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Abstract. In this paper, we study an upper bound of the fractal dimension of the
exponential attractor for the chemotaxis–growth system in a two-dimensional domain.
We apply the technique given by Eden, Foias, Nicolaenko and Temam. Our results
show that the bound is estimated by polynomial order with respect to the chemotactic
coefficient in the equation similar to our preceding papers.
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1. Introduction. This paper is concerned with the following initial value problem
for a quasi-linear parabolic system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= a�u − ∇ · {u∇χ (ρ)} + f (u) in � × (0,∞),

∂ρ

∂t
= b�ρ − cρ + du in � × (0,∞),

∂u
∂n

= ∂ρ

∂n
= 0 on ∂� × (0,∞),

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) in �.

(CG)

This system was presented by Mimura and Tsujikawa [22] as a mathematical model
describing aggregating patterns by some biological individuals. Here, u(x, t) and
ρ(x, t) denote the population density of biological individuals and the concentration
of chemical substance, respectively, at a position x ∈ � ⊂ �n, n = 1, 2, and a time
t ∈ [0,∞). The mobility of individuals consists of two effects: one is random walking,
and the other is the directed movement in a sense that they have a tendency to move
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towards higher concentration of the chemical substance. This is called chemotaxis in
biology (for detail see [5, 23]). The constants a > 0 and b > 0 are diffusion rates of u
and ρ, respectively, while c > 0 and d > 0 are degradation and production rates of ρ,
respectively. We denote by χ (ρ) a sensitivity function of u with respect to ρ, and by
f (u) a growth term of u.

In this paper, we consider the two-dimensional case. � ⊂ �2 is assumed to be a
bounded domain of class C3. For simplicity, χ (ρ) is assumed to be linear,

χ (ρ) = νρ, (1.1)

with a chemotactic coefficient ν > 0, and f (u) is assumed to be a cubic function

f (u) = f u2(1 − u), (1.2)

with a growth coefficient f > 0.
In order to study aggregating patterns due to chemotaxis and growth, there are

several contributions not only from experiments but also from mathematical analysis.
Budrene and Berg [5] experimentally observed that Escherichia coli bacteria form
complex spatio-temporal colony patterns. In order to understand such a chemotactic
pattern formation, theoretically several models have been proposed, e.g., models
presented in [3, 15, 21, 24, 30]. Mimura and Tsujikawa presented in [22] a model
(CG), which is rather simple in the sense that it is characterized by only four effects:
diffusion, chemotaxis, production of a chemical substance and growth. In the absence
of the growth term f (u), (CG) reduce to the Keller–Segel equations [17] modelling the
initiation of aggregating patterns of slime mold.

The formation of the colony patterns by chemotaxis is considered as to be a
prototype of various phenomena of self-organization, cf. [16, 26]. According to Haken
[16], the chemical substance plays the role of a conductor which leads the individuals
and is itself produced by them cooperatively.

In this paper, we are mainly interested in the long-time behaviour of solutions (or
equivalently dynamical system) generated by (CG). It is well-known that the long-time
behaviour of a dynamical system can be described in terms of the global attractor.
More precisely, assuming that the system is globally well-posed, we can define the
family of solution operators

St : u0 	→ u(t, u0), t ≥ 0,

acting on a metric space V (with the metric ρV ), which maps the initial datum u0 to
the solution at time t. This family of operators satisfies

S0 = Id, St+s = St ◦ Ss, t, s ≥ 0,

where Id denotes the identity operator, and we say that it forms a semi-flow on the
phase space V . Then a non-empty compact subset A of V is called the global attractor
for {St} in V if it is invariant under {St}, i.e. StA = A for every t ≥ 0, and it attracts
each bounded subset B of V in the following sense:

lim
t→∞ dV (StB,A) = 0,
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where dV denotes the Hausdorff pseudo-distance between subsets of V , defined by

dV (A, B) = sup
a∈A

inf
b∈B

ρV (a, b).

It follows from its definition that the global attractor, if it exists, is unique (although
it is not a smooth manifold, in general, and can have a very complicated geometric
structure). If one proves that the global attractor has finite dimension (in the sense
of covering dimensions such as the fractal dimension), even though the initial phase
space is infinite-dimensional, the dynamics, reduced to the global attractor, is in some
specific sense finite-dimensional and can be described by a finite number of parameters
(see [4, 28]). It thus follows that the global attractor appears as a suitable object in view
of the study of the long-time behaviour of the system. We refer the reader to [4, 20, 28].

