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The threshold for the resonant destabilisation of ion-temperature-gradient (ITG)
driven instabilities that render the modes ubiquitous in both tokamaks and stellarators
is investigated. We discover remarkably similar results for both confinement concepts
if care is taken in the analysis of the effect of the global shear ŝ. We revisit,
analytically and by means of gyrokinetic simulations, accepted tokamak results and
discover inadequacies of some aspects of their theoretical interpretation. In particular,
for standard tokamak configurations, we find that global shear effects on the critical
gradient cannot be attributed to the wave–particle resonance destabilising mechanism
of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185–1192), but are consistent
with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989,
pp. 109–118). Extensive analytical and numerical investigations show that virtually
no previous tokamak theoretical predictions capture the temperature dependence of
the mode frequency at marginality, thus leading to incorrect instability thresholds. In
the asymptotic limit ŝι� 1, where ι is the rotational transform, and such a threshold
should be solely determined by the resonant toroidal branch of the ITG mode,
we discover a family of unstable solutions below the previously known threshold of
instability. This is true for a tokamak case described by a local ŝ−α local equilibrium,
and for the stellarator Wendelstein 7-X, where these unstable solutions are present
even for configurations with a small trapped-particle population. We conjecture
they are of the Floquet type and derive their properties from the Fourier analysis of
toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180–3185),
and to Hill’s theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886,
pp. 1–36). The temperature dependence of the newly determined threshold is given for
both confinement concepts. In the first case, the new temperature-gradient threshold is
found to be rather insensitive to the temperature ratio Ti/Te, at least for Ti/Te . 1, and
to be a growing function of the density gradient scale for Ti/Te & 1. For Wendelstein
7-X, the new critical temperature gradient is a growing function of the temperature
ratio. The importance of these findings for the assessment of turbulence in stellarators
and low-shear tokamak configurations is discussed.
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1. Introduction

Any magnetic fusion reactor, no matter how carefully designed, is affected by
turbulent heat losses, which are detrimental to its performance. The study of turbulent
transport processes in magnetically confined plasmas, therefore, has always been of
vital importance in the identification of the confinement properties of such devices. A
number of plasma quantities are of relevance when evaluating how well the plasma
is confined and thus more likely to yield fusion power. Amongst many, there is no
doubt that one of the most important is the achievable plasma temperature gradient.

It is known that kinetic plasma instabilities can draw energy from equilibrium
plasma gradients and the resulting turbulence cause what is observed as an
anomalous energy loss. Perhaps the most important of such instabilities is the
ion-temperature-gradient (ITG) driven one, which has been extensively studied both
in tokamaks and stellarators. The ITG mode manifests itself in several flavours.
Sometimes it is a modified unstable sound wave, as derived for the first time by
Rudakov & Sagdeev (1961); it can also arise in the guise of the interchange-type
mode of Rosenbluth & Longmire (1956) as a result of equilibrium magnetic field
gradients (Horton, Choi & Tang 1981). It can be of the ballooning type (Connor
& Taylor 1987), with a broad radial structure (Romanelli & Zonca 1993); of the
‘boxing’ type (Plunk et al. 2014), or with detailed structure on equilibrium magnetic
surfaces (Zocco et al. 2016); of the isolated or general (Dickinson et al. 2014) type,
or else ‘passing’ or ‘trapped’ (Dewar 1997); this list may not be complete.

In all these cases, the instability can be categorised in two broad classes which
correspond to the slab and the toroidal branch of the mode. In the first case,
instability occurs when the equilibrium temperature gradient causes a change in
temperature of a perturbation propagating at the sound speed, and such change is in
phase with a perturbed E × B drift, also caused by the presence of the equilibrium
temperature gradient (see discussion after (16) of Coppi, Rosenbluth & Sagdeev
(1967)). In toroidal geometry, the coupling of the ∇B− and curvature drifts with
the equilibrium temperature gradient can also destabilise the mode (Horton et al.
1981). The intuitive picture of the ITG destabilisation generally holds for very large
temperature gradients (fluid limit). However, in many operationally relevant regimes
(Mantica et al. 2009), temperature gradients are not so extreme as to justify a fluid
approximation, and it is necessary to account for resonances. The complications
associated with such theories escalate very rapidly, and an intuitive picture of
the kinetic resonant destabilisation would perhaps be more confusing rather than
clarifying. The development of gyrokinetic numerical codes has rescued the situation,
and has advanced our understanding of the critical threshold for the destabilisation
of the ITG mode.1 Inevitably, the interpretation of any linear result produced by
a gyrokinetic code is ultimately based on fundamental works, most notably those
of Terry, Anderson & Horton (1982), Biglari, Diamond & Rosenbluth (1989) and
Romanelli (1989) (hereafter BDR), for the toroidal branch of the instability, and those
of Kadomtsev & Pogutse (1970), and Hahm & Tang (1989) for the finite-shear and
shear-less slab branches, respectively.

All these analytical theories of the resonant destabilisation of the toroidal ITG
were performed in a long-wavelength limit, thus neglecting the full ion Larmor radius
response. Here, we present, for the first time, a complete mathematical treatment
where this response is retained. The analysis is performed in the local kinetic limit,

1In this context, a very influential work is that of Jenko, Dorland and Hammett (Jenko, Dorland & Hammett
2001).
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Resonant destabilisation of ITG modes 3

thus neglecting the variation of the eigenfunction along the magnetic field line, but
is valid for arbitrary magnetic geometry. Analytical progress is made by introducing
a Padé approximant for the ion response after integrating over the resonances. These
are treated by using a new series representation of the Owen T-function (Owen
1956) which exploits the properties of the incomplete Euler gamma function (Tricomi
1950b,a). No approximation for the velocity-space dependence of the particles drifts
is made.

The threshold for resonant destabilisation of the toroidal branch of the ITG mode
is then calculated and compared to previous analytical results and to numerical
results obtained from simulations performed with the GENE (Jenko et al. 2000)
code for a local ŝ− α tokamak equilibrium (Connor, Hastie & Taylor 1978). In the
limit in which the streaming term contribution is negligible)2 (ŝ� 1), we identify a
family of unstable ion modes below the threshold for destabilisation of the toroidal
branch of the ITG mode. Such modes require high velocity-space resolution to be
adequately resolved, they are more unstable for small inverse aspect ratios, and do
not show resonant structures for v‖ 6= 0. The new critical threshold is studied, for
several density gradients, as a function of τ = Ti/Te, where Ti and Te are the ion and
electron temperature, respectively. For τ & 1, the threshold shows a dependence on τ .
For τ . 1, the threshold in the inverse temperature-gradient scale R/LT is proportional
to the inverse density gradient scale, R/Ln.

The same qualitative small-ŝ behaviour at marginal stability is observed in the
stellarator Wendelstein 7-X, even for flat densities. We have verified that the modes
are present for configurations with a small trapped-particle population. From the
common features shown in the tokamak and stellarator cases, we argue that these
modes are of the Floquet type, and can be described in terms of Mathieu functions.
Far from marginality, we propose a general eigenvalue equation that is exact and
based on Hill’s mathematical study of the motion of the Lunar perigee (Hill 1886).

