Rubinow 1976; Johnson 1980).
These higher order singularities are also not considered in this work, as the dimensions
of the flagellar bundle of E. coli that we model in this work (see table 1) imply that the
shear and rotational resistances of the bundle are negligible in most circumstances (Lauga
& Powers 2009).

In this work, we consider a slender fibre with circular cross-section, and a curved
centreline, having a characteristic length l, radius a(s) = a0 × ā(s), which varies along
the centreline coordinate s, and aspect ratio γ = l/(2a0) � 1. Here, a0 is the cross-section
radius at the mid-point of the curved centreline, and the centreline coordinate s ∈ [0, 1],
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with the arc length given by l ∗ s. The body is assumed to have a curvature (κ) that is
much smaller than the slenderness parameter, i.e. κ � γ . The position vector is denoted
by r and rc(s) denotes a point on the centreline of the slender body. A local coordinate
system (ex, ey, ez) is chosen based on the tangent (ez), normal (ex) and binormal (ey) to
the centreline of the slender body, as shown in figure 3, and is mathematically given by

ez = ∂rc

∂s
, ex = 1

κ

∂2rc

∂s2 , ey = ez × ex, (3.1a–c)

where κ is the local curvature of the body centreline (κ = |∂2rc/∂s2|). The velocity on the
particle surface (r = rs) is given by

u(r = rs) = U + ω × rs = U + ω × rc + ω × (rs − rc). (3.2)

In canonical SBT for Stokes flow, the only relevant length scale in the inner region is a
and all other length scales are assumed to be in the outer region. For the case of a two-fluid
medium, we have one other length scale, the screening length LB, which can either be
considered part of the inner or outer region, resulting in two different formulations of SBT
for a slender fibre. However, these two formulations overlap when LB is of the same order
as the length scale of the matching region. Additionally, one can have different versions
of SBT corresponding to different polymer–fibre interactions, which affect the solutions
in the inner region. In our study, we consider two types of polymer–fibre interactions:
(i) polymer slipping over the fibre and (ii) polymer not interacting with the fibre. For the
first case, we consider LB to be in the inner, outer and matching region, and for the second
case, LB is in the outer region, owing to the fact that the no-interaction boundary condition
is only applicable if the microstructure length scale is larger than the characteristic length
scale of the moving body (here, the fibre cross-sectional diameter 2a).

3.1. Slender body theory for polymer slip condition with LB in the inner region
For a slipping polymer, when the screening length is in the inner region (LB/a ∼ O(1)), the
inner solution corresponds to the disturbance field due to the motion of a circular cylinder
in the two-fluid medium. In the outer region, the screening length satisfies the limit LB/l �
1. From § 2.2, we recall that this limit corresponds to the mixture-like behaviour of the
two-fluid medium, which is essentially a single-fluid medium with viscosity μs(1 + λ).
Thus, the outer solution is the velocity disturbance due to the distribution of Stokeslets
along the centreline (rc) of the fibre in a medium of viscosity μs(1 + λ). The inner and
outer solutions given below for this case are then matched to obtain a governing equation
for the singularity strength. Note that in all the cases presented hereafter, the velocities in
the inner and outer region are presented in dimensionless form. The inner solution is made
dimensionless by choosing a, U, andμsU/a andμpU/a as the length, velocity, and solvent
and polymer stress scales. For the outer solution, we choose l, U, and μsU/l and μpU/l
as the length, velocity, and solvent and polymer stress scales. Also, all the equations are
derived for a translating fibre for simplicity, and the rotation of the fibre can be included
by simply adding the surface velocity due to rotation to the translation velocity.

3.1.1. Inner solution (ρ � l)
The velocity field around a cylinder of radius a in the two-fluid medium can be derived by
solving the governing equations (2.1)–(2.3) following a procedure similar to that given for
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Swimming bacteria in two-fluid model of polymer solutions

a sphere in supplementary Appendix A, subject to the boundary conditions,

us = U on r = rs, (3.3)

up · n = U · n on r = rs, (3.4)

(I − nn) · (σ p · n) = 0 on r = rs, (3.5)∫
(σ s + σ p) · n dA = f on r = rs, (3.6)

where the last boundary condition is the (unknown) drag force per unit length acting on
the cylinder surface (denoted by rs) and is the same as the Stokeslet strength of the outer
solution. Here, r = sez + ρ written in terms of a polar coordinate system, where ρ = ex +
ey, with |ρ| = ρ, which are defined in (3.1), is normal to the axis of the cylinder and
ez is along the axis of the cylinder with n = ρ/ρ and rs = an. In the matching region,
the velocity fields are subject to the limit ρ � a. Since the outer solution for this case is
the velocity field in the mixture of two fluids, the inner velocity field is also written for
the mixture of solvent and polymer (us + λup), so as to match it to the outer solution.
Therefore, the outer limit (ρ/a � 1) of the inner mixture velocity field (dimensionless)
for transverse and longitudinal motions of the cylinder is written as

uin = U(1 + λ)−
[

f · (I + ezez)

4π
log(ρ)− ( f · n)n

4π
+ f

4π

(
1
2

+ g(λ, LB)

)

+( f · ez)ez

4π

[
h(λ, LB)− g(λ, LB)− 1

2

]
+ O

(
1
ρ2

)]
. (3.7)

Note that the ρ and LB that appear inside the logarithm and g, h are dimensionless. The
functions g(λ, LB) and h(λ, LB) are given by

g = λ⎛
⎜⎜⎜⎝

1
LB

√
1 + λ
λ

K1

(√
1 + λ
λ

1
LB

)

K0

(√
1 + λ
λ

1
LB

) + 2λ+ 2

⎞
⎟⎟⎟⎠
, (3.8)

h =
2λK0

(√
1 + λ
λ

1
LB

)
1

LB

√
λ+ 1
λ

K1

(√
1 + λ
λ

1
LB

) , (3.9)

where K0, K1 are modified Bessel functions. Note that g → 0 and h → 0 for LB → 0, and
(3.7) reduces to the solution in a single fluid medium (Keller & Rubinow 1976).

3.1.2. Outer solution (ρ � a)
The outer solution for this case is the velocity disturbance produced by a distribution of
Stokeslets along the centreline of the fibre in a fluid with viscosity μs(1 + λ), since LB is
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in the inner region. Thus, one has

uout(r) = U∞(r)+ 1
8π

∫
rc(s′)

f (rc(s′))

·
[

I
|r − rc(s′)| + (r − rc(s′))(r − rc(s′))

|r − rc(s′)|3
]

ds′, (3.10)

where r is the point at which the velocity is evaluated, rc(s′) takes all values along
the centreline and ds′ is the elemental length along the centreline of the slender body.
As rc(s′) → r, the integral diverges as log ρ. One can add and subtract an analytically
integrable term that captures the diverging part of the integral, as shown by Keller &
Rubinow (1976). Using |rc(s)− rc(s′)| =

√
(s − s′)2 + ρ2 (where rc(s) = s ez + ρ) in

terms of the local polar coordinate system, where we have used r = rc(s) (as we are
interested in the velocity at the centreline), the resulting expression for the inner limit
(ρ � l) of the outer solution is given by

u(rc(s)) ≈ U∞(rc(s))+ f · (I + ezez)

4π

(
log

(
2(

√
s(1 − s))
ρ

))
− f · ezez

4π
+ f · nn

4π

+ 1
8π

∫ [(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· f (rc(s′))

−
(
(I + ezez)

|s − s′|
)

· f (rc(s))
]

ds′, (3.11)

where n is the radial unit vector in the ex − ey plane. The integral on the right-hand side of
(3.11) is shown to have a finite limit by Keller & Rubinow (1976). The log ρ term in (3.11),
matches the log ρ term from the inner solution in (3.7) and is a portion of the velocity
disturbance produced by an infinite cylinder with the same force per unit length at each
point. Here again, the velocity field is dimensionless with lengths non-dimensionalised by
l, the length of the fibre.