Several authors have already studied the system (CG), and it is well known [1, 2, 27]
that the asymptotic behaviour of solutions of (CG) is described by the dynamical
system (St,X, X) in the universal space X = L2(�) × H1(�), where the phase space
X is a bounded set of H2

N(�) × H3
N(�) (the H2 × H3-space of functions with zero-

boundary flux) and, hence, a compact subset of X , and St is a non-linear semi-group
acting on X which is continuous in the X-norm. Therefore, the dynamical system
(St,X, X) possesses a global attractor A = ⋂

0≤t<∞ StX.
Observe that the global attractor may present some defects. For instance, it may

attract the trajectories slowly (cf. [18]) or it may be sensitive to perturbations. Also, in
some situations, the global attractor may fail to capture important transient behaviours.
This can be observed, e.g., in models of pattern formation equations in chemotaxis
(see [2]). Therefore it should be useful to have a possibly larger object which contains
the global attractor, attracts the trajectories at a fast rate, is still finite-dimensional
and is more robust under perturbations. Such an object called an exponential attractor
was proposed by Eden et al. in Hilbert spaces [7]. Its first construction was based on
the so-called squeezing property which, roughly speaking, says that either the higher
modes are dominated by the lower ones or that the flow is contracted exponentially.
The contraction of the exponential attractor is also valid for Banach spaces (see [6, 9]).

Osaki et al. [27] have proved also the existence of the exponential attractors M for
the system without estimating its fractal dimension with respect to the parameters of
the system (see also [1, 14]). Aida et al. [2] showed, with some numerical simulations,
that the dimensions of attractors for this system increase as the chemotactic coefficient ν

increases. Kuto et al. [19] have obtained by local bifurcation theory that, as ν increases,
the number of hexagonal pattern solutions which bifurcate from the homogeneous
solution would increase. They suggest that the structure of attractors would become
more complicated as ν becomes larger.

The aim of this paper is to estimate from the above the fractal dimension dim M

of the exponential attractor M in terms of the coefficients a, b, c, d, f and ν in the
equations of (CG). We will apply the technique given by Eden et al. [7, Chapter 3] to
obtain the upper bound of dim M.

The authors have already established in the previous papers [11, 12] the upper and
lower estimate

C1(νd − 1) ≤ dim A ≤ C2((νd)2 + 1), (1.3)

C1 and C2 being some positive constants, of the fractal dimension dim A of the global
attractor A for (CG). Here we state main result of the paper.
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THEOREM 1.1. The dimension of exponential attractors M satisfy the estimate

C1(νd − 1) ≤ dim A ≤ dim M ≤ C3((νd)22 + 1), (1.4)

with some constant C3 > 0.

REMARK 1.1. In this case the fractal dimension of the attractor corresponds to a
reduction of the degrees of freedom in the process of pattern formation which is called
the slaving principle [16].

The paper is organized as follows: in Section 2 we recall some known facts on the
exponential attractors. Section 3 is devoted to show a priori estimates of solutions to
(CG) also for preliminary of the succeeding section. Then, in Section 4, we present the
upper estimate of dim M.

REMARK 1.2. In the preceding papers [10–13] we allow the domain � to be convex
but non-smooth, for example, a bounded convex polygonal domain. In such cases, we
must replace the function space H3

N(�) by the domain D((−� + 1)3/2) of the fractional
power of the Laplace operator (see Section 2); the phase space H2

N(�) × H3
N(�) should

be replaced by H2
N(�) × D((−� + 1)3/2), and some additional revisions arise in the

calculation, but it may not make the principal part of estimates worse.

2. Preliminaries. As was shown in [1, 2, 27], the system (CG) possesses an
exponential attractor. In the subsequent section we present upper estimate for
dimension of the exponential attractor. To this end we follow [7, 28] and recall some
basic facts.

Let X be a Hilbert space with inner product (·, ·)X and norm ‖ · ‖X , X a compact
set of X , and consider a continuous dynamical system (St,X, X). According to [28],
A = ⋂

0≤t<∞ StX is a global attractor of (St,X, X).
The exponential attractor M is defined as follows (see [7]):

DEFINITION 2.1. A subset M ⊂ X is called the exponential attractor for (St,X, X)
if (i) A ⊂ M ⊂ X; (ii) M is a compact subset of X and is a positively invariant set
for St, that is, StM ⊂ M; (iii) M has finite fractal dimension dim M; (iv) there exist
positive constants c0 and c1 such that h(StX,M) ≤ c0 exp(−c1t) holds for all t ≥ 0,
where h(A, B) denotes the Hausdorff pseudo-distance of two sets A and B.

By virtue of [7, Theorem 3.1], we have the following theorem.