The article is organised as follows. In § 2 we present the numerical results from
gyrokinetic simulations that demonstrate the qualitative similar behaviour of low-ŝ
tokamaks and Wendelstein7 − X at marginal stability. In § 3 the critical threshold
for the low-shear ITG mode is shown for both the ŝ − α tokamak equilibrium and
Wendelstein 7-X. The exact analytical formula for Floquet modes is given (and
solved) in § 4. Conclusions are given in § 5. A series of appendices is attached to
elucidate some analytical aspects of the resonant destabilisation of the toroidal ITG.

2. Instability thresholds
The description of the resonant destabilisation of the toroidal ITG is based on the

following eigenvalue equation (Terry et al. 1982; Biglari et al. 1989; Romanelli 1989)

1+ τ = Ii ≡
∫

d3v
ω−ωT

∗i
ω−ωdi

J2
0

(
k2
⊥ρ

2
i v̂

2
⊥
) F0i

n0
, (2.1)

where τ = Ti/Te, ω is the mode complex frequency, k⊥ is the wave vector
perpendicular to the equilibrium magnetic field, v̂2= (v2

‖+v2
⊥)/v

2
thi, with vthi=√2Ti/mi

the ion thermal speed and mi and n0 are the ion mass and density, respectively. We
are effectively considering a local limit, in the sense that the eigenmode structure
along the field-following coordinate is neglected, and we restrict our attention to
a particular location along the equilibrium magnetic field. This is equivalent to

2While this is the case in tokamaks, in a stellarator this is not the only relevant condition.
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completely neglecting the slab branch discussed in the introduction, and taking
k‖vthi�ω, where k‖ is the parallel wavenumber. The equilibrium distribution function
is taken to be Maxwellian,

F0i = n0

(πv2
thi)

3/2
e−v̂

2
. (2.2)

Two characteristic frequencies are present in (2.1)

ωT
∗i =ω∗i[1+ ηi(v̂

2 − 3/2)], (2.3)

with ω∗i = 0.5kyρivthi/Ln, ηi = Ln/LT , and

ωd = (ωκ v̂2
‖ +ωBv̂

2
⊥/2), (2.4)

where ρi = vthi/Ωci is the ion Larmor radius, Ωci = eB/(mic) the ion cyclotron
frequency, ωκ = 0.5kyρivthi/a and ωB = ωκ − dβ/dx the magnetic curvature and
∇B-drift frequencies, while L−1

n = −n−1
0 dn0/dx and L−1

T = −T−1
i dTi/dx define the

characteristic density and temperature-gradient scales, and β = 8πn0(Te + Ti)/B2 is
the ratio of kinetic to magnetic pressure (which will shortly be set to zero), x is
the radial coordinate and y is a coordinate associated with the field-line labels on
a magnetic surface. Notice that we are assuming kx = 0 for simplicity. The Bessel
function squared originates, as usual, from a Fourier transform of the gyroaveraged
potential followed by a d3v integral at constant r, the particle position. In (2.1)
the eigenvalue ω acquires non-zero imaginary values that regularise the, otherwise,
singular integrand. The analytical form of the integral Ii for arbitrary Larmor radii is
given in appendix A. The drift-kinetic limit is sufficient for the following discussion.
In this case k⊥ρi→ 0, J2

0→ 1, and it is easy to show that

D ≡ − (1+ τ)+ Ii

= − (1+ τ)+
(
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) ω

ωκ
Z2

(√
ω

ωκ

)
+ ηi

ω∗i
ω

{(
1− 2

ω

ωκ

)
ω

ωκ
Z2

(√
ω

ωκ

)
− 2

(
ω

ωκ

)3/2

Z
(√

ω

ωκ

)}
, (2.5)

which corresponds to D0 in (3) of BDR (Biglari et al. 1989). In the appendices we
prove this result in two different ways; both are alternatives to the derivation of Biglari
et al. (1989). The real frequency at marginality is evaluated by solving Im[D(ωr)] ≡
Di(ωr)= 0, where one sets ω=ωr + iγ , and takes γ → 0. Using (2.5) this means{

1− ω∗i
ωr
+ ηi

ω∗i
ωr

(
1− 2

ωr

ωκ

)}
Re
[

Z
(√

ωr

ωκ

)]
= ηi

ω∗i√
ωrωκ

. (2.6)

Once ωr is found, the condition that determines destabilisation is Re[D(ωr)] > 0,
which can be determined only numerically. However, Romanelli (Romanelli 1989)
has evaluated the integral Ii by replacing v2

⊥/2+ v2
‖→ 4/3(v2

⊥ + v2
‖) in the definition

of the particle magnetic drifts (see (2.4)) in order to fit the numerical solution of
(2.1) at R/Ln � 1, for kyρs =

√
0.1 ≈ 0.32, where ρs = √Ti/mi/Ωi = ρi/

√
2. In his

case, the condition Re[D(ωr)] > 0 yields a critical gradient R/LT |crit = (1 + τ)(4/3)
whose τ dependence comes from the obvious fact that Re[D(ωr)] > 0 implies
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FIGURE 1. Real frequency from the GENE code as a function of the temperature gradient
for different τ = Ti/Te. The τ dependence is evident. Cyclone base case parameters are
used (see text for details).

Re[Ii(ω = ωr)] > 1 + τ . Obtaining the correct mode frequency at marginality is
therefore crucial. From direct numerical simulations we see that this quantity shows
a dependence on the ion temperature that is not captured by Romanelli’s treatment,
nor by any other analytical theory known to us (see figure 1).

In our numerical tests, we consider adiabatic electrons and typical cyclone base
case (CBC) parameters for ŝ− α geometry: ŝ= 0.786, q= ι−1 = 1.4, ε = r/R= 0.18,
R/Ln = 2, kyρs = 0.3, where R is the device major radius. From the imaginary part
of the eigenvalue, we extract the critical gradient (see figure 2). Figure 3 shows the
resulting critical gradient compared to several theories and one fitting formula. The
linear fit of the numerical data gives3 R/LT |crit = (2.45± 0.07)τ + 2.07± 0.06, with a
reduced χ 2= 6.5× 10−4. The fitting formula of Jenko et al. (2001) (hereafter denoted
by JDH) is R/LT |crit= (1+ τ)(4/3+1.91 ŝ/q). The curve derived by Romanelli (1989),
R/LT = (1 + τ) (4/3), which should work better for flat densities, R/Ln→ 0, is not
expected to match the numerical results for R/Ln= 2, R/LT =O(1), even if q→∞ (in
which case the streaming term effect measured by the factor ŝ/q in the JDH formula
should be negligible, as it is neglected in (2.1)). The BDR condition for destabilisation
(Biglari et al. 1989) would give R/LT = 2.7, with virtually no dependence on τ . The
full ion Larmor radius resonant theory developed in the present article predicts
higher critical gradients than the long-wavelength resonant theory. Like results from
numerical simulations, it gives a critical gradient that depends linearly on τ = Ti/Te,
but it underestimates the numerical results. As already mentioned, this discrepancy can
be attributed to the fact that analytical theories predict a real frequency at marginality
that does not depend on τ , as opposed to the numerical findings. This is true for all
the analytical theories revisited and derived here, and seems to be a consequence of
the neglect in (2.1) of the streaming term. The problem is, of course, that parallel
streaming has been neglected in the derivation of (2.1), which can only be satisfied
at a single (or a pair of) poloidal location on the flux surface. Taken literally, this
equation thus implies that the entire mode structure is concentrated at this point,
which, in the analytical theories quoted, is the location where the field curvature is
most unfavourable. However, in all practical circumstances, that is not what the mode

3We warn the reader that R here is representative of the curvature of the magnetic field. In a stellarator,
the natural normalisation scale of the temperature-gradient length is not the major radius of the machine.
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FIGURE 2. Growth rate from the GENE code as a function of the temperature gradient
for different τ = Ti/Te. The τ dependence is evident. CBC parameters are used (see text
for details).