3.1.3. Matching region (a � ρ � l)
The velocity produced from the inner solution for ρ � a should asymptotically match the
velocity field from the outer solution for ρ � l as the velocity field cannot abruptly change
in this matching region (i.e. a � ρ � l). Matching the velocity fields from the inner and
outer solutions, using (3.7), (3.11), leads to an integral equation for the force per unit length
given by

U = f (rc(s)) · (I + ezez)

4π(1 + λ)
[

log 2γ + log
(

2
√

s(1 − s)
ā(s)

)]
+ f (rc(s))

4π(1 + λ)
(

1
2

+ g(λ, LB)

)

+ ( f · ez)ez

4π(1 + λ)
[

h(λ, LB)− g(λ, LB)− 3
2

]

+ 1
8π(1 + λ)

∫ [(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· f (rc(s′))

−
(
(I + ezez)

|s − s′|
)

· f (rc(s))
]

ds′, (3.12)
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Swimming bacteria in two-fluid model of polymer solutions

where ā(s) denotes the changing cross-section of the fibre along its centreline (note,
a(s) = a0 × ā(s), a0 being the radius at the mid-point of the centreline). Note that the term
log(2γ ) = log(l/a0) arises because the inner and outer solutions are non-dimensionalised
by different length scales a and l, respectively. The error in the above integral equation is
O(γ−2) and so this gives the force per unit length with errors of O(γ−2). Solution of this
integral equation gives the unknown force strength in terms of the known surface velocity
and it can be obtained numerically or by an asymptotic expansion in ε = 1/ log 2γ .

3.1.4. Resistive force theory (RFT)
The leading order force per unit length from (3.12) is given by

U(1 + λ) = f · (I + ezez)

4π
log 2γ, (3.13)

which suggests that a slender filament of any arbitrary cross-section experiences an
O(1/ log 2γ ) viscous drag equal to the viscous drag per unit length experienced by a long
cylinder due to its motion relative to the local fluid velocity, in a medium of viscosity
μs(1 + λ) (mixture). The higher order terms in (3.12) include the additional drag due
to relative motion between the two fluids as well as a contribution that comes from the
velocity disturbance created by the particle itself. This leading order relation constitutes
what is termed as the RFT (Gray & Hancock 1955; Chwang & Wu 1971; Lauga & Powers
2009) for the two-fluid medium for LB/a ∼ O(1). Using, (3.13) above, one can determine
the drag per unit length experienced by a locally straight fibre of circular cross-section for
motions parallel and perpendicular to the fibre axis with a unit velocity. For the two-fluid
medium with the polymer slipping past the fibre, and with LB/a ∼ O(1), these are given
by

f⊥ = 4π(1 + λ)
log 2γ

, (3.14)

f‖ = 2π(1 + λ)
log 2γ

. (3.15)

The ratio of the expressions above give the drag anisotropy:

f⊥
f‖

= 2, (3.16)

which is the same as the anisotropy obtained from RFT for a single-fluid medium (Gray &
Hancock 1955; Chwang & Wu 1971; Lauga & Powers 2009). This is consistent with the
fact that LB is in the inner region and of the same length scale as the diameter of the fibre.
In the outer region, this corresponds to the limit LB/l � 1. Therefore, to the leading order
in ε = 1/ log 2γ , the slender fibre essentially swims in a mixture with viscosity μs(1 + λ),
and hence results in the same anisotropy as the single-fluid case.

3.2. SBT for polymer slip condition with LB in the outer region
In this scenario, we consider the screening length as part of the outer region (LB/a �
O(1)), such that in the inner region, one has the fibre moving in two decoupled fluids,
the solvent and polymer, and in the outer region, the two-fluid behaviour persists.
Accordingly, the inner solution is the disturbance field due to an infinite cylinder moving in
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solvent and polymer, satisfying independent boundary conditions and the outer solution is
approximated by a distribution of the fundamental singularities of the two-fluid medium,
along the fibre length.

3.2.1. Inner solution
In the inner region, the solvent satisfies a no-slip condition while the polymer exerts zero
tangential stress on the cylinder. These are given by

uin
s = U on r = rs, (3.17)

(I − nn) · (σ in
p · n) = 0 on r = rs, (3.18)

uin
p · n = U · n on r = rs. (3.19)

Using these conditions, and the fact that the solvent and polymer exert a drag per unit
length of f s and f p, the outer limit (ρ/a � 1) of the inner solution (dimensionless) is
given by

uin
s = U − f s · (I + ezez)

4π
log ρ + f s

4π
·
[

nn − I − ezez

2

]
+ O

(
1
ρ2

)
, (3.20)

uin
p = U · (I − (1 − c)ezez)− f p · (I − ezez)

4π
log ρ

+ f p

4π
· [nn − (I − ezez)] + O

(
1
ρ2

)
. (3.21)

The difference in the polymer and solvent fields arise from the difference in the boundary
conditions satisfied by the two fluids at the cylinder surface. Importantly, since the polymer
is assumed to exert no tangential stress, it follows that f p · ez = 0, which renders the
surface velocity in the tangential direction arbitrary, denoted here by uin

p · ez = cU · ez,
where c is an arbitrary constant. This velocity field will be matched to the (inner limit of
the) outer solution as before to get a governing equation for the force strengths f s and f p.

3.2.2. Outer solution
In the outer region, the fibre is approximated by a uniform distribution of the fundamental
singularities of the two-fluid model – ‘two-fluidlets’ (see § 2.2), which are combinations
of Stokeslets (associated with the mixture flow satisfying Stokes equations) and
‘shielded’ Stokeslets (associated with the difference flow satisfying Brinkman equations).
Accordingly, the dimensionless velocity fields in the outer region for the two fluids are
given by

uout
s = U∞ + 1

8π

∫
rc(s′)

[ f s · GSS + λf p · GPS] ds′, (3.22)

uout
p = U∞ + 1

8π

∫
rc(s′)

[λf p · GPP + f s · GSP] ds′. (3.23)
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Substituting for the Green’s functions GSS, GPP, GPS and GSP from § 2.2, we have

uout
s = U∞ + 1

8π

∫
rc(s′)

f s(rc(s′)) · GSt(rc(s)− rc(s′)) ds′

+ 1
8π

∫
rc(s′)

λ

1 + λ [ f s(rc(s′))− f p(rc(s′))] · [GBr − GSt](rc(s)− rc(s′)) ds′,

(3.24)

uout
p = U∞ + 1

8π

∫
rc(s′)

f p(rc(s′)) · GSt(rc(s)− rc(s′)) ds′

+ 1
8π

∫
rc(s′)

1
1 + λ [ f p(rc(s′))− f s(rc(s′))] · [GBr − GSt](rc(s)− rc(s′)) ds′,

(3.25)

where we have added and subtracted λ( f s(rc(s′))− f p(rc(s′))) · GSt from (3.24) and
( f p(rc(s′))− f s(rc(s′)) · GSt from (3.25), with GBr(r′′) and GSt(r′′) given by

GBr(r′′) = (∇∇ − I∇2)

(
2

α2r′′2 (1 − e−αr′′
)

)
, (3.26)

GSt(r′′) = I
r′′ − r′′r′′

r′′3 , (3.27)

where r′′ = rc(s)− rc(s′) and α = (1/LB)
√
(1 + λ)/λ. The terms involving the difference

GBr − GSt do not diverge for rc(s) → rc(s′). However, the term with GSt does and
needs to be treated the same way as before by adding and subtracting a singularity that
asymptotically cancels the divergence in these terms for rc(s) → rc(s′). The inner limits
of the outer velocity fields (ρ � l) after this simplification are given by

uout
s = U∞ + f s · (I + ezez)

4π

(
log

(
2(

√
s(1 − s))
ρ

))
− f s · ezez

4π
+ f s · n

4π

+ 1
8π(1 + λ)

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)

· f s(rc(s′))−
(
(I + ezez)

|s − s′|
)

· f s(rc(s))
]

ds′

+ 1
8π

∫
rc(s′)

λ

1 + λ [ f s(rc(s′))− f p(rc(s′))] · [GBr − GSt] ds′, (3.28)

uout
p = U∞ + f p · (I + ezez)

4π

(
log

(
2(

√
s(1 − s))
ρ

))
− f p · ezez

4π
+ f p · nn

4π

+ 1
8π(1 + λ)

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)

· f p(rc(s′))−
(
(I + ezez)

|s − s′|
)

· f p(rc(s))
]

ds′

+ 1
8π

∫
rc(s′)

1
1 + λ

[
f p(rc(s′))− f s(rc(s′))

] · [GBr − GSt] ds′. (3.29)
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3.2.3. Matching region
After matching the inner and outer solutions, we get