THEOREM 2.1. Let St∗ with a fixed t∗ > 0 satisfy the squeezing property [7, Definition
2.2 ]: for some δ∗ ∈ (0, 1/8) there exists an orthogonal projection P of finite rank N∗ such
that either

‖St∗U − St∗V‖X ≤ δ∗‖U − V‖X (2.1)

or

‖(I − P)(St∗U − St∗V )‖X ≤ ‖P(St∗U − St∗V )‖X (2.2)

holds for each pair U, V ∈ X. Moreover, let the mapping G(t, U) = StU from [0, T ] × X

into X satisfy the Lipschitz condition

‖StU0 − SsV0‖X ≤ CT (|t − s| + ‖U0 − V0‖X ) , t, s ∈ [0, T ], U0, V0 ∈ X, (2.3)
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for each T > 0. Then, the dynamical system (St,X, X) admits an exponential attractor
M whose fractal dimension can be estimated by

dim M ≤ 1 + N∗ log (1 + (2L∗/δ∗))
log(1/4δ∗)

. (2.4)

Here, L∗ > 0 is the Lipschitz constant of St∗ on X

‖St∗U0 − St∗V0‖X ≤ L∗‖U0 − V0‖X, U0, V0 ∈ M. (2.5)

In the second half of this section we will list the well-known results in the theories
of function spaces and linear operators [25, 27]. Here � is a bounded domain in �2 of
class C3.

For 0 ≤ s0 < s < s1 < ∞, Hs(�) is the interpolation space [Hs0 (�), Hs1 (�)]
between Hs0 (�) and Hs1 (�), where s = (1 − θ )s0 + θs1, with the estimate

‖ · ‖Hs ≤ C
∥∥ · ∥∥1−θ

Hs0

∥∥ · ∥∥θ

Hs1
. (2.6)

For the Laplace operator A0 = −� + 1 in L2(�) with Neumann boundary
condition, the domain of which is H2

N(�), it holds that

D(Aθ
0) =

{
H2θ (�), 0 ≤ θ < 3

4 ,

H2θ
N (�), 3

4 < θ ≤ 3
2 ,

(2.7)

with norm equivalence. Here and in what follows, Hs
N(�), θ > 3

2 , denotes a closed
subspace of Hs(�) such that Hs

N(�) = {u ∈ Hs(�); ∂u/∂n = 0 on ∂�}. Indeed, A0u ∈
D(A1/2

0 ) means that �u ∈ H1(�) with ∂u/∂n = 0 on ∂�; since ∂� is of class C3, these
then imply that u ∈ H3(�).

When 0 ≤ s < 1, Hs(�) ⊂ Lp(�), where 1
p = 1−s

2 , with

‖ · ‖Lp ≤ Cs‖ · ‖Hs . (2.8)

When s = 1, H1(�) ⊂ Lq(�) for any finite 1 ≤ q < ∞ with

‖ · ‖Lq ≤ Cq,p
∥∥ · ∥∥1− p

q

H1

∥∥ · ∥∥ p
q
Lp , (2.9)

where 1 ≤ p ≤ q < ∞. When s > 1, Hs(�) ⊂ C(�) with

‖ · ‖C ≤ Cs‖ · ‖Hs . (2.10)

The norms of a product of two functions are estimated as follows. Let ε ∈ (0, 1]
denote an arbitrary exponent. From above inequalities, it is seen that

‖uv‖L2 ≤
{

Cε‖u‖L2‖v‖H1+ε , u ∈ L2(�), v ∈ H1+ε(�),

Cε‖u‖Hε‖v‖H1 , u ∈ Hε(�), v ∈ H1(�),
(2.11)

‖uv‖H1 ≤ Cε‖u‖H1‖v‖H1+ε , u ∈ H1(�), v ∈ H1+ε(�). (2.12)

‖uv‖H2 ≤ C‖u‖H2‖v‖H2 , u, v ∈ H2(�). (2.13)
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It is also verified that

‖∇ · (u∇v)‖L2 ≤
{

Cε‖u‖H1‖v‖H2+ε , u ∈ H1(�), v ∈ H2+ε(�),

Cε‖u‖H1+ε‖v‖H2 , u ∈ H1+ε(�), v ∈ H2(�),
(2.14)

‖∇ · (u∇v)‖H1 ≤ C‖u‖H2‖v‖H3 , u ∈ H2(�), v ∈ H3(�). (2.15)

3. A priori estimates of the solutions. In a similar manner as in [12, 27], we can
establish the following a priori estimates for the solutions in the exponential attractor
M ⊂ H2

N(�) × H3
N(�) for (CG):

‖u(t)‖L1 =
∫

�

u(t, x)dx ≤ 2|�|; (3.1)