FIGURE 3. Critical threshold from GENE data, linear fit to GENE data, fitting formula
of Jenko Dorland and Hammett and different local theories. The GENE data at q= 100
should be compared to the local theories.

structure is, and the streaming term (with its ∂θ derivatives, where θ is the ballooning
angle) determines the rate at which the eigenmode decays along the field line.

The results from GENE simulations are somewhat consistent with the fitting formula
of Jenko et al. (2001) (hereafter JDH) but do not seem to relate to the theory of Hahm
& Tang (1989), since we find a stabilising contribution from finite shear. This is in
line with a statement present in the work of Biglari et al. (1989).4 The remaining
two curves are derived from the numerical solution of the dispersion relation with
full Larmor orbits, equation (A 1), for small (k⊥ρi � 1) and for arbitrary Larmor

4The stability diagram of figure 5 of Biglari et al. (1989) has also been reproduced (not shown) by
solving (2.5). Their result, R/LT = 2.7, can be obtained only if we include an extra multiplicative factor in
the definition of the magnetic drift, e.g. ωκ = 2ω∗i(Ln/R) (however, in this work we follow Hastie & Hesketh
(1981) and use ωκ =ω∗i(Ln/R)), and the frequency at marginal stability is evaluated by solving the equation{[

1− ω∗i
ωr
+ ηi

ω∗i
ωr

(
1− 2

ωr
ωκ

)]
Re
[

Z
(√

ω

ωκ

)]
− ηi

ω∗i√
ωrωκ

}
ωr = 0. (2.7)

https://doi.org/10.1017/S0022377817000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000988


Resonant destabilisation of ITG modes 7

FIGURE 4. Imaginary part of eigenvalue from the GENE code as a function of the
temperature gradient for different τ . Parameters as in figure 1, but ŝ= 0.1, ε = 0.03. The
‘background’ modes at marginality are evident.

radii. Strictly speaking, all our numerical results are valid for one specific wavelength:
kyρs= 0.3. However, a dependence of the numerical results on ky cannot be excluded.
A sensitivity scan was performed for the reference value τ =1. If we vary 0.26 kyρs 6
0.4, we find a critical gradient in the range 4.35 6 R/LT |crit 6 4.8 This indeterminacy
is small enough to discriminate the analytical results of figure 3, and large enough to
let us consider the JDH formula quite reliable.

This preliminary analysis is in fact more general that it would seem. Equations
(2.1) and (A 1) were derived by neglecting the contribution associated with particle
streaming, but the magnetic drift frequencies ωκ and ωB are essentially arbitrary.
They must therefore be applicable to the stellarator case as well. There is a key
factor that now brings tokamaks and stellarators together. A low-bootstrap-current
stellarator, such as Wendelstein 7-X, possesses a low global shear. This condition is,
incidentally, the same condition that is required to neglect particle streaming in the
kinetic equation, and the slab branch of the ITG instability (Jenko et al. 2001) for
the tokamak case. Thus, for low shear, the resonant destabilisation of the ITG mode
in tokamaks and stellarators could show some common features. In the following
sections we will discover what these common aspects are.

2.1. Low-shear tokamak
We repeat the same study that was performed above to benchmark the analytical
theories of the destabilisation of the toroidal ITG, but for ŝ = 0.1, and ε = 0.03,
instead of ŝ = 0.768 and ε = 0.18. The results are shown in figures (4)–(5), and
exhibit a new family of unstable modes below what would have been the critical
gradient had we extrapolated to γ→ 0 the growth rate calculated at large R/LT . These
modes behave as a persistent ‘background’ of instability. The velocity-space structures
and the eigenfunctions of two representative modes (one from the ‘background’, one
from the strongly driven toroidal branch) are compared in figures 6 and 7. For these
cases, a velocity-space resolution of lv/nv0= 3/512≈ 5.86× 10−3, where lv is the
extension of the simulation box (in units of thermal speed), and nv0 is the number
of grid points in the v‖- direction, was required to fully resolve the maximum of
the distribution function of the background mode at v‖ = 0. However, the eigenvalue
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FIGURE 5. Real part of eigenvalue from the GENE code as a function of the temperature
gradient for different τ . Parameters as in figure 1, but ŝ= 0.1, ε= 0.03. The ‘background’
modes at marginality are evident.

FIGURE 6. Ion distribution function in phase space. τ = 1, R/LT = 3, for the ‘background’
mode that belongs to the ‘foot’ of figure 5. No clear resonance at finite v‖. The velocity-
space resolution in the v‖-direction is 5.86× 10−3. Other parameters as in figure 5.

FIGURE 7. Ion distribution function in phase space. τ = 1, R/LT = 5, for the toroidal
branch mode. Resonance occurs outside the µ± v̂2

‖ ≡ const. boundary. The velocity-space
resolution in the v‖-direction is 5.86× 10−3. Other parameters as in figure 5.

would not be affected by choosing slightly larger values. All other resolutions are
kept consistent with the analysis of the previous section, but care must be taken to
fully resolve the asymptotic behaviour of the ‘background’ mode eigenfunctions for
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FIGURE 8. Eigenfunctions as a function of the ballooning angle for the ŝ − α tokamak
equilibrium from the GENE code (flux tube). Here τ = 1, kyρs = 0.3, a/LT = 3 (Floquet),
a/LT = 5 (toroidal branch). The velocity-space resolution in the v‖ direction is 5.86× 10−3.
Other parameters as in figure 4.

FIGURE 9. A ‘zoom’ of figure 8. Eigenfunctions as a function of the ballooning angle for
the ŝ− α tokamak equilibrium from the GENE code (flux tube). Here τ = 1, kyρs = 0.3,
a/LT = 3 (Floquet), a/LT = 5 (toroidal branch). The velocity-space resolution in the v‖
direction is 5.86× 10−3.

large ballooning angles. Since, formally, the ballooning angle is the Fourier conjugate
of the local radial variable, asymptotically decaying eigenfunctions are captured by
increasing the radial resolution. In our case, for a domain Lx = 1/(kyρsŝ)≈ 33.33, the
number of grid points in the radial (x) direction varies from 24 to 64. A comparison
of the eigenfunctions for the two types of modes is in figures 8 and 9. From the first,
we see that, at marginality, both eigenfunctions decay rather slowly. However, the
decay length of the background mode is much greater. Furthermore, the background
mode does not have an absolute maximum at θ = 0. While the strongly driven mode
shows resonances at finite v‖ outside the µ ± v̂2

‖ ≡ const. boundary, the background
mode does not show structure at finite v‖. Its dependence on the inverse aspect
ratio is shown in figure 10. We see that the slab character of the instability is more
pronounced for larger aspect ratios. It is of some interest to know whether, for
a given aspect ratio, there is a critical shear, ŝcrit, above which the ‘background’
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FIGURE 10. A ‘zoom’ of the low shear, ŝ= 0.1, ‘background’ marginal modes for τ = 1
for several inverse aspect ratios.