U = f s · (I + ezez)

4π

(
log 2γ + log

(
2
√

s(1 − s)
ā(s)

))
+ f s · (I − 3ezez)

8π

+ 1
8π

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· f s(rc(s′))

−
(
(I + ezez)

|s − s′|
)

· f s(rc(s))
]

ds′

+ 1
8π

∫
rc(s′)

λ[ f s(rc(s′))− f p(rc(s′))]
1 + λ · [GBr − GSt] ds′, (3.30)

U · (I − (1 − c)ezez) = f p

4π

(
log 2γ + log

(
2
√

s(1 − s)
ā(s)

))
+ f p · (I − 2ezez)

4π

+ 1
8π

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· f p(rc(s′))

−
(
(I + ezez)

|s − s′|
)

· f p(rc(s))
]

ds′ + ( f p · ez)ez

4π

(
log

2l
√

s(1 − s)
ρ

− log
ρ

a

)

+ 1
8π

∫
rc(s′)

1
1 + λ [ f p(rc(s′))− f s(rc(s′))] · [GBr − GSt] ds′, (3.31)

where the equation for f p is accompanied by an additional condition given by f p · ez = 0.
Here, the tensor GBr − GSt is given by

GBr − GSt = I
(

2
α2r′′3 (e

−αr′′
(1 + αr′′ + α2r′′2)− 1)− 1

r′′

)

+ (rc(s)− rc(s′))
(

6
α2r′′5

(
1 − e−αr′′

(
1 + αr′′ + α2r′′2

3

))
− 1

r′′3

)
, (3.32)

GBr − GSt = F1(α, r′′)I + F2(α, r′′)(rc(s)− rc(s′)), (3.33)

where r′′ = |(rc(s)− rc(s′))|. Contracting (3.31) with ez to get the equation for the
arbitrary constant c, we have

c U · ez = f p · ez

4π

(
log 2γ + log

(
2
√

s(1 − s)
ā(s)

))
− f p · ez

4π
+ ( f p · ez)

4π

(
log

2l
√

s(1 − s)
ρ

− log
ρ

a

)

+ 1
8π

∫
rc(s′)

[
f p(rc(s′)) ·

(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· ez

−2f p(rc(s)) · ez

|s − s′|
]

ds′ + 1
8π

∫
rc(s′)

( f p(rc(s′))− f s(rc(s′)))
1 + λ · [GBr − GSt] · ez ds′. (3.34)
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Swimming bacteria in two-fluid model of polymer solutions

Substituting (3.34) in (3.31), we get for f p,

U · (I − ezez) = f p · (I − ezez)

4π

(
log 2γ + log

(
2
√

s(1 − s)
ā(s)

))
+ f p · (I − ezez)

4π

+ 1
8π

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· f p(rc(s′))

−
(
(I + ezez)

|s − s′|
)

· f p(rc(s))
]

ds′ + 1
8π

∫
rc(s′)

[ f p(rc(s′))− f s(rc(s′))]
1 + λ · [GBr − GSt] ds′

− 1
8π

∫
rc(s′)

{[
f p(rc(s′)) ·

(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· ez

−2f p(rc(s)) · ez

|s − s′|
]}

ez − 1
8π

∫
rc(s′)

{
( f p(rc(s′))− f s(rc(s′)))

1 + λ · [GBr − GSt] · ez

}
ez ds′,

(3.35)

with the condition f p · ez = 0. The force strengths are obtained by simultaneously solving
(3.30) and (3.35), with the definitions of GBr and GSt given in (3.32), (3.33).

3.2.4. Resistive force theory
The leading order solution to the force strengths f s and f p for this scenario (LB/a �
O(1)) are given by

U = f s · (I + ezez)

4π
log 2γ, (3.36)

U · (I − ezez) = f p · (I − ezez)

4π
log 2γ. (3.37)

The total force defined as f = f s + λ f p is therefore

f = 4πU ·
[(

I − ezez

2

)
+ λ(I − ezez)

] 1
log 2γ

(3.38)

to the leading order in ε = 1/ log(2γ ). The components of the force for translation parallel
and perpendicular to the local filament axis (with unit velocity) are

f⊥ = 4π(1 + λ)
log 2γ

, (3.39)

f‖ = 2π

log 2γ
, (3.40)

and the anisotropy for this case is given by

f⊥
f‖

= 2(1 + λ), (3.41)

which is a factor of 1 + λ larger than the case with LB/a ∼ O(1). Thus, in a scenario where
the polymer slips past a fibre, with the screening length larger than the fibre diameter, the
drag anisotropy increases and is proportional to the viscosity ratio λ.
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Inner region Outer regionBrinkman
region 

Flow of independent 
fluids around finite 

radius of cross-section

Two-fluid region

Flow of 
independent
fluids driven 

by point forces 

2-D mixture flow 3-D mixture flow

Matching 2
LB � ρ � I

Matching 1
a � ρ � LB

Figure 4. A schematic showing the inner, outer and Brinkman regions for the two-fluid model with
a � LB � l.

3.3. Slender body theory for polymer slip condition with LB in the matching region
When LB is in the matching region (a � LB � l), the outer solution remains a
three-dimensional mixture flow, where the fibre can be approximated as a smooth
distribution of Stokeslets along the centreline. The inner solution corresponds to the flow
disturbance in decoupled solvent and polymer fluids produced by the moving cylinder.
However, for a � LB � l, there exists a Brinkman region in between the two, where the
flow remains two-dimensional, but has coupled two-fluid behaviour. This is sketched in
figure 4. To obtain a governing integral equation for the force strengths, f s and f p, one
needs to perform two matching procedures as opposed to just one employed in the previous
cases. The first matching is done in matching region 1, where a � ρ � LB and the second
matching is done in matching region 2, where LB � ρ � l.

A detailed derivation for this case is given in supplementary Appendix C, and below,
we directly give the governing integral equation for the force strengths f s and f p for
a � LB � l:

U = U∞ + ( f s + λf p) · (I + ezez)

4π(1 + λ)
[

log(2γ )+ log
(

2
√

s(1 − s)
ā(s)

)]

+ 1
8π(1 + λ)

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)

· ( f s + λf p)(rc(s′))−
(
(I + ezez)

|s − s′|
)

· ( f s + λf p)(rc(s))
]

ds′

+ ( f s + λf p) · (I − 3ezez)

8π(1 + λ)

+ λ( f s − f p) · (I + ezez)

4π(1 + λ)
[
(log 2 − Γ )+ log

(
LB

a

)]
, (3.42)

U · (I − (1 − c)ezez) = U∞ + ( f s + λf p) · (I + ezez)

4π(1 + λ)
[

log(2γ )+ log
(

2
√

s(1 − s)
ā(s)

)]

+ 1
8π(1 + λ)

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
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· ( f s + λf p)(rc(s′))−
(
(I + ezez)

|s − s′|
)

· ( f s + λf p)(rc(s))
]

ds′

+ ( f s + λf p) · (I − ezez)

8π(1 + λ) + ( f s + λf p) · ezez

4π(1 + λ)

+ f p · (I − ezez)

8π
+
( f p

4π(1 + λ) − f s · (I + ezez)

4π(1 + λ)
)[
(log 2 − Γ )+ log

(
LB

a

)]
, (3.43)

where Γ is the Euler–Mascheroni constant. Note that the factor log(LB/a) does not lead
to a divergence as LB/a → 0, since it is multiplied by f s − f p, which tends to zero as
LB/a → 0. Equation (3.43) can again be contracted with ez to obtain c as

c(U · ez) = ( f s + λf p) · ez

2π(1 + λ)
[

log(2γ )+ log
(

2
√

s(1 − s)
ā(s)

)]
+ ( f s + λf p) · ez

4π(1 + λ)

+ 1
8π(1 + λ)

∫
rc(s′)

[
( f s + λf p)(rc(s′)) ·

(
I

|rc(s)− rc(s′)|

+(rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· ez −

(
( f s + λf p)(rc(s)) · ez

|s − s′|
)]

ds′

+
( f p · ez

4π(1 + λ) − f s · ez

2π(1 + λ)
)[
(log 2 − Γ )+ log

(
LB

a

)]
, (3.44)

which can be substituted into (3.43) to obtain

U · (I − ezez) = U∞ + ( f s + λf p) · (I − ezez)