∫ t

s
‖u(τ )‖2

L2 dτ ≤ |�|
(

(t − s) + 4
f

)
; (3.2)

∫ t

s
‖u(τ )‖3

L3 dτ ≤ |�|
(

(t − s) + 6
f

)
; (3.3)

‖ρ(t)‖2
L2 ≤ 2d2

c2
|�|; (3.4)

‖∇ρ(t)‖2
L2 ≤ d2

bc
|�|; (3.5)

∫ t

s
‖�ρ(τ )‖2

L2 dτ ≤ d2

b2
|�|

(
(t − s) + 4

f
+ 1

c

)
; (3.6)

‖u(t)‖2
L2 ≤

(
8 + ν2d2

4f 2b2

)
|�|; (3.7)

2a
∫ t

s
‖∇u(τ )‖2

L2 dτ + f
∫ t

s
‖u(τ )‖4

L4 dτ

≤ 2f
(

1 + ν2d2

8f 2b2

)
|�|(t − s) +

{
20 + ν2d2

4f 2b2

(
5 + f

c

)}
|�|; (3.8)

‖�2ρ(t)‖2
L2 ≤ 2d2f

abc

(
1 + ab

f c
+ ν2d2

8f 2b2

)
|�|; (3.9)

∫ t

s
‖∇�2ρ(τ )‖2

L2 dτ ≤ d2f
ab2

(
1 + ab

f c
+ ν2d2

8f 2b2

)
|�|

(
(t − s) + 2

c

)

+ d2

ab2

{
10 + 4ab

f c
+ ν2d2

8f 2b2

(
5 + f

c

)}
|�|; (3.10)

‖∇u(t)‖2
L2 ≤ 12a

f
|�|K1; (3.11)

∫ t

s
‖�2u(τ )‖2

L2 dτ ≤ 4|�|K1

(
(t − s) + 10

f

)
; (3.12)
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‖�3ρ(t)‖2
L2 ≤ 8d2(b + c)

bc2
|�|K1; (3.13)

‖�2u(t)‖2
L2 ≤ 16|�|K1K2; (3.14)

where �2 = −� + 1, ε ∈ (0, 1/2) is an arbitrarily fixed exponent,

K1 = 1 + f 2

2a2
+ B′′

1

8

{
16ν2d2f

a3bc

(
1 + ab

f c
+ ν2d2

8f 2b2

)
|�|

} 2
1−ε

, (3.15)

K2 = 1 + 4B′
2ν

2d2(b + c)
a2bc2

|�|K1

+ B′
3f 2

4a2

{
1 +

(
8 + ν2d2

4f 2b2

)
|�| + 24a

f
|�|K1

}(
8 + ν2d2

4f 2b2

)
|�|, (3.16)

and the constants B′′
1, B′

2 and B′
3 are determined only by ε and B1 = Cε in (2.14), by

B2 = C in (2.15) and by B3 = (2C3,2 + 3C6,2)C6,2 in (2.9), respectively.
The inequalities (3.1), (3.2) and (3.3) are easily verified by integrating the first

equation of (CG) on � and utilizing the non-negativity of u,

d
dt

‖u(t, x)‖L1 =
∫

�

∂u
∂t

(x, t)dx ≤ f ‖u‖2
L2 − f ‖u‖3

L3

≤ f ‖u‖L1 − f ‖u‖2
L2 ≤ f |�| − f ‖u‖L1 . (3.17)

(3.4) and (3.5) follow from the energy equalities for ρ and ∇ρ, that is, L2-inner product
of the second equation of (CG) with ρ and −�ρ, respectively: for example, as for (3.5),
we have

1
2

d
dt

‖∇ρ(t)‖2
L2 = −b‖�ρ‖2

L2 − c‖∇ρ‖2
L2 + d〈u, −�ρ〉L2

≤ −b
2
‖�ρ‖2

L2 − c‖∇ρ‖2
L2 + d2

2b
‖u‖2

L2 , (3.18)

then, thanks to (3.17), utilize the formula∫ t

0
e−α(t−s)‖u(s)‖2

L2 ds

≤
(

1 − α

f

) ∫ t

0
e−α(t−s)‖u(s)‖L1 ds + e−αt

f
‖u0‖L1 ≤ |�|

α
+ 2e−αt

f
‖u0‖L1 . (3.19)

(3.6) is obtained by integrating (3.18) in t. To verify (3.7) we have from (CG) and (3.18)
that