FIGURE 11. Real part of eigenvalue from the GENE code as a function of the temperature
gradient for different τ . Parameters as in figure 1, but ŝ = 0.1 and R/Ln = 0. The τ
dependence at marginality is evident.

modes are suppressed. For the case R/LT = 3, and ε = 0.18 of figure 10, we find
0.14< ŝcrit<0.16. For flat density profiles, R/Ln=0, and moderate inverse aspect ratio,
ε= 0.18, the real frequency at marginality shows an even stronger dependence on the
temperature ratio, τ , (figure 11) but, for the specific parameters used, the background
modes are not present. The equilibrium values chosen to let the background modes
emerge could seem unrealistic. Let us therefore consider a situation where such
modes are always expected, almost by design.

2.2. Wendelstein 7-X
The stellarator Wendelstein 7-X shows the same qualitative behaviour as just described
for the tokamak case. We consider a high-mirror configuration (Geiger et al. 2015)
at a normalised radial position r/a = 0.7, for kyρs = 0.9, flat density a/Ln = 0, q =
1/ι = 1.10186 and small negative global shear ŝ = −0.1286. Here a is the average
minor radius. Such configuration can be considered to be ‘standard’. It is realised
by setting to zero the current in the planar coils, and imposing a ‘large’ ratio of
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FIGURE 12. Growth rate of microinstability in Wendelstein 7-X from the GENE code
(flux tube). High-mirror configuration, adiabatic electrons, radial position r/a = 0.7. The
‘background’ modes at marginality are evident.

FIGURE 13. Frequency associated with the unstable modes of figure 12 evaluated for
Wendelstein 7-X from the GENE code (flux tube). High-mirror configuration, adiabatic
electrons, radial position r/a= 0.7, for kyρs = 0.9.

average toroidal to helical curvature, b1,0/b1,1≈0.5, and a finite-mirror term, b0,1≈0.1,
where bn,m are the Fourier components of the equilibrium magnetic field in Boozer
coordinates (Xanthopoulos et al. 2009). A scan in normalised temperature-gradient
scale, a/LT , is given in figures 12 and 13 for several τ . As in the tokamak case,
there is a background of unstable modes below the threshold of the strongly driven
toroidal ITG branch. An inspection of the real part of the eigenvalue reveals more
frequent, but milder, jumps than in the tokamak case. The eigenfunction is plotted in
figure 14 for a/LT = 0.8 (background) and a/LT = 3. (toroidal branch) for τ = 1. The
global shear is kept constant, the mode localisation of the two modes is very different:
the background mode shows a much slower variation along the field-line-following
coordinate than the toroidal branch mode. Our results suggest that the linear threshold
for destabilisation of ITG modes in Wendelstein 7-X could be overestimated by a
rough extrapolation of the toroidal branch to γ → 0, even for flat densities.
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FIGURE 14. Eigenfunctions for Wendelstein 7-X from the GENE code (flux tube). High-
mirror configuration, adiabatic electrons, radial position r/a= 0.7. Here τ = 1, kyρs = 0.9,
a/LT = 0.8 (Floquet), a/LT = 3 (toroidal branch).

FIGURE 15. Critical threshold from GENE data of figure 5 for several density
gradients, R/Ln.

3. Temperature dependence of critical thresholds

In the previous section we have conjectured that the resonant destabilisation of
the ITG mode in low-shear tokamaks and stellarators possesses common features.
Numerical simulations corroborate this hypothesis. We refrain from proposing some
universal formula for critical gradients at low shear, nonetheless we find it instructive
to explore the temperature dependence of the critical gradient, since this puts the new
results in the same context as previous analytical studies.

In the asymptotic limit of large inverse aspect ratio, ε = 0.03, the ŝ − α tokamak
case gives a critical inverse gradient that increases with τ , for τ & 1. For τ . 1,
the instability threshold is fixed by the density gradient, e.g. (R/LT)crit ≈ R/Ln (see
figure 15). In accordance with the JDH formula, a decreasing shear and an increasing
Ln/LT have a destabilising effect (see figure 16). The results for Wendelstein 7-X
(figure 17) were all derived in the flat density limit R/Ln= 0. The critical temperature
gradient is a growing function of τ . We observe that (a/LT)crit≈ 1 for sufficiently hot
ions, τ & 2.
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FIGURE 16. Critical threshold from GENE. CBC parameters are used (see text for details),
however ŝ= 0.1 for R/Ln = 0 and ŝ= 0.786 for R/Ln = 2.

FIGURE 17. Critical gradient for Wendelstein 7−X as a function of the temperature ratio
τ = Ti/Te.

4. Floquet solutions
What are the modes that emerge below the critical threshold of the toroidal branch

at low shear? In the classical nomenclature of ITG modes in tokamaks, for ŝ/q ≈
ιŝ� 1, the slab branch of the instability tends to be negligible. Below marginality
the toroidal branch is stable. We saw that the background of modes at marginality
is not eliminated at large inverse aspect ratios in tokamaks. High-mirror, as well as
low-mirror, Wendelstein 7-X configurations also exhibit this persistent feature, and we
recall that density gradients are stabilising since the electrons are taken to be adiabatic.
To shed some light on the nature of these modes, we are compelled to abandon for a
moment the regime of marginality and consider these modes at their maximum growth
rate. We first verify where this maximum is. We select two representative cases for
ε = 0.1, and τ = 1 : R/LT = 3 (background) and R/LT = 4 (strong toroidal branch).
The spectra of the two instabilities are shown in figure 18. We first notice that both
the background and toroidal branch modes occur approximately at the same ion scale,
kyρs≈ 0.3. This does not necessarily imply that the two modes would be destabilised
for the same R/LT . Let us now consider the non-resonant limit. We take the fluid limit
of the ITG equation (see (19) of Zocco et al. (2016), or the Fourier transform of (12)
of Connor & Taylor (1987), or (B1) of Candy, Waltz & Rosenbluth (2004)), neglect
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FIGURE 18. Spectra of instability for an ŝ − α tokamak, ε = 0.1, τ = 1, R/LT = 3
(background) and R/LT = 4 (strong toroidal branch).

altogether the shear, i.e. ŝ≡ 0, and restore the streaming term, to obtain the Mathieu
equation

d2ϕ

dz2
= [2q(ω) cos 2z− a(ω)]ϕ, (4.1)

with q(ω) = 8ωω(0)κ /(v
2
thi/`

2
‖), a(ω) = −8(ω3/ωTv

2
thi/`

2
‖)[τ − ωTk2

yρ
2
i /(2ω)] and

z = l/2, where l is the field-following coordinate and `‖ is the parallel connection
length. Basically, when the system approaches marginality, the toroidal driving term
(proportional to q, not to be confused with the safety factor), becomes smaller and the
second-order derivative associated with the streaming term cannot be neglected. The
absence of secular terms due to very low shear, however, makes this non-resonant
analysis still valid. The resonant theory of such modes does not seem straightforward.