4π(1 + λ)
[

log(2γ )+ log
(√

s(1 − s)
ā(s)

)]

+ 1
8π(1 + λ)

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)

· ( f s + λf p)(rc(s′))−
(
(I + ezez)

|s − s′|
)

· ( f s + λf p)(rc(s))
]

ds′ + f p · (I − ezez)

8π

+ ( f s + λf p) · (I − ezez)

8π(1 + λ) + ( f p − f s) · (I − ezez)

4π(1 + λ)
[
(log 2 − Γ )+ log

(
LB

a

)]

− 1
8π(1 + λ)

∫
rc(s′)

{[
( f s + λf p)(rc(s′)) ·

(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· ez

−
(
( f s + λf p)(rc(s)) · ez

|s − s′|
)]}

· ez ds′, (3.45)

with the condition f p · ez = 0. Equations (3.12), (3.30), (3.35) and (3.42)–(3.45)
correspond to the three formulations of slender body theory when one has a polymer that
slips past the fibre. Each version has its own domain of validity depending on the screening
length LB. The three versions, however, can be combined into a single equation by using
the following formula:

SBTUniformly Valid = SBTLB∼O(a) + SBTLB�O(a) − SBTa�LB�l, (3.46)

which is uniformly valid for all LB.
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3.3.1. Resistive force theory
For the case with a � LB � l, the leading order solutions to the force strengths from
(3.42), (3.45) are given by

U = ( f s + λf p) · (I + ezez)

4π(1 + λ) log(2γ )+ λ( f s − f p) · (I + ezez)

4π(1 + λ) log
(

LB

a

)
, (3.47)

U · (I − ezez) = ( f s + λf p) · (I − ezez)

4π(1 + λ) log(2γ )+ ( f p − f s) · (I − ezez)

4π(1 + λ) log
(

LB

a

)
,

(3.48)

where the leading order equation contains the term with coefficient log(LB/a) as LB � a,
when the screening length is in the matching region. Simplifying (3.47), we get

U ·
(

I − ezez

2

)
= ( f s + λf p)

4π(1 + λ) log(2γ )+ λ( f s − f p)

4π(1 + λ) log
(

LB

a

)
. (3.49)

Equation (3.48) directly gives the perpendicular component of the force strengths and
(3.49) can be used to obtain the parallel component of the force strength. Using f =
f s + λ f p and f p · ez = 0, the parallel and perpendicular components of the total force on
the fibre (for unit velocity of motion) are

f⊥ = 4π(1 + λ)
log 2γ

, (3.50)

f‖ = 2π(1 + λ)
log 2γ + λ log

(
LB

a

) , (3.51)

and the anisotropy for this case is given by

f⊥
f‖

=
2(log 2γ + λ log

(
LB

a

)
)

log(2γ )
= 2

⎛
⎜⎜⎝1 + λ

log
(

LB

a

)
log(2γ )

⎞
⎟⎟⎠ , (3.52)

which reduces to the drag anisotropy for the case with screening length in the inner region
for LB = a and to the drag anisotropy for the case with screening length in the outer region
for LB = 2l. Thus, one can combine the leading order solutions to f⊥ and f‖ for the case
of slipping polymer with LB in the inner, matching and outer region into the following
piecewise-continuous form:

f⊥ = 4π(1 + λ)
log(2γ )

for LB ∈ [0,∞], (3.53)

and

f‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π(1 + λ)
log(2γ )

for LB ∈ [0, a],

2π(1 + λ)
log(2γ )+ λ log

(
LB

a

) for LB ∈ [a, 2l],

2π

log(2γ )
for LB ∈ [2l,∞),

(3.54)
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which provides the leading order solution to force strengths for the fibre in a two-fluid
medium with polymer slip valid for all LB.

3.4. SBT with no polymer–fibre interaction
We now consider the second type of polymer–fibre interaction, where the polymer in the
two-fluid medium does not exert any direct force on the fibre, i.e. the polymer satisfies

σ in
p · n = 0 on r = rs, (3.55)

while the solvent still satisfies the no-slip and no-penetration condition on the fibre surface,
given by

uin
s = U on r = rs. (3.56)

This essentially implies that the polymer can now move with an arbitrary velocity even in
the plane perpendicular to the filament axis when a ≤ ρ ≤ LB. This model nevertheless
captures the physical scenario when the fibre is much smaller than the pores of the
underlying microstructure in the complex fluid, because the polymers do not experience
any direct forcing from the fibre motion. For this case, the screening length LB is
considered part of the outer region, since LB is equivalent to the length scale of the
microstructure and for these boundary conditions to hold, LB � a.

3.4.1. Inner solution
The inner solution for this scenario only involves the solvent velocity field, satisfying
no-slip and no-penetration conditions, which is given by

uin
s = U − f s · (I + ezez)

4π
log

ρ

a
+ f s

4π
·
[

nn − I − ezez

2

]
+ O

(
1
ρ2

)
(3.57)

for ρ � a. As already noted, the polymer can have an arbitrary velocity in the inner region
given by uin

p = cU .

3.4.2. Outer solution
The outer solution is obtained by approximating the fibre as a uniform distribution of
two-fluidlets with the constraint f p = 0. Thus, we have for the outer solution,

uout
s = U∞ + 1

8π

∫
rc(s′)

[ f s · GSS] ds′, (3.58)

uout
p = U∞ + 1

8π

∫
rc(s′)

[ f s · GSP] ds′, (3.59)

where we have applied the constraint f p = 0. The above equations can again be simplified
using the expressions for the two-fluid Green’s functions. Taking the inner limit of the
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resulting outer solution (ρ � l) yields

uout
s = U∞ + f s · (I + ezez)

4π

(
log

(
2(

√
s(1 − s))
ρ

))
− f s · ezez

4π
+ f s · nn

4π

+ 1
8π

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)

· f s(rc(s′))−
(
(I + ezez)

|s − s′|
)

· f s(rc(s))
]

ds′

+ λ

8π(1 + λ)
∫

rc(s′)
[ f s(rc(s′))] · [GBr − GSt] ds′, (3.60)

uout
p = U∞ + 1

8π(1 + λ)
∫

rc(s)
f s · [GSt − GBr] ds′. (3.61)

3.4.3. Matching region
Matching the inner and outer solution, one gets

U = f s · (I + ezez)

4π

(
log 2γ + log

(
2
√

s(1 − s)
ā(s)

))
+ f s · (I − 3ezez)

8π

+ 1
8π

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)

· f s(rc(s′))−
(
(I + ezez)

|s − s′|
)

· f s(rc(s))
]

ds′

+ λ

8π(1 + λ)
∫

rc(s′)
[ f s(rc(s′))] · [GBr − GSt] ds′ (3.62)

and

c U = 1
8π(1 + λ)

∫
rc(s′)

f s · [GSt − GBr] ds′, (3.63)

which gives the arbitrary constant c.

3.4.4. Resistive force theory
To the leading order, the force on the fibre is given by

f s = f =
4πU ·

(
I − ezez

2

)
log 2γ

, (3.64)

which results in an anisotropy of
f⊥
f‖

= 2, (3.65)

which is the same as in a single-fluid medium. Thus, the leading order anisotropy in this
case is smaller than in the case where the polymer slips past the fibre (with LB ≥ a).
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4. Results of two-fluid SBT for a helical fibre

The different versions of SBT mentioned above are solved numerically for a helical fibre
moving in a two-fluid medium, by adopting a simple numerical procedure described by
Rodenborn et al. (2013). The numerical technique involves discretising the helix into N
segments per pitch and using the trapezium rule of numerical integration for the integrals.
This results in a linear system of equations for the singularity strength f i on the ith
segment, which is then solved to obtain the strengths in terms of the known surface velocity
of the segment U i. While the numerical procedure is the same as that of Rodenborn et al.
(2013), its adoption for the two-fluid model requires small changes which are described in
detail and validated with exemplary SBT results in supplementary Appendix B.