1
2

d
dt

‖u‖2
L2 ≤ −a‖∇u‖2

L2 + ν

2
‖�ρ‖L2‖u‖2

L4 + f ‖u‖3
L3 − f ‖u‖4

L4

≤ −a‖∇u‖2
L2 + ν2

8f
‖�ρ‖2

L2 + f ‖u‖3
L3 − f

2
‖u‖4

L4
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≤ −a‖∇u‖2
L2 + ν2

8f
‖�ρ‖2

L2 + 4f |�| − f ‖u‖2
L2

≤ −a‖∇u‖2
L2 + 4f |�| − f ‖u‖2

L2 + ν2

8f

(
d2

b2
‖u‖2

L2 − 1
b

d
dt

‖∇ρ(t)‖2
L2

)
,

(3.20)

and utilize (3.19). (3.8) is obtained by integrating (3.20) in t. (3.9) follows from the
energy equality for �2ρ,

1
2

d
dt

‖�2ρ(t)‖2
L2 = −b‖∇�2ρ‖2

L2 − c‖�2ρ‖2
L2 + d〈�u, �3ρ〉L2

≤ −b
2
‖∇�2ρ‖2

L2 − c
2
‖�2ρ‖2

L2 + d2

2b
‖∇u‖2

L2 + d2

2c
‖u‖2

L2 , (3.21)

and utilize (3.19) and (3.20). (3.10) is obtained by integrating (3.21) in t. To show (3.11),
from (2.14) with B1 = Cε and (2.6) with B′

1 = C,

1
2

d
dt

‖∇u(t)‖2
L2 ≤ −a‖�u‖2

L2 + B′
1B1ν‖u‖

1−ε
2

L2 ‖�2u‖
3+ε

2

L2 ‖�2ρ‖L2 + f
3
‖∇u‖2

L2

≤ −a
4
‖�2u‖2

L2 − f
6
‖∇u‖2

L2 +
[

a + f 2

2a
+ B′′

1a
8

(
4ν2

a2
‖�2ρ(s)‖2

L2

) 2
1−ε

]
‖u‖2

L2 ,

(3.22)

where B′′
1 = (1 − ε)(3 + ε)

3+ε
1−ε (B′

1B1)
4

1−ε , then utilize (3.9). (3.12) is obtained by
integration of (3.22) in t. (3.13) follows from the energy equality for �3ρ,

1
2

d
dt

‖�3ρ(t)‖2
L2 = −b‖∇�3ρ‖2

L2 − c‖�3ρ‖2
L2 + d〈�2u, �4ρ〉L2

≤ −b
2
‖∇�3ρ‖2

L2 − c
2
‖�3ρ‖2

L2 + d2(b + c)
2bc

‖�2u‖2
L2 , (3.23)

and utilize (3.9), (3.19) and (3.22). (3.14) is verified from the following estimate: from
(2.15) with B2 = C and (2.9) with B3 = (2C3,2 + 3C6,2)C6,2,

1
2

d
dt

‖�2u‖2
L2 = −a‖∇�2u‖2

L2 − ν〈�∇ · (u∇ρ),�3u〉L2 + f 〈�(u2 − u3),�3u〉L2

≤ −a‖�3u‖2
L2 + a‖�2u‖2

L2 + ν · B2‖�2u‖L2‖�3ρ‖L2 · ‖�3u‖L2

+ f · B3(1 + ‖�u‖L2 )‖u‖L2‖�2u‖L2 · ‖�3u‖L2

≤ −a‖�2u‖2
L2 +

[
2a + B2

2ν
2

2a
‖�3ρ‖2

L2 + B2
3f 2

2a
(1 + ‖�u‖2

L2 )‖u‖2
L2

]
‖�2u‖2

L2 .

(3.24)

Then, B′
2 = B2

2 and B′
3 = B2

3 in (3.16).

4. Upper estimate of attractor dimension. Now we will apply Theorem 2.1 for
the system (CG) to obtain an upper bound for dim M given by (2.4). As already
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seen, the asymptotic behaviour of solutions of (CG) is described by the dynamical
system (St,X, X) in the universal space X = L2(�) × H1(�). The phase space X is a
bounded set of H2

N(�) × H3
N(�) and, hence, a compact subset of H1(�) × H2

N(�) ⊂ X .
Therefore we can consider the non-linear semi-group St acting on X as the one acting
on H1(�) × H2

N(�).
In Section 4.1 we will show the estimate of the constant N∗ appearing in Theo-

rem 2.1. Section 4.2 is devoted to show the estimate of the Lipschitz constant L∗ of the
semi-group St∗ . Then, in Section 4.3, we will show the upper estimate of dim M.