Equation (4.1) has been studied in the context of formation of internal transport
barriers in ITG turbulence by Candy et al. (2004) and by Connor & Hastie (2004).
A more general form was investigated by Taylor & Wilson (1996). In stellarator
research, ‘weakly localised’ Mathieu solutions were first identified by Bhattacharjee
et al. (1983).

The most general solution of (4.1) is

ϕ(z)= eµzΦ(z), (4.2)

where Φ is periodic with period πk, with k integer. The evaluation of µ was first
published in 1886 by Hill (1886), and it will now be applied to the ITG case. One
introduces the Fourier series for the π-period solution

ϕπ(z)= eµz
∞∑

n=−∞
b2ne2niz, (4.3)

to obtain
(µ+ 2ni)2 b2n + ab2n − q (b2n−2 + b2n+2)= 0. (4.4)

For a 2π-period solution, ϕ2π(z)= eµz ∑∞
n=−∞ b′2n exp[inz], we have

(µ+ ni)2 c′n + ac′n − (c′n−1 + c′n+1)= 0, (4.5)
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where c′n ≡ b′2n. Equation (4.5) is, for µ= 0, see (21) of Connor & Taylor (1987). It
is clear that µ= 0 is the eigenvalue condition, because twisting boundary conditions
require ϕ′(0)=µΦ(0)+Φ ′(0)=µΦ(0)= 0, which, indeed, implies µ= 0. Similarly,
we introduce cn ≡ b2n and write (4.4) in matrix form, Anmcn, where (for π-period
solutions), after setting µ= 0,

Amn =



. . . − q
a− 4× 22

− q
a− 4× 12

1 − q
a− 4× 12

− q
a− 4× 02

1 − q
a− 4× 02

− q
a− 4× 12

1 − q
a− 4× 12

− q
a− 4× 22

. . .


(4.6)

is an infinite tridiagonal matrix. The eigenvalue, ω̂ = ω/(vthi/a), is therefore
determined from

det Amn(ω̂)= 0. (4.7)
Notice that for q∼ a, the off-diagonal elements decay like m−2, so the determinant of
the matrix is convergent for m→∞. For a given large M, −M 6 (m, n)6M, one can
use the iterative formula for determinants of tridiagonal matrices, to show that (4.7)
can be written in terms of the truncated continued fraction

1− q2(
a− 4M2

) [
a− 4(M − 1)2

]
× 1

1− q2[
a− 4(M − 1)2

] [
a− 4(M − 2)2

] 1

1− q2[
a− 4(M − 2)2

] [
a− 4(M − 3)2

] 1

1
. . .

= 0, (4.8)

where the recursive formula is iterated from m=M, to m=−M, with det A−M−1 ≡ 1.
Then

lim
M→∞

q2(
a− 4M2

) [
a− 4(M − 1)2

]
× 1

1− q2[
a− 4(M − 1)2

] [
a− 4(M − 2)2

] 1

1− q2[
a− 4(M − 2)2

] [
a− 4(M − 3)2

] 1

1− . . .
= 1 (4.9)

is the eigenvalue equation for the Floquet ITG mode. Candy et al. (2004) report an
eigenvalue condition which reads

a(ω̂)=−2q(ω̂)+ 2q1/2(ω̂), (4.10)

and is valid only for q� 1. Connor & Taylor (1987) derived, for large q,

a(ω̂)=−2q(ω̂)+ q1/2(ω̂), (4.11)

https://doi.org/10.1017/S0022377817000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000988


16 A. Zocco, P. Xanthopoulos, H. Doerk, J. W. Connor and P. Helander

FIGURE 19. Numerical solution of (4.7) and (4.13) derived for π-periodic solutions with
maximum at θ ∝ z= 0. The eigenvalue of the local toroidal branch is given by the solution
of a= 2q, where a and q are defined in the text.

after expanding a finite ŝ version of (4.1) in Fourier harmonics, and treating the
Fourier index as a continuous variable. Following Connor and Taylor, we can consider
slowly varying cm coefficients, for the π-period solution, and obtain

q
d2cm

dm2
+ (4m2 − a− 2q)cm = 0. (4.12)

By using the ansatz cm = exp[−λm2], the eigenvalue condition,

a(ω̂)= 2q(ω̂)+ 2iq1/2(ω̂), (4.13)

is derived. This corresponds to equation (B9) of Candy et al. (2004) for q→ −q
((4.10) in this work). In fact, both eigenvalue equations (4.5) and (4.13) are
approximate forms of the exact one, for a different periodicity of 2π or π, respectively.
For each periodicity, we have two eigenmodes (and eigenvalues) depending on the
argument of q. For instance, the 2π-period solutions have maxima at the poloidal
location θ =π, equation (4.11) and θ = 0 ((4.11) with q→−q).

The numerical solution of (4.7), γ̂ = Im[ω̂], is plotted in figure 19 as a function of
the matrix dimension for ω(0)κ /(vthi/a) = 0.45, ωT/(vthi/a) = 0.6, vthi/`‖ = 0.5(vthi/a)
and kyρi= 0.3 (here a is a normalising length). The result is compared to the solution
of (4.13). In this case q = 10. The agreement is excellent. For q ∼ 1, which is the
relevant regime, since (4.1) is derived for ωκ/ω ∼ v2

thi/`
2
‖ � 1, equation (4.7) is the

correct eigenvalue equation. It is worth mentioning that Taylor & Hastie (1968),
in their seminal work where linear gyrokinetics was derived for the first time for
electrostatic perturbations in a torus, report an eigenvalue equation of the form of
our (4.7). Their eigenvalue equation (50) reduces to a determinant of a tridiagonal
matrix (derived by Coppi et al. 1968), when the plane slab ITG is modified by
a sinusoidal periodic gravity term. Coppi et al. recognised the role of the Hill
determinant in the evaluation of the true eigenvalue given by the solution of (4.7),
but the approximated eigenvalue of (4.11) was derived only 19 years later! We now
see that the resonant destabilisation of Floquet modes in stellarators can possibly be
compared with the final result derived by Coppi et al. (1968) in appendix B of their
work, if temperature-gradient effects are included.
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5. Discussion and conclusions

The aim of this work was to elucidate what sets the linear threshold for
destabilisation of the electrostatic ion-temperature-gradient driven mode in toroidal
magnetic fusion devices. We study both axisymmetric (tokamaks) and non-axisymmetric
(stellartors) confinement concepts.