4.1. Outline of results
In the discussion that follows, we first present the results for a slender helical fibre with
prolate spheroidal cross-section (a(s) = 2a0

√
s(1 − s); a0 is the radius of the fibre at the

mid point along its centreline) that rotates and translates in a single Newtonian fluid
with slip on its surface. This calculation is done to elucidate the effect of slip on the
fibre motion, since in the two-fluid model, one of the cases involves a slipping polymer
medium. This is followed by a discussion of results for a slender helical fibre with the same
cross-section in the two-fluid medium satisfying both polymer slip and no polymer–fibre
interaction conditions. Here, we discuss how the presence of microstructure affects the
motion of the fibre. The results are presented in the form of thrust, torque and drag on
a fibre that is rotating and translating, as a function of LB and viscosity ratio λ. The
thrust is the force along the axis of a helical fibre when it rotates on its axis, while we
report the component of torque along the axis. The drag is the force opposing translation
of the helical fibre along its axis. The dimensions of the helical fibre are chosen to be
the dimensions of the helical flagellar bundle of E. coli (Berg & Turner 1979) listed in
figure 5, and we vary LB and λ. All our calculations use these dimensions for the fibre
unless otherwise mentioned, and have N = 30 segments per pitch (with N = 110 segments
for the whole length). The assumed spheroidal cross-section of the fibre has been shown
to be an accurate description of the flagellar bundle of the bacterium (Das & Lauga 2018),
and also avoids ill-conditioned matrices that arise from discretising a fibre of constant
cross-sectional radius (Mackaplow, Shaqfeh & Schiek 1994).

4.2. A slender helical fibre in a fluid medium with slip
When a slender fibre moves through a single-fluid medium with slip on its surface, the
integral equation for the force strength ( f ) along the fibre centreline using SBT is given
by

U · (I − (1 − c)ezez) = f
4π

(
log 2γ + log

(
2
√

s(1 − s)
ā(s)

))
+ f · (I − 2ezez)

4π

+ 1
8π

∫
rc(s′)

[(
I

|rc(s)− rc(s′)| + (rc(s)− rc(s′))(rc(s)− rc(s′))
|rc(s)− rc(s′)|3

)
· f (rc(s))

−
(
(I + ezez)

|s − s′|
)

· f (rc(s))
]

ds′. (4.1)
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Pitch (p) = 2 µm

Length (L) = 7 µm

2a0 = 0.06 µm
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 µ
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Figure 5. Geometry of the helix used in the numerical calculation.

This case is equivalent to a slender bubble moving through a fluid (Hinch & Acrivos 1980).
In figure 6(a–c), we have plotted the drag, thrust and torque on a helical fibre moving
with axial velocity U and rotating with an angular velocity Ω calculated using (4.1) and
compared it with the results of the case when the fluid satisfies no-slip on the helix surface.
In these calculations, the helix has the same dimensions as shown in figure 5 except that
the length was varied from 1 μm to the dimension in figure 5 (while keeping γ fixed at
the value shown in figure 5). From the plot, we note that while the drag and torque on the
helix are smaller for the case with slip, slip leads to an increased thrust. This implies that
the helix with slip can move at a higher velocity for a given rotation rate when the motion
is force free.

This increased thrust can be understood in terms of the increased drag anisotropy for this
case, as is shown in figure 7. Here, a segment of the helix (with pitch angle ψ = π/4) that
rotates withΩ (along −z) and translates with U (along z) are shown. In the case of a no-slip
boundary condition, the segment is subject to resistance in both parallel and perpendicular
directions ( f‖ and f⊥, where we assume f⊥/f‖ = 2), while for the case where the fluid can
slip, f‖ = 0, with f⊥ being the same as that for the no-slip case. This is because with perfect
slip, the rigid slender body behaves like a bubble, and to leading order in ε = 1/ log(2γ ),
the transverse force strength is the same as that for a body with no-slip (Hinch & Acrivos
1980). This implies that the thrust and torque on the segment during rotation of the helix,
where each segment locally moves with velocity Ω/RHelix along x, are proportional to

Thrust ( fz) = 1
2 f⊥, (4.2)

Torque ( fx) = −3
2 f⊥, (4.3)

for the no-slip condition and

Thrust ( fz) = f⊥, (4.4)

Torque ( fx) = −f⊥, (4.5)

for the slip condition. Here, the angular velocity vector for the helix is directed along
−z leading to thrust along z. Similarly, the drag on the segment (locally) translating with
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Figure 6. Plots of normalised (a) thrust, (b) drag and (c) torque for a slender helical fibre with spheroidal
cross-section translating with U and rotating with Ω in a single-fluid medium as a function of L/RHelix from
the numerical solutions of single-fluid SBT with no-slip and slip ( f ·ez = 0). (d) Force-free swimming velocity
of a rotating helix with and without slip.

velocity U along z is

Drag ( fz) = −3
2 f⊥, (4.6)

for the no-slip and
Drag ( fz) = −f⊥, (4.7)

for the slip condition, where the negative sign indicates the force is opposite to the direction
of motion (z). Taking the ratio between the slip and no-slip case, we get

Thrust (slip)
Thrust (no-slip)

≈ 2 (4.8)

Torque (slip)
Torque (no-slip)

≈ 2
3
, (4.9)

Drag (slip)
Drag (no-slip)

≈ 2
3
. (4.10)

Thus, we see that the slip condition results in a higher thrust, and smaller drag and
torque on the helix compared with the no-slip condition. Note that the actual values of
these ratios from the numerical calculations (figure 6) are different owing to the facts that
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┴
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┴
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┴
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Figure 7. A schematic of a segment of helix showing the forces acting on the segment due to rotation and
translation. The thrust and torque correspond to fz and fx in the former case and drag corresponds to fz in the
latter. Note, for simplicity, we choose ψ = π/4 as the pitch angle of the helix, denoting the orientation of the
segment with respect to the motion.

the pitch angle for the helix in our numerical calculation is greater than π/4, and the ratio
f⊥/f‖ < 2 and not exactly two, which makes the ratios for thrust and torque larger, and drag
smaller. The decreased value of f⊥/f‖ arises primarily because the spheroidal shape of the
flagellar bundle cross-section allows the unit normal to the surface to have a component
parallel to the local filament axis. However, the effect of slip on f⊥ (the increase compared
with f⊥ on a no-slip boundary that occurs at O(1/ log(2γ )2)) is only modest numerically.

4.3. A slender helical fibre in a two-fluid medium
In this section, we calculate the drag, thrust and torque acting on a slender helical fibre
translating and rotating in a two-fluid medium. First, we plot the results for the scenario
where the polymer slips on the helix using the uniformly valid SBT (3.46) and then move
on to the case where the polymer does not directly interact with the helix (3.62).

4.3.1. A slender helical fibre in a two-fluid medium with polymer slip
Figure 8 shows the thrust, drag and torque on a helical fibre in a two-fluid medium and the
results are compared with cases where the helix moves in a mixture with viscosity μs(1 +
λ) and in two independent fluids, with one of the fluids slipping past the helix. From the
plot, we see that the thrust on the helix increases and the drag decreases with increasing
LB/L, compared with the helix moving in a mixture (LB/L → 0; single-fluid medium of
viscosity μs(1 + λ), with the limiting process being the same as using a no-slip condition
for polymer at the boundary), with this behaviour being more pronounced at large λ. The
behaviour of drag and thrust in this case can be understood by considering a segment of the
fibre, as shown in figure 7, and repeating a similar exercise for the two-fluid case, where
now the polymer has slip, while the solvent satisfies no-slip. The drag anisotropy (f⊥/f‖)
for this case is now directly proportional to λ (3.41), while for the mixture, it still remains
≈2. Proceeding with this exercise, one can show that the ratio ThrustTwo-fluid/ThrustMixture,
will be a function of the viscosity ratio λ and will always be greater than unity. Similarly, it
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Figure 8. Plots of normalised (a) thrust, (b) drag and (c) torque for a slender helical fibre with spheroidal
cross-section, as a function of λ, from the numerical solutions for axial translation (U) and rotation (Ω) of
the helix in a two-fluid medium with polymer slip, where the curves correspond to different LB/L. Mixture
(LB/L → 0) corresponds to a single-fluid medium of viscosity μs(1 + λ), with the no-slip condition for both
fluids. Here, RHelix/L ≈ 0.052 and a/L ≈ 0.0043.

can be shown that the ratios DragTwo-fluid/DragMixture and TorqueTwo-fluid/TorqueMixture will
always be less than unity. This increased drag anisotropy in the two-fluid medium implies
that the helix can move with an enhanced velocity if the motion is force-free. This is clearly
seen in figure 9, where we plot the ratio of the dimensionless thrust and drag for a helix
that translates and rotates in a two-fluid medium. Here, the drag is normalised with μsUL
and the thrust with μsΩRHelixL, as was done in figure 8. This ratio is, therefore, equal
to the ratio U/(Ω RHelix) of the force-free translation velocity of a helix to the rotation
velocity that induces this motion.