4.1. Estimate of squeezing constant N∗. Let λn be the nth eigenvalue of −� +
1 = �2,

0 < λ1 ≤ λ2 ≤ · · · ≤ λn → ∞, (4.1)

and φn the corresponding eigenvector in L2(�). Then we set

HN = span{φ1, φ2, . . . , φN}, (4.2)

and PN be the orthogonal projection onto HN .

Take U0 = [
u0
ρ0

]
and V0 = [

v0
ξ0

]
from M, then the solutions U(t) = [

u(t)
ρ(t)

] = StU0

and V (t) = [
v(t)
ξ (t)

] = StV0 remain in M, and the difference W (t) = [
w(t)
η(t)

] = U(t) − V (t)

satisfies the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w

∂t
= a�w − ν∇ · (v∇η + w∇ρ)

+f (u + v − u2 − uv − v2)w in � × (0,∞),

∂η

∂t
= b�η − cη + dw in � × (0,∞),

∂w

∂n
= ∂η

∂n
= 0 on ∂� × (0,∞),

w(x, 0) = u0(x) − v0(x), η(x, 0) = ρ0(x) − ξ0(x) in �.

(4.3)

Let us assume that U0 and V0 satisfy

‖PNW (t∗)‖ < ‖(I − PN)W (t∗)‖ (4.4)

with t∗ fixed in Theorem 2.1. Then, thanks to the squeezing property, it holds that

‖W (t∗)‖ ≤ δ∗‖W (0)‖. (4.5)

We define

W0(t) = ‖w(t)‖2
L2 + ν2

bf
‖�η(t)‖2

L2, (4.6)

W1(t) = a‖�w(t)‖2
L2 + ν2

f
‖�2η(t)‖2

L2, (4.7)

W2(t) = a2‖�2w(t)‖2
L2 + ν2b

f
‖�3η(t)‖2

L2, (4.8)

https://doi.org/10.1017/S0017089508004357 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004357


492 MESSOUD EFENDIEV, ETSUSHI NAKAGUCHI AND KOICHI OSAKI

and

λ(t) = W1(t)
W0(t)

. (4.9)

Then we see

λ(t∗) ≥
a‖(1 − PN)�w(t∗)‖2

L2 + ν2

f ‖(1 − PN)�2η(t∗)‖2
L2

2
(
‖(1 − PN)w(t∗)‖2

L2 + ν2

bf ‖(1 − PN)�η(t∗)‖2
L2

) ≥ λN+1

2(a−1 + b−1)
. (4.10)

Here we have, from (2.9) with B4 = C4,2,

1
2

dW0

dt
≤ −a‖∇w‖2

L2 + ν‖v‖L4‖∇η‖L4‖∇w‖L2 + ν

2
‖w‖2

L4‖�ρ‖L2

+ f
3
‖w‖2

L2 − ν2

f
‖∇�η‖2

L2 − ν2c
bf

‖�η‖2
L2 + ν2d

bf
‖w‖L2‖�2η‖L2

≤ −1
2

W1 +
(

3a
4

+ b
2

+ f
3

+ ν2d2

f b2
+ B4

4ν
2

4a
‖�ρ‖2

L2 + B4
4f 2b
a2

‖v‖4
L4

)
W0

≡ 1
2

(−λ(t) + M0(t)) W0, (4.11)

and hence

W0(t) ≤ exp
(∫ t

0
(−λ(s) + M0(s)) ds

)
W0(0), (4.12)

where

M0(s) = 3a
2

+ b + 2f
3

+ 2ν2d2

f b2
+ B4

4ν
2

2a
‖�ρ‖2

L2 + 2B4
4f 2b
a2

‖v‖4
L4 . (4.13)

Thus we can set

δ∗ ≡ exp
(

1
2

∫ t∗

0
(−λ(s) + M0(s)) ds

)
. (4.14)

Applying (3.6) and (3.8), we easily see

∫ t∗

0
M0(s) ds ≤

(
3a
2

+ b + 2f
3

+ 2ν2d2

f b2

)
t∗ + B4

4ν
2d2

2ab2
|�|

(
t∗ + 4

f
+ 1

c

)

+2B4
4f b

a2
|�|

[
2f

(
1 + ν2d2

8f 2b2

)
t∗ +

{
20 + ν2d2

4f 2b2

(
5 + f

c

)}]
= O((νd)2) as νd → ∞. (4.15)

Next let us estimate
∫ t∗

0 λ(s) ds. We have

W 2
0

2
dλ

dt
= 〈wt, W0a�2w − W1w〉 + ν2

bf
〈�ηt, W0b�3η − W1�η〉

≤ −(W0W2 − W 2
1 ) + (a + b + c)W0W1
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+
[∥∥∥−ν∇ · (v∇η + w∇ρ) + f (u + v − u2 − uv − v2)w