In regimes of interest for the stellarator Wendelstein 7-X, a background of unstable
modes exists below the threshold of destabilisation of the toroidal branch of the
ITG mode. We proposed the hypothesis that such modes are ITG modes of the
Floquet type. The eigenfunctions resulting from GENE numerical simulations of
Wendelstein 7-X show a much slower decay along the field line for these modes
than for modes of the toroidal branch (see figure 14). This behaviour is evocative
of the prediction of weakly localised drift-wave modes in stellarators, described in
terms of Mathieu functions by Bhattacharjee et al. (1983). In the non-resonant limit,
a complete eigenvalue equation is then proposed and studied in relation to previously
known results.

The importance of our findings relies on the fact that such modes result from having
a very low global shear, ŝ, and feature similar qualitative behaviour in tokamaks and
stellarators. In the former case, one could imagine them being relevant for advanced
confinement scenarios with very flat safety factor profiles. For finite density gradients,
the insensitivity of the derived temperature gradient thresholds to the temperature ratio
τ = Ti/Te for τ < 1 seems a rather clear effect, distinguishing these modes from the
more conventional branches. For stellarators, our findings could have a non-negligible
impact on confinement if Floquet solutions play any role nonlinearly. If stellarator
electrostatic turbulence is affected by the nonlinear activity of these modes, there
is an open question regarding what is really the achievable temperature gradient
for a stellarator with low global shear, as opposed to known tokamak cases, where
a finite turbulent transport is observed above a finite critical temperature gradient,
generally larger than the one discussed in this work (Dimits et al. 2000). Additional
stabilising effects can of course suppress these modes. Our results are perhaps also
relevant for trapped-electron mode driven turbulence, where similar eigenfunctions
and ‘background’ modes can be observed (Proll, Xanthopoulos & Helander 2013;
Faber et al. 2015).
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Appendix A. Local kinetic limit formulation

In order to solve the integral Ii for arbitrary ion Larmor radii, some preliminary
manipulations are in order. We add and subtract ωκ v̂2

‖ + ωBv̂
2
⊥/2 in the numerator of

Ii to obtain

Ii = 2
∫ ∞

0
dv̂⊥v̂⊥J2

0

(
k2
⊥ρ

2
i v̂

2
⊥
)

e−v̂
2
⊥ − ω∗i

ω

(
1− 3

2
ηi

)
J(0)

+ ωκ −ω∗iηi

ω
J(2)⊥ +

ωB/2−ω∗iηi

ω
J(2)‖ , (A 1)
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with

J(n)⊥,‖ = 2
∫ ∞

0
dv̂⊥v̂⊥

∫ ∞
−∞

dv̂‖v̂n
⊥,‖

J2
0

(
k2
⊥ρ

2
i v̂

2
⊥
)

1−
(ωκ
ω
v̂2
‖ +

ωB

ω
v̂2
⊥/2
) e−(v̂

2
‖+v̂2

⊥)√
π

. (A 2)

The first line of (A 1) gives the well-known result of gyrokinetic theory:

2
∫ ∞

0
dv̂⊥v̂⊥J2

0

(
k2
⊥ρ

2
i v̂

2
⊥
)

e−v̂
2
⊥ = Γ0(b), (A 3)

where b = k2
⊥ρ

2
i /2, and Γ0(b) = I0(b) exp(−b), with I0 the modified Bessel function.

We now integrate the resonances in a way similar to that presented by Biglari,
Diamond and Rosenbluth (BDR) (Biglari et al. 1989). For J(0) we have

J(0) = −2i
∫ ∞

0
dv̂⊥v̂⊥J2

0

∫ ∞
−∞

dv̂‖√
π

∫ ∞
0

dλ exp
(

iλ
[
1−

(ωκ
ω
v̂2
‖ +

ωB

ω
v̂2
⊥
/

2
)]
− (v̂2

‖ + v̂2
⊥)
)

= −2i
∫ ∞

0
dλ eiλ

∫ ∞
0

dv̂⊥v̂⊥J2
0

∫ ∞
−∞

dv̂‖√
π

e−v̂
2
⊥(1+iλ(ωB/2ω))e−v̂

2
‖ (1+iλ(ωκ/ω))

= −2i
∫ ∞

0
dλ eiλ

∫ ∞
0

dv̂⊥v̂⊥J2
0

e−v̂2
⊥(1+iλ(ωB/2ω))(

1+ iλ
ωκ

ω

)1/2

= −i
∫ ∞

0
dλ

eiλ(
1+ iλ

ωκ

ω

)1/2

Γ0(b̂)

1+ iλ
ωB

2ω

, (A 4)

with b̂= b/[1+ iλωB/(2ω)]. We require

Im
[
λ
ωκ

ω

]
< 1, (A 5)

Im
[
λ
ωB

2ω

]
< 1, (A 6)

and
Im[λ]> 0 (A 7)

in order to guarantee convergence of the velocity space and λ integrals, respectively.
Conditions (A 5)–(A 7) thus define an abscissa of convergence in the complex λ-plane

Re[λ]>αc ≡ Im[ω]−1(Im[λ]Re[ω] − |ω|2 /ωκ). (A 8)
Here we are using ωB ≡ ωκ (valid in the low-β case, where β is the ratio of kinetic
and magnetic plasma pressure) and taking the most restrictive of conditions (A 5)–
(A 7). Similarly, we obtain

J(2)‖ =−
i
2

∫ ∞
0

dλ
eiλ(

1+ iλ
ωκ

ω

)3/2

Γ0(b̂)

1+ iλ
ωB

2ω

, (A 9)

and

J(2)⊥ =−i
∫ ∞

0
dλ

eiλ(
1+ iλ

ωκ

ω

)1/2

Γ0(b̂)+ b̂
[
Γ1(b̂)− Γ0(b̂)

]
(

1+ iλ
ωB

2ω

)2 . (A 10)
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We now introduce the Padé approximants

Γ0(b̂)≈ 1

1+ b

1+ iλ
ωB

2ω

, (A 11)

and
Γ0(b̂)+ b̂

[
Γ1(b̂)− Γ0(b̂)

]
≈ 11+ b

1+ iλ
ωB

2ω


2 , (A 12)

which will allow us to perform the λ integration. The integral J(0) becomes

J(0) =−i
∫ ∞

0
dλ

eiλ(
1+ iλ

ωκ

ω

)1/2

1

1+ iλ
ωB

2ω
+ b

. (A 13)

For λ→ λω/ωκ , b→ 0, and ωB ≡ωκ ,

lim
b→0

J(0) = −i
ω

ωκ

∫ ∞
0

dλ
ei(ω/ωκ )λ

(1+ iλ)1/2
1

1+ i
λ

2

= ω

ωκ
F1,1, (A 14)

with F1,1 defined in (A2) of BDR. We notice that the change of variables λ→ λω/ωκ
requires (Re[λ]Im[ω] + Im[λ]Re[ω])/ωκ > 0 for the convergence of the λ integral. At
marginal stability, for ωκ < 0 and ω< 0, this is condition (A 7).