4.3.2. A slender helical fibre in a two-fluid medium with no polymer–fibre interaction
In figure 10, we plot the results of SBT with no polymer–fibre interaction, where we
have restricted LB to the outer region. The plots show the normalised thrust, drag and
torque on the helix as a function of λ compared with the results for a helix moving in
a single-fluid medium of viscosity μs + μp (mixture) and in two independent fluids. For
the latter case, the polymer fluid is not interacting with the helix and so the helix only
sees a single-fluid solvent medium with viscosity μs. Here, we see that the quantities
vary non-monotonically with λ for a given LB/L and, importantly, the thrust also varies
non-monotonically with LB/L at a given λ. This is clearly seen in figure 11, where we plot
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Figure 9. Plot of the ratio of thrust and drag on a helix rotating and translating in a two-fluid medium with
polymer slip (λ = 1). Magenta dashed line is the ratio for the same helix rotating in a mixture (LB/L → 0) and
violet dashed line is the ratio in two decoupled fluids (LB/L → ∞). Here, as in figure 8, RHelix/L ≈ 0.052 and
a/L ≈ 0.0043.

the thrust and drag for λ = 1 as a function of LB/L. While the trends in the thrust could
be easily understood from the leading order solution to the force strengths in the case of
a slipping polymer, here we see that such an approach would not work. This is because
the slip boundary condition affects the solution at leading order in ε (= 1/ log(2γ )), but
the no polymer–fibre interaction condition only affects the solution at O(ε2). Thus, the
change in thrust compared with the thrust on a helix in a single-fluid medium is small and
is O(ε). This suggests the motion of the fibre in the two-fluid medium is very sensitive to
the nature of the interaction between the fibre and the polymer.

Figure 12 is a plot of the ratio of thrust and drag as a function of LB/L for different λ
compared with the same for helix in the mixture (LB/L → 0) and in the solvent (LB/L →
∞). Since both these limits correspond to a single-fluid medium, this ratio is the same
for both limits (as it does not depend on the viscosity). From these plots, we see that the
ratio of thrust to drag varies non-monotonically, first increasing and then decreasing with
LB/L, and approaches the value in a single-fluid medium for both LB/L → 0 and LB/L →
∞. Note that for very small values of LB/L (figure 12b), the ratio becomes smaller than
the ratio for a mixture, because the SBT was derived assuming LB in the outer region.
This non-monotonic variation in the thrust to drag ratio results from the non-monotonic
variation of the drag anisotropy for a rotating helix in the two-fluid medium. While the
leading order solution resulted in the same drag anisotropy as in a single-fluid medium
(3.65), the two-fluid effects present at higher orders in ε result in a slightly increased drag
anisotropy relative to the single-fluid case. This anisotropy reaches a maximum at LB ∼
RHelix (since the flow disturbance due to rotation decays over a distance RHelix), before
decreasing again to the single-fluid value as less polymers are disturbed by the rotating
helix when LB is increased beyond RHelix.

5. A swimming bacterium in a two-fluid medium

We have shown from our SBT calculations that a force-free helical fibre moves with
a larger velocity because of the presence of microstructure, regardless of the type of
interaction with the polymer. This effect of microstructure, modelled by our two-fluid
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Figure 10. Plots of normalised (a) thrust, (b) drag and (c) torque for a slender helical fibre with spheroidal
cross-section, as a function of λ, from the numerical solutions for axial translation (U) and rotation (Ω) of the
helix in a two-fluid medium with no polymer–fibre interaction, where the curves correspond to different LB/L.
Here, RHelix/L ≈ 0.052 and a/L ≈ 0.0043.
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Figure 11. Plots of the normalised (a) thrust and (b) drag on a helix rotating and translating in a two-fluid
medium with no polymer–fibre interaction (λ = 1). The magenta dashed line indicates the thrust for the same
helix rotating in a mixture (LB/L → 0) and the violet dashed line indicates the thrust in the solvent (LB/L →
∞). Here, RHelix/L ≈ 0.052 and a/L ≈ 0.0043.
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Figure 12. (a) Plots of the ratio of the thrust and drag on a helix rotating and translating in a two-fluid medium
with no polymer–fibre interaction. Single-fluid (green, dashed line) indicates the thrust to drag ratio for the
same helix in both mixture (LB/L → 0) and solvent (LB/L → ∞). Note that this ratio is the same for mixture
and solvent, as the ratio is independent of viscosity. (b) Plots of the ratio for small LB/L. Here, RHelix/L ≈ 0.052
and a/L ≈ 0.0043.

equations, is therefore crucial to understand motility of bacteria in entangled polymer
solutions. In this section, we calculate the swimming parameters of force- and torque-free
bacterial motion in a two-fluid medium using RFT and compare it with the experimentally
observed trends for a bacterium swimming in a concentrated polymer solution. The basic
idea in RFT is to calculate the resistance coefficients for motion of the flagellar bundle and
the cell (head), and use them to calculate the velocity and other swimming parameters,
while ensuring that the motion as a whole is force- and torque-free. In this calculation, the
hydrodynamic interactions between the cell and the flagellar bundle and also between the
different segments of the bundle are neglected. While this is not an accurate description,
we shall see that this calculation can still capture the qualitative trends observed in
experiments, where the entangled polymer solutions have a macro-rheology that is almost
Newtonian (Martinez et al. 2014; Qu & Breuer 2020).

With hydrodynamic interactions neglected, the motion of a segment of a bundle can
be split into motion tangential and normal to the local centreline orientation, giving
us two coefficients of resistance (CN , CT ) proportional to the local velocity in these
two directions. Additionally, for the cell, we again have two coefficients αC and βC
for translation and rotation. Using these coefficients, one can describe the motion of a
bacterium swimming with speed, v, cell angular speed, ωCell, and flagellar angular speed,
ωf , as

(
F C
T C

)
=
(
αC 0
0 βC

)(
v

ωCell

)
(5.1)

for the head of the bacterium, and

(
F f
T f

)
=
(

A B
B D

)(
v
ωf

)
(5.2)
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for the flagellar bundle, where v = [v, 0, 0], ωf = [ωf , 0, 0] and ωCell = [ωCell, 0, 0]. The
coefficients A,B,D for the flagellar bundle are given by

A = −CNL sinψ tanψ(1 + ζ cot2 ψ), (5.3)

B = −CNL
p

2π
sinψ tanψ(1 − ζ ), (5.4)

D = −CNL
( p

2π

)2
sinψ tanψ(1 + ζ cot2 ψ), (5.5)

with L, p, ψ being the length, pitch and pitch angle of the flagellar bundle and ζ = CN/CT .
The expressions for the resistance coefficients can be obtained from the leading order

solutions to our SBT equations ((3.14), (3.15), (3.39), (3.40), (3.64)) and depend on
whether LB is in the inner or outer region. For the flagellar bundle with characteristic
radius a, these are given by

CN =

⎧⎪⎨
⎪⎩

4π(λ+ 1)μs

log(2γ )
for LB/a � O(1),

4π(λ+ 1)μs

log(2γ )
for LB/a ∼ O(1),

(5.6)

CT =

⎧⎪⎨
⎪⎩

2πμs

log(2γ )
for LB/a � O(1),

2π(λ+ 1)μs

log(2γ )
for LB/a ∼ O(1),

(5.7)

for the case with a slipping polymer (γ is the aspect ratio for the bundle), where the
coefficients correspond to the cases with screening length in the inner (LB/a ∼ O(1)) and
outer (LB/a � O(1)) regions. For the case where the polymer has no interaction with the
bundle, the coefficients are

CN = 4πμs

log(2γ )
, (5.8)

CT = 2πμs

log(2γ )
. (5.9)

For the cell, assumed to be spherical in shape for now, good approximations to the
resistance coefficients are those corresponding to a sphere translating and rotating in the
mixture (single fluid of viscosity μs(1 + λ)), given by