∥∥∥2

L2
+ ν2d2

bf
‖�w‖2

L2

] 1
2

×W
1
2

0

(
W0W2 − W 2

1

) 1
2

≤
[

a + b + c + ν2d2

4abf
+ B2

1f ‖v‖2
H1+ε + B2

1
ν2

a
‖ρ‖2

H2+ε

+ B2
4

f 2

2a
‖u + v − u2 − uv − v2‖2

L4

]
W0W1 ≡ 1

2
μ(t)W0W1. (4.16)

Hence,

dλ

dt
≤ μ(t)λ, (4.17)

and then we have

λ(t∗) ≤ exp
(∫ t∗

s
μ(τ ) dτ

)
λ(s), 0 ≤ s ≤ t∗. (4.18)

Integrating in s and using (4.10), we have∫ t∗

0
λ(s) ds ≥ λ(t∗)

∫ t∗

0
exp

(
−

∫ t∗

s
μ(τ ) dτ

)
ds

≥ λN+1

2(a−1 + b−1)

∫ t∗

0
exp

(
−

∫ t∗

s
μ(τ ) dτ

)
ds. (4.19)

Here we recall (3.7), (3.9), (3.11), (3.13) and (3.14) to obtain

μ(τ ) = 2(a + b + c) + ν2d2

2abf
+ 2B2

1f ‖v‖2
H1+ε + 2B2

1
ν2

a
‖ρ‖2

H2+ε

+ B2
4

f 2

a
‖u + v − u2 − uv − v2‖2

L4

≤ 2(a + b + c) + ν2d2

2abf
+ 2B2

1f Cε‖v‖2(1−ε)
H1 ‖v‖2ε

H2 + 2B2
1
ν2

a
Cε‖ρ‖2(1−ε)

H2 ‖ρ‖2ε
H3

+ B2
4

f 2

a
C

{‖u‖L2‖u‖H1

(
1 + ‖u‖2

H1

) + ‖v‖L2‖v‖H1

(
1 + ‖v‖2

H1

)}
≤ 2(a + b + c) + ν2d2

2abf
+ 2B2

1f Cε

{(
8 + ν2d2

4f 2b2

)
|�| + 12a

f
|�|K1

}1−ε

{16|�|K1K2}ε

+ 2B2
1
ν2

a
Cε

{
2d2f
abc

(
1 + ab

f c
+ ν2d2

8f 2b2

)
|�|

}1−ε {
8d2(b + c)

bc2
|�|K1

}ε

+ 2B2
4

f 2

a
C

{(
8 + ν2d2

4f 2b2

)
|�|

} 1
2
{

1 +
(

8 + ν2d2

4f 2b2

)
|�| + 12a

f
|�|K1

} 3
2

≡ μ1 = O
(

(νd)
13

1−ε

)
. (4.20)

Then we have∫ t∗

0
λ(s) ds ≥ λN+1

2(a−1 + b−1)

∫ t∗

0
e−μ1(t∗−s) ds = λN+1

2(a−1 + b−1)
1 − e−μ1t∗

μ1
. (4.21)
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Thus δ∗ given in (4.14) is estimated by

δ∗ ≤ exp
[
− λN+1

4(a−1 + b−1)
1 − e−μ1t∗

μ1
+ 1

2

∫ t∗

0
M0(s) ds

]
. (4.22)

If we take N∗ large enough such that

− λN∗+1

4(a−1 + b−1)
1 − e−μ1t∗

μ1
+ 1

2

∫ t∗

0
M0(s) ds < log

1
8

= −3 log 2 (4.23)

as well as

− λN∗

4(a−1 + b−1)
1 − e−μ1t∗

μ1
+ 1

2

∫ t∗

0
M0(s) ds > log

1
8

= −3 log 2, (4.24)

that is,

λN∗+1 >
2(a−1 + b−1)

1 − e−μ1t∗ μ1

(
6 log 2 +

∫ t∗

0
M0(s) ds

)
> λN∗ (4.25)

holds, then, we see that δ∗ < 1/8. By Theorem 5.6.2 of [29], we have

λN + 1 = O(N + 1), (4.26)

for integer N. Hence, we obtain

N∗ ≤ CλN∗ ≤ Cμ1

(
1 +

∫ t∗

0
M0(s) ds

)
= O

(
(νd)

15−2ε
1−ε

)
. (4.27)