Appendix B. Arbitrary Larmor radii solution
For b 6= 0, the analytical technique used by BDR to solve for F1,1 cannot be used

to perform the integration. We prefer to proceed in a different way.
Let us consider

R=−i
∫ ∞

0
dλ

eiΩλ

(1+ iλ)1/2
1

1+ iλ
ωB

2ωκ
+ b

, (B 1)

with Ω =ω/ωκ . We change variables

iλ= t2 − 1, (B 2)

and obtain

R = −4
ωκ

ωB

∫ ei(π/4)∞

1
dt

eΩ(t2−1)

2
ωκ

ωB
(1+ b)− 1+ t2

= −4
ωκ

ωB
e−Ω

∫ ei(π/4)∞

1/
√

g

du√
g

eΩgu2

1+ u2
, (B 3)
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with
g= 2

ωκ

ωB
(1+ b)− 1. (B 4)

In the case ωκ =ωB, g= 1+ 2b> 0∀ b. We split the domain of integration and define

R = −4
ωκ

ωB
e−Ω

(∫ ei(π/4)∞

0

du√
g
−
∫ 1/

√
g

0

du√
g

)
eΩgu2

1+ u2

≡ −4
ωκ

ωB
e−Ω

(
I∞ − Ig

)
. (B 5)

In appendices C and D, we show that

R=−4
ωκ

ωB

e−Ω√
g

{
− i

2
√

πZ
(√

gΩ
)− 2πe−gΩT

[
i
√

2gΩ; 1√
g

]}
, (B 6)

where Z is the plasma dispersion function (Fried & Conte 1961), and T the Owen
T-function (Owen 1956). By direct comparison of (A 13) and (B 1), we have

J(0) = ω

ωκ
R. (B 7)

The integral J(2)⊥ now becomes

J(2)⊥ = −i
∫ ∞

0
dλ

eiλ(
1+ iλ

ωκ

ω

)1/2

1(
1+ iλ

ωB

2ω
+ b
)2

= − d
db

J(0). (B 8)

To evaluate the integral J(2)‖ , it is convenient to consider a simple generalisation of
the auxiliary integral, R, namely

Rν =−i
∫ ∞

0
dλ

eiΩλ

(ν + iλ)1/2
1

1+ iλ
ωB

2ωκ
+ b

. (B 9)

Then
J(2)‖ =− lim

ν→1
Ω

d
dν

Rν . (B 10)

The integral Rν can be related to R after some straightforward algebra. We find

Rν = −4
ωκ

ωB
e−νΩ

∫ ei(π/4)∞

√
ν/gν

du√
gν

egνΩu2

1+ u2

= −4
ωκ

ωB

e−νΩ√
gν

{
− i

2
√

πZ
(√

gνΩ
)− 2πe−gνΩT

[
i
√

2gνΩ;
√
ν

gν

]}
, (B 11)

with
gν = 2ωκ

ωB
(1+ b)− ν. (B 12)
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Summarising, the local kinetic dispersion relation is

1+ τ = Γ0(b)− ω∗i
ω

(
1− 3

2
ηi

)
J(0)⊥

+ ω∗i
ω

(
ωκ

ω∗i
− ηi

)
J(2)⊥ +

ω∗i
ω

(
ωB

2ω∗i
− ηi

)
J(2)‖ , (B 13)

with

J(0) = lim
ν→1

ω

ωκ
Rν, (B 14)

J(2)⊥ =−
d
db

J(0), (B 15)

J(2)‖ =− lim
ν→1

Ω
d

dν
Rν, (B 16)

with Rν defined in (B 11), gν = 2(1+ b)ωκ/ωB − ν, and

T
[

i
√

2gν
ω

ωκ
;
√
ν

gν

]
= egν (ω/ωκ )

2π
√

gν

∞∑
n=0

(−ν/gν)n
(2n+ 1)

n∑
m=0

(
−gν

ω

ωκ

)m

m! . (B 17)

This expression for the Owen T-function is derived in appendix D.

Appendix C. The integral I∞
For I∞, we change variables to

gΩu2→−ξ 2, (C 1)

so that, when u→ ei(π/4)∞, ξ→ ei((3/4)π+(arggΩ)/2)∞. A closed form of the integral can
be found for an unstable mode arg(Ωg)= arg{ω [2ωκ(1+ b)−ωB] /(ωκωB)}≈π/2, for
Re[ω]→ 0. Then, ξ→ ei((3/4)π+(arggΩ)/2)∞≈ ei((3/4)π+(π/4))∞=−∞, and I∞ becomes

I∞ = −i
√
Ω

∫ −∞
0

dξ
e−ξ2(√

gΩ
)2 − ξ 2

= i

√
Ω

2

∫ ∞
−∞

dξ
e−ξ2

2
√

gΩ

{
1

ξ +√Ω −
1

ξ −√Ω
}

= − i
2

√
π

g
Z
(√

gΩ
)
. (C 2)

Analytic continuation is needed for damped modes.

Appendix D. The integral Ig and the Owen T-function
In the case of Ig, we have

Ig =
∫ 1/

√
g

0

du√
g

eΩgu2

1+ u2
. (D 1)
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This integral can be written in terms of the Owen T-function (Owen 1956).

Ig =
∫ 1/

√
g

0

du√
g

eΩgu2

1+ u2

= e−gΩ
∫ 1/

√
g

0

du√
g

exp
(
− (i√2gΩ

)2
(

u2

2
+ 1

2

))
1+ u2

= 2π
e−gΩ

√
g

T
[

i
√

2gΩ; 1√
g

]
. (D 2)

For analytical manipulations and numerical implementation, the most convenient
way of writing the Owen function is, perhaps, the following. Since

T
[

i
√

2gν
ω

ωκ
;
√
ν

g

]
= 1

2π

∫ √ν/gν
0

dt
egν (ω/ωκ )(1+t2)

1+ t2
, (D 3)

if we rewrite

T
[

i
√

2gν(ω/ωκ);
√
ν

g

]
= 1

2π

∫ √ν/gν
0

dt
egν (ω/ωκ )(1+t2)

1+ t2

= 1
2π

∫ ∞
0

dξ
∫ √ν/gν

0
dt e−ξ(1+t2)egν(ω/ωκ )(1+t2)

= 1
2π

egν (ω/ωκ )
∫ ∞

0
dξe−ξ

∫ √ν/gν
0

dt e−(ξ−g(ω/ωκ ))t2

= 1
2π

egν (ω/ωκ )
∫ ∞

0
dξe−ξ

√√√√ π/4

ξ − gν
ω

ωκ

Erf

√
ν

(
ξ

gν
− ω

ωκ

)
,

(D 4)

we are then able to introduce the series representation of the error function, to obtain

T
[

i
√

2gν(ω/ωκ);
√
ν

g

]
= egν (ω/ωκ )

2π
√

gν

∫ ∞
0

dξe−ξ
∞∑

n=0

(−ν/gν)n
n!(2n+ 1)

(
ξ − gν

ω

ωκ

)n

= egν (ω/ωκ )

2π
√

gν

∞∑
n=0

(−ν/gν)n
n!(2n+ 1)

∫ ∞
0

dξe−ξ
(
ξ − gν

ω

ωκ

)n

= 1
2π
√

gν

∞∑
n=0

(−ν/gν)n
n!(2n+ 1)

∫ ∞
−gν (ω/ωκ )

dy e−yyn

= 1
2π
√

gν

∞∑
n=0

(−ν/gν)n
n!(2n+ 1)

(∫ ∞
0

dy−
∫ −gν (ω/ωκ )

0
dy
)

e−yyn

= 1
2π
√

gν

∞∑
n=0

(−ν/gν)n
n!(2n+ 1)

[
Γ (n+ 1)− γ

(
n+ 1,−gν

ω

ωκ

)]
,

(D 5)

https://doi.org/10.1017/S0022377817000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000988


Resonant destabilisation of ITG modes 23

where

γ

(
n+ 1,−gν

ω

ωκ

)
(D 6)

is the incomplete gamma function (Tricomi 1950a,b). Tricomi shows that, for integer
n,

γ

(
n+ 1,−gν

ω

ωκ

)
= n!