αC = −6πμs(1 + λ)RCell, (5.10)

βC = −8πμs(1 + λ)R3
Cell, (5.11)

since in the physical picture presented earlier, the two-fluid behaviour only applies to the
flagellar bundle whose radius is comparable to the length scale of the microstructure of
polymer solution. However, one can also find the effect of microstructure at the scale
of the head, as was done by Magariyama & Kudo (2002), and calculate the swimming
parameters for the case of a head translating and rotating in a two-fluid medium (with a
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slipping polymer), for which the resistance coefficients are given by

αC = −
6π(λ+ 1)RCellμs

(
RCell

√
λ+ 1
λL2

B
+ 2λ+ 3

)

RCell

√
λ+ 1
λL2

B
+ 3λ+ 3

, (5.12)

βC = −8

8πR3
Cellμs

⎛
⎜⎜⎝3λL2

B

R2
Cell

+ (λ+ 1)

⎛
⎜⎜⎝

3
√
λ

λ+ 1
LB

RCell
+ 1

⎞
⎟⎟⎠
⎞
⎟⎟⎠

3λL2
B

R2
Cell

+
3
√
λ

λ+ 1
(λ+ 1)LB

RCell
+ 1

. (5.13)

These coefficients were calculated by solving for flow due to a translating and rotating
sphere in two-fluid medium as described in § 1. A motivation for this calculation is the fact
that entangled polymer solutions are known to slip at solid bodies with length scales much
larger than the entanglement length scale, as was reported by Mhetar & Archer (1998). It
is not known whether polymers slip at the surface of bacterial cells, since no experiments
have addressed this question, but future experiments with bacteria in entangled polymer
solutions can shed light on this aspect.

The force-free and torque-free conditions are given by

F c + F f = 0, (5.14)

2T c = T m, (5.15)

2T f = −T m, (5.16)

where T m is the torque supplied by the motor. It has been known that the torque generated
by the motor has two regimes depending on the angular velocity of the motor ωm = ωf −
ωCell (Berg 2003). The motor torque behaviour is given by

T m =
⎧⎨
⎩

T 0 for |ωm| ≤ ω0,

T 0

(
1 + ω0 − ωm

ωmax − ω0

)
for |ωm| > ω0.

(5.17)

Here, |T 0| is the knee-torque, ω0 is the knee-rotation rate and ωmax is the maximum
rotation rate of the flagellar motor, which are constants for a particular bacterial species
swimming in a motility buffer (a Newtonian medium with negligible nutrient content,
which optimally supports bacterial motility and chemotaxis but does not support bacterial
growth) at a particular temperature. Note that these constants are not sensitive to the
viscosity of the buffer. In our RFT calculations, we assume the motor torque to be the
input, having the form given in (5.17). The above equations were solved simultaneously
and the resulting values of the swimming speed, cell rotation rate and flagellar rotation
rate are calculated for different scenarios. In calculating these parameters, the dimensions
of the bacterium that appear in the expressions (RCell, L, p, ψ, γ, a0) correspond to the
measured values of wild-type E. coli (Berg 2003; Martinez et al. 2014) and are the same
as given in figure 5 (also tabulated in table 1), and the input torque profile (with |T 0|,
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ω0 and ωmax) are obtained from the experimentally measured values (Berg 2003; Sowa &
Berry 2008; Martinez et al. 2014), corresponding to E. coli swimming in motility buffer
at room temperature (T = 298 K) that results in a constant driving potential for the motor
(proton-motive force) (Xing et al. 2005).

5.1. Mixture behaviour at the bacterial cell
First, the swimming parameters are presented for the case where the cell moves in a
mixture, but the bundle sees two-fluid behaviour. The swimming velocity and angular
velocities of the cell and bundle are given in figure 13 for this case, where the three curves
in each plot correspond to the three physical scenarios considered for the flagellar bundle,
namely: (i) a slipping polymer with LB/a ∼ O(1); (ii) a slipping polymer with LB/a � 1
and (iii) a non-interacting polymer. For cases (i) and (iii), the resistance coefficients (of the
flagellar bundle) to the leading order correspond to the resistance coefficients for a fibre
moving in a single-fluid medium, with viscosities μs(1 + λ) (mixture) and μs (solvent)
respectively, while for case (ii), the resistance coefficients involve the effect of slipping
polymer at leading order. This is evident in the plots of swimming velocity and angular
velocities as functions of λ in figure 13, where we see that scenario (ii) results in an
enhancement in swimming velocity compared with scenarios (i) and (iii), with scenario
(i) being the same as the bacterium (both head and bundle) swimming in a mixture. The
observed trends can be explained in terms of the drag anisotropy on the slender fibre, which
is directly proportional to λ for scenario (ii) and is independent of λ for scenarios (i) and
(iii). Even though the flagellar bundle has the same drag anisotropy in cases (i) and (iii),
the fact that it moves entirely in the solvent for case (iii) results in the slight enhancement
(at a given λ) compared with case (i), where the bundle moves in the mixture. The nearly
constant angular velocity of flagellar bundle with λ for scenario (iii) is a consequence
of this fact. Also, in figure 14, we have plotted the swimming parameters for the case
where the cell moves through a mixture but the flagellar bundle moves through a two-fluid
medium with slipping polymer, with the resistance coefficients CN,CT , now given by
(3.53), (3.54), respectively. These coefficients correspond to the coefficients valid for
LB ∈ [0,∞], and thus lead to swimming parameters that extend between the two limiting
cases (cases i and ii) considered in figure 13. These intermediate swimming parameters
result from the evolution of the anisotropic drag as LB passes through the matching region.
Thus, we see that for the case with polymer slip, one can go from the swimming velocity
corresponding to a mixture to an enhanced swimming velocity at a given λ, depending on
the screening length LB.

5.2. Two-fluid behaviour at the bacterial cell
We now look at the effect of two-fluid behaviour (microstructure) at the scale of the head
on the swimming parameters. For this calculation, we still have the following three cases
for the flagellar bundle: (i) polymer slip at the bundle with LB/a ∼ 1; (ii) polymer slip
at the bundle with LB/a � 1 and (iii) no polymer–bundle interaction. Now, for each of
these three cases, the resistance coefficients for the head correspond to those given in
(5.12)–(5.13) (slipping polymer on the head). The results of the calculations are shown
for case (i) in figure 15 and for case (ii) in figure 16 as functions of λ for different
values LB/RCell. We see from the plots that the two-fluid behaviour at the scale of head
does not qualitatively change the trends for either scenario, showing that the effect of
slipping polymer is more dominant at the scale of flagellar bundle. Similar trends are
obtained for case (iii) shown in figure 17 for which the polymer does not interact directly
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Figure 13. A swimming bacterium in a two-fluid medium with a slipping polymer at the flagellar bundle
(LB/a0 � 1, red; mixture (LB/a0 ∼ 1), magenta) and with no polymer–bundle interaction (blue) (the cell sees
the mixture): (a) swimming velocity; (b) angular velocity of the cell and (c) flagellar bundle. Polymer slip
(LB/a0 � 1) leads to a two-fold increase in swimming velocity for λ > 1.
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Figure 14. Case of a bacterium in a two-fluid medium with a slipping polymer, where the cell sees the mixture:
(a) swimming velocity; and the angular velocities of (b) bacterial head and (c) flagellar bundle for different
values of LB/a0. Here, LB/a0 � 1, screening length being in the outer region, and mixture (LB/a0 ∼ 1),
screening length in the inner region, while the other curves correspond to screening length in the matching
region.

with the flagella and slips on the cell. Note that in all these figures (figures 15–17),
the magenta dashed curve corresponds to the case where both cell and flagellar bundle
swim through the mixture. Therefore, we see that the two-fluid model of an entangled
polymer solution predicts an enhancement in the swimming velocity of a force-free and
torque-free bacterium, when the polymer solution has a microstructure with a length scale
comparable to or larger than the flagellar bundle diameter. These results are consistent
with the observed trends for the force-free motion of a helix in the two-fluid medium
described in the previous sections. The key results from RFT calculations for the two-fluid
medium discussed above are summarised and tabulated in table 2 for the convenience of
the readers.