4.2. Estimate of Lipschitz constant L∗. The Lipschitz constant L∗ of the operator
St∗ on H1(�) × H2

N(�) satisfies

W1(t∗) ≤ L∗W1(0), (4.28)

for W1(t) introduced in the preceding paragraph. But here we note that

dW1

dt
= W0

dλ

dt
+ W1

W0

dW0

dt
≤ (μ(t) + M0(t)) W1, (4.29)

and, hence, we can set

L∗ = exp
(∫ t∗

0
M1(s) ds

)
, (4.30)

where

M1(s) = μ(s) + M0(s)

= 7a
2

+ 3b + 2c + 2f
3

+ ν2d2(4a + b)
2f ab2

+ B4
4ν

2

2a
‖�ρ‖2

L2 + 2B4
4f 2b
a2

‖v‖4
L4

+ 2B2
1f ‖v‖2

H1+ε + 2B2
1
ν2

a
‖ρ‖2

H2+ε + B2
4

f 2

a
‖u + v − u2 − uv − v2‖2

L4 . (4.31)
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We recall (3.6), (3.8), (3.10) and (3.12) to obtain

log L∗ =
∫ t∗

0
M1(s) ds

= O
(

(νd)2 + (νd)2(1−ε)Kε
1 + (νd)3K1/2

1

)
= O

(
(νd)

7−3ε
1−ε

)
. (4.32)

4.3. Upper estimate of dim M. From (2.4), dim M is estimated from above by

dim M ≤ C∗N∗ log L∗ = O
(

(νd)
22−5ε

1−ε

)
. (4.33)

This is the desired estimate.

Appendix. Here we show that smoothing property leads to the squeezing property
[7] correcting the proof of [8] on the convergence of the projections. Let H and H1 be
two Hilbert spaces such that the embedding H1 ⊂ H is compact, and let us assume
that the map S : X → X , where X is a bounded subset of H, enjoys the smoothing
property

‖Su1 − Su2‖H1 ≤ L‖u1 − u2‖H, u1, u2 ∈ X, (A.1)

with some Lipschitz constant L.
Let then M : H → H1 be a self-adjoint linear onto mapping such that ‖Mu‖H1 =

‖u‖H , u ∈ H. The mapping M is obviously compact in H. Therefore, we can
consider the projections Pn based on the spectrum of M, that is, Pn : H →
Hn := span{e1, . . . , en} is an orthogonal projection, Men = λnen, λn → 0 as n → ∞.
Obviously, we have Pnu → u as n → ∞ for each u ∈ H.

Let us now check the squeezing property. We have, for u1 and u2 in X ,

‖(I − Pn)(Su1 − Su2)‖H = ‖M(I − Pn)(Su1 − Su2)‖H1

≤ ‖M(I − Pn)‖L(H1,H1) · L‖u1 − u2‖H . (A.2)

Let now δ belong to (0, 1/4). If ‖Su1 − Su2‖H ≤ δ‖u1 − u2‖H , then the squeezing
property is satisfied. So, let us assume that

‖Su1 − Su2‖H > δ‖u1 − u2‖H, that is, ‖u1 − u2‖H <
1
δ
‖Su1 − Su2‖H . (A.3)

We have to show that there exists n0 = n0(δ) ∈ � such that

‖(I − Pn0 )(Su1 − Su2)‖H ≤ ‖Pn0 (Su1 − Su2)‖H . (A.4)

Indeed, it follows from (A.2) and (A.3) that

‖(I − Pn)(Su1 − Su2)‖H <
L
δ

‖M(I − Pn)‖L(H1,H1) · ‖Su1 − Su2‖H

≤ εn (‖Pn(Su1 − Su2)‖H + ‖(I − Pn)(Su1 − Su2)‖H) , (A.5)
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where εn = (L/δ)‖M(I − Pn)‖L(H1,H1) is a constant independent of the choice of u1 and
u2, which yields

(1 − εn)‖(I − Pn)(Su1 − Su2)‖H ≤ εn‖Pn(Su1 − Su2)‖H . (A.6)

So, we have proved the squeezing property if εn → 0 as n → ∞ (we note that εn does
not depend on the choice of u1 and u2). Indeed, we have

‖M(I − Pn)‖L(H1,H1) = sup
0�=u∈H1

‖M(I − Pn)u‖H1

‖u‖H1

= sup
0�=v∈H

‖M(I − Pn)Mv‖H1

‖Mv‖H1

= sup
0�=v∈H

‖(I − Pn)Mv‖H

‖v‖H
, (A.7)

and PnMv → Mv as n → ∞ for each v ∈ H, hence εn → 0 as n → ∞, the squeezing
property. Now, since the smoothing property implies the squeezing property in a
Hilbert setting, we could also have estimated the dimension of M by using the classical
method of [7].
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