1− egν (ω/ωκ )
n∑

m=0

(
−gν

ω

ωκ

)m

m!

 , (D 7)

therefore, our series representation of the Owen function is

T
[

i
√

2gν
ω

ωκ
;
√
ν

gν

]
= egν (ω/ωκ )

2π
√

gν

∞∑
n=0

(−ν/gν)n
(2n+ 1)

n∑
m=0

(−gν(ω/ωκ))m

m! . (D 8)

Appendix E. Proof of some identities

In appendix B, we derived the following result

R=−4
ωκ

ωB

e−Ω√
g

{
− i

2
√

πZ
(√

gΩ
)− 2πe−gΩT

[
i
√

2gΩ; 1√
g

]}
, (E 1)

which is valid ∀ b. We now prove that, for ωκ ≡ωB,

lim
b→0

R= F1,1, (E 2)

where

F1/2
1,1 = e−Ω

∫ Ω

−∞
dz

e−z

z1/2
(E 3)

is the result found by BDR (Biglari et al. 1989).
Since limb→0 g= 1, we have

limb→0 R= 2i
√

πe−ΩZ
(√
Ω
)+ 4πe−2ΩΦ

(
i
√

2Ω
)[

1−Φ(i√2Ω
)]
, (E 4)

where

Φ(x)= 1√
2π

∫ x

−∞
dt e−t2/2. (E 5)

It is easy to see that

Φ(x) = i
2
√

π

∫ Ω

−∞
dz

e−z

z1/2

= i
2
√

π
eΩF1/2

1,1 . (E 6)
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Then

lim
b→0

R = 2i
√

πe−ΩZ
(√
Ω
)+ 4πe−2ΩΦ

(
i
√

2Ω
)[

1−Φ(i√2Ω
)]
,

= 2i
√

πe−Ω
{

Z
(√
Ω
)+ F1/2

1,1

}+ F1,1. (E 7)

However, it is also true that

F1/2
1,1 = e−Ω

∫ Ω

−∞
dz

e−z

z1/2

= −2ie−Ω
∫ iΩ1/2

−∞
dt e−t2

= −Z
(√
Ω
)
, (E 8)

then the first two terms in equation (E 7) cancel, leaving us with

lim
b→0

R= F1,1, (E 9)

which is what we aimed to prove.

Appendix F. Real frequency at marginality, long-wavelength limit b→ 0

In the light of the identities just proved in appendix E, we are in the position to
say that, for b→ 0,

D ≡ − (1+ τ)+ Ii

= − (1+ τ)+
(

1− ω∗i
ω

)
ΩZ2

(√
Ω
)

+ ηi
ω∗i
ω

{(
1− 2Ω

)
ΩZ2

(√
Ω
)− 2Ω3/2Z

(√
Ω
)}
, (F 1)

which corresponds to D0 in (3) of BDR (Biglari et al. 1989). The real frequency at
marginality is evaluated by solving Im[D(ωr)]≡Di(ωr)= 0, where we set ω=ωr+ iγ ,
and take γ → 0. This comes directly from (F 1){

1− ω∗i
ωr
+ ηi

ω∗i
ωr

(
1− 2

ωr

ωκ

)}
Re
[

Z
(√

ωr

ωκ

)]
= ηi

ω∗i√
ωrωκ

. (F 2)

As a validity check, one can set J2
0 → 1 in the definition of Ii and integrate the

resonances in yet another way. Thus

Ii = 2
∫ ∞

0
dv̂⊥v̂⊥e−v̂

2
⊥

∫ ∞
−∞

dv̂‖e−v̂
2
⊥√

π

Ω −Ω∗
[
1+ ηi

(
v̂2
‖ + v̂2

⊥ − 3/2
)]

Ω − (v̂2
‖ + v̂2

⊥
)

= −2
∫ ∞

0
dv̂⊥v̂⊥e−v̂

2
⊥

Ω −Ω∗i
(

1− 3
2
ηi

) Z
(√

Ω − v̂2
⊥/2
)

√
Ω − v̂2

⊥/2


+ ηiΩ∗i

1+ 2
∫ ∞

0
dv̂⊥v̂3

⊥e−v̂
2
⊥

Z
(√

Ω − v̂2
⊥/2
)

√
Ω − v̂2

⊥/2


+ ηiΩ∗i2

∫ ∞
0

dv̂⊥v̂⊥e−v̂
2
⊥
√
Ω − v̂2

⊥/2Z
(√

Ω − v̂2
⊥/2
)
. (F 3)
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It is easy to see that

2
∫ ∞

0
dv̂⊥v̂⊥e−v̂

2
⊥

Z
(√

Ω − v̂2
⊥/2
)√

Ω − v̂2
⊥/2

= −4ie−2Ω
∫ ∞

iΩ1/2
dζe−2ζ 2

Z (iζ )≡ I1, (F 4)

2
∫ ∞

0
dv̂⊥v̂3

⊥e−v̂
2
⊥

Z
(√

Ω − v̂2
⊥/2
)√

Ω − v̂2
⊥/2

= 2
∫ ∞

0
dv̂⊥2v̂⊥

(
v̂2
⊥
2
−Ω +Ω

)
× e−v̂

2
⊥

Z
(√

Ω − v̂2
⊥/2
)√

Ω − v̂2
⊥/2

= 2ΩI1 + 2(−4i)e−2Ω
∫ ∞

iΩ1/2
dζ ζ 2e−2ζ 2

Z (iζ )

≡ 2ΩI1 + 2I2, (F 5)

and

2
∫ ∞

0
dv̂⊥v̂⊥e−v̂

2
⊥
√
Ω − v̂2

⊥/2Z
(√

Ω − v̂2
⊥/2
)=−I2. (F 6)

Then
1+ τ − ηiΩ∗i =−

{
Ω −Ω∗i

[
1− 3

2ηi
(
1− 4

3Ω
)]}

I1 − ηiΩ∗iI2. (F 7)

By writing the plasma dispersion function as an error function of imaginary argument,
one sees that the integrals I1 and I2 can be performed analytically to obtain

1+ τ = {− (Ω −Ω∗i)− ηiΩ∗i (1− 2Ω)}πe−2Ω
[
1− Erf i2

(√
Ω
)− 2i Erf i

(√
Ω
)]

+ 2ηiΩ∗i
√

πΩe−Ω
[
Erf i

(√
Ω
)+ i

]
, (F 8)

whose imaginary part set to zero gives (F 2).
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