5.3. Comparison with earlier studies
Finally, we compare these calculations with experimentally observed trends and with
previous RFT calculations, which have sought to explain the motion of a bacterium
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Figure 15. Case of a bacterium in a two-fluid medium with slipping polymer (LB/a0 ∼ 1): (a) swimming
velocity, and the angular velocities of (b) bacterial head and (c) flagellar bundle for different values of LB/RCell.
Results are compared with the case where the bacterium swims in the mixture (magenta dashed curve).
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Figure 16. Case of a bacterium in a two-fluid medium with slipping polymer (LB/a � 1): (a) swimming
velocity, and the angular velocities of (b) bacterial head and (c) flagellar bundle for different values of LB/RCell.
Results are compared with the case where the bacterium swims in the mixture (magenta dashed curve).
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Figure 17. Case of a bacterium in a two-fluid medium, with non-interacting polymer (on bundle) and slipping
polymer on head: (a) swimming velocity, and the angular velocities of (b) bacterial head and (c) flagellar bundle
for different values of LB/RCell. Results are compared with the case where the bacterium swims in the mixture
(magenta dashed curve).
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Parameter Value

a0 0.03 μm
L 7 μm
p 2 μm
ψ 41◦
γ 240
RCell 1.5 μm
μs 1 mPa s
|T 0| 1250 pN nm
ω0 350π rad s−1

ωmax 600π rad s−1

Table 1. Values of the various parameters corresponding to E. coli used in RFT calculation.

Case
Polymer BC
on head

Polymer BC on
flagellar bundle Limit Key result

1 No-slip Perfect slip LB/a ∼ O(1) Same swimming velocity as a bacterium
swimming in the mixture (viscosity μs(1 + λ))

2 No-slip Perfect slip LB/a � 1 Enhanced (∼ two-fold) swimming velocity
compared with a bacterium in the mixture

3 No-slip No interaction LB/a � 1 Slightly enhanced swimming velocity
compared with a bacterium in the mixture

Table 2. Table summarising the key result of RFT calculations for a bacterium in a two-fluid medium,
corresponding to different cases. Note that the head always moves in the mixture in the cases listed above.

swimming in a concentrated polymer solution. These include the works of Magariyama &
Kudo (2002), Martinez et al. (2014), Zottl & Yeomans (2019) dealing with E. coli motion
in concentrated polymer solutions, where the authors have performed RFT calculations
assuming bacterium-sized pores, shear-thinning and physical depletion of polymers near
the flagellar bundle, respectively. With the exception of the calculation by Zottl & Yeomans
(2019), these studies predict a non-physical trend, where one of the swimming parameters
(the cell angular velocity (ωCell) of Magariyama & Kudo 2002 and the flagellar angular
velocity (ωf ) of Martinez et al. 2014) increases with medium viscosity. In the calculation
of Martinez et al. (2014), RFT relations were used to fit experimentally observed values
for the swimming velocity by using experimentally observed cell angular velocities and
the authors show that the fit is satisfactory when one uses μs as the viscosity seen by
the flagellar bundle. However, they do not measure flagellar bundle rotation rates in the
experiment. Using the RFT equations of Martinez et al. (2014) to obtain the bundle
angular velocities from the measured cell angular velocities results in an increasing ωf
with viscosity. This is a non-physical trend because it implies that the motor angular
velocity ωM = ωf − ωCell increases with viscosity. This is shown in figure 18(a), where
the normalised angular-velocities calculated by the three versions of RFT are shown as
a function of normalised viscosity. The resistance coefficients and the input parameters
used in the two-fluid RFT calculations for this comparison are the same as those used
by Martinez et al. (2014) and Zottl & Yeomans (2019), and are shown in table 3. In these
calculations, the bacterium has a prolate spheroidal head, with semi-major and semi-minor
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Figure 18. Plots of the (a) angular velocity of the flagellar bundle and (b) velocity of the bacterium, normalised
by the respective values in a solvent of viscosity μs, as a function of normalised viscosity μ/μs, calculated
using the three versions of RFT. Our two-fluid RFT (labelled TF) pertains to the case with polymer slip at the
bundle (LB/a � 1), while the head ‘sees’ a mixture. The velocity is compared with experimental measurements
of Martinez et al. (2014).

Parameter Value

a 0.03 μm
L 7 μm
p 2 μm
ψ 41◦
γ 240
ACell 1.2 μm
BCell 0.43 μm
μs 1 mPa s
|T 0| 1450 pN nm
ω0 350π rad s−1

ωmax 600π rad s−1

Table 3. Values of the parameters used by Martinez et al. (2014) in RFT calculations.

radii ACell and BCell whose resistance coefficients are given by

αC = −4πμs(1 + λ)UACell

log
(

2ACell

BCell

)
− 1

2

, (5.18)

βC = −16π

3
μs(1 + λ)UB2

CellACell. (5.19)

While the RFT of Zottl & Yeomans (2019) predicts a similar trend as ours, their
calculation is based on an assumption of physical depletion of polymers which, given
the coarse-grained model used for the polymers in their simulations, might overestimate
the actual depletion near the flagellar bundle (if any). The depletion distance calculated by
Zottl & Yeomans (2019) from their simulation is ∼0.35RHelix, which is extracted from a
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coarse grain MD simulation where polymers are modelled as chains having 12 monomer
beads. In figure 18(b), we compare the plot of normalised V against μ/μs measured
experimentally by Martinez et al. (2014) against our two-fluid RFT and the calculations
of Martinez et al. (2014), Zottl & Yeomans (2019). From the plot, we see that our model
also qualitatively follows the experimentally observed trend. Thus, the presence of porous
microstructure at the length scale of the flagellar bundle, due to entanglement in polymer,
also predicts a similar enhancement in swimming velocity as observed in the experiments.

6. Conclusions

In this report, we have developed a two-fluid model to capture the effect of the
microstructure of an entangled polymer solution and analysed the motion of a swimming
E. coli using slender-body theory. The model predicts an enhancement in swimming
velocity, which results directly as a consequence of the microstructure. The two-fluid
model does not suffer from the inconsistencies in earlier theoretical models based on shear
thinning and depletion near the flagellar bundle (Magariyama & Kudo 2002; Martinez
et al. 2014; Man & Lauga 2015; Zottl & Yeomans 2019). In our model, the flagellar
bundle ‘sees’ a different viscosity as a consequence of the microstructure of the polymer
solution and exerts different continuum stresses on the polymer and solvent, which are
hydrodynamically coupled. Therefore, this model better represents the underlying physical
conditions in a complex fluid with a microstructure.

A key assumption in our model lies in the nature of interaction of the polymer with
the flagellar bundle. The choices made in our calculations, those of slip or no direct
interaction, require validation from experiments, which will also shed light on the nature
of interaction between flagellar filaments and the polymers during swimming. The choice
of slip between the polymer and the bundle used in this work corresponds to a limiting
case, while in reality, the polymer might satisfy a Maxwell-like slip boundary condition
(Mhetar & Archer 1998). This can also be easily incorporated into our model, provided the
slip length at the flagellar bundle and the head (if slip is present) are known. Regardless,
it is easily seen that even with a partial slip of the polymer, the results will remain
qualitatively similar to the calculations shown here, with slip resulting in an enhancement
of swimming velocity. A stricter no polymer–bundle interaction condition also predicts
a slight enhancement in swimming speed, from a leading order RFT calculation, but
this does not follow the experimentally observed trends. Thus, slip of polymer near the
flagellar bundle might be a more plausible condition in those experiments, apart from
other non-Newtonian effects. These results, thus shed light on a possible mechanism of
swimming speed enhancement observed in experiments, due to the microstructure of an
entangled polymer solution.

In the future, it would be valuable to study the motion of a bacterium swimming
in an entangled polymer solution, with both non-Newtonian and microstructure effects
incorporated in a two-fluid model. This might be accomplished by incorporating the
slender-body theory presented in this work into a numerical solver for a rigid body
(cell) moving through a two-fluid polymer solution. The parallel, finite-difference solver
for spheroidal-particle-resolved simulations in an inertia-less, unbounded non-Newtonian
fluid medium developed by Sharma & Koch (2023) might provide the basis for such
a calculation. While we have assumed a constant polymer concentration in our model,
one can, in principle, extend it to a case with a polymer concentration gradient. This
would require a compressible polymer fluid where the polymer pressure, pp is the osmotic
pressure. This would also be a future work.
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