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Abstract

In many physical problems, the system tends quickly to a particular structure,
which then evolves relatively slowly in space and time. Various methods exist
to derive equations describing the slow evolution of the particular structure; for
example, the method of multiple scales. However, the resulting equations are
typically valid only for a limited range of the parameters. In order to extend the
range of validity and to improve the accuracy, correction terms must be found for
the equations. Here we describe a procedure, inspired by centre-manifold theory,
which provides a systematic approach to calculating a sequence of successively
more accurate approximations to the evolution of the principal structure in space
and time.

The formal procedure described here raises a number of questions for future
research. For example: what sort of error bounds can be obtained, do the ap-
proximations converge or are they strictly asymptotic, and what sort of boundary
conditions are appropriate in a given problem?

1. Introduction

Many physical systems evolve quickly towards a state which can be characterised
by a small number of dominant modes. The evolution of the whole system can
then be described by the relatively slow evolution of these dominant modes. For
example, upon assuming that the particle velocities of a monatomic gas evolve
towards equilibrium, it is found that the Euler equation governs the evolution
of the mean particle velocity (see Vincenti and Kruger [10]). The more-accurate
Navier-Stokes equation governing the evolution of the mean particle velocity may
be derived by refining "this approximation through assuming that the particle
velocities are near equilibrium. The dominant mode here is the equilibrium
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[2] Evolution of systems in space 481

distribution of particle velocities, which is permitted to evolve over length and
time scales which are long when compared to molecular length and time scales.

For another example, consider a wavemaker generating a train of water waves
on water. Attached to the wavemaker are a number of transients which decay
exponentially with distance from the wavemaker, leaving just a uniform train
of waves to propagate away as the dominant mode. However, water waves are
unstable to the Benjamin-Feir instability, and so over a long length-scale the
amplitude of the waves evolves. The application of the procedure described in
this paper to this problem of slowly-varying waves is developed in a forthcoming
paper [9].

Centre-manifold theory has been developed to produce descriptions of the
evolution of such dominant long-lasting modes. Carr [3], Chapter 1 in particular,
is an excellent introduction to the theory. The theory states that if the reference
state of the system has a number of zero eigenvalues, say n, and that if all the
other eigenvalues are negative, then the system evolves exponentially quickly
towards an n-dimensional centre manifold. The system then evolves relatively
slowly on the centre manifold according to the evolution of n amplitude functions,
for which differential equations can be derived.

The practical calculation of a description of the evolution on a centre manifold
of finite dimension has been described by Coullet and Spiegel [4], for thermo-
haline convection which has a two-dimensional centre manifold, by Roberts [8],
for a simple model system with a one-dimensional centre manifold, and by Ar-
neodo et al [1], for triple convection which has a three-dimensional centre man-
ifold. The veracity of the asymptotic analysis has been verified in this last
case by Arneodo and Thoul [2] through some direct numerical simulations. Of
course, many other perturbation methods have been developed to give similar
asymptotic descriptions of a system's evolution; see the discussion in Coullet
and Spiegel [4] for examples. However, these methods lack the theoretical back-
ground provided by centre-manifold theory. Also (except for the method of
reconstitution, see Roberts [6] and [7]), they typically provide only a leading
approximation; successive refinement of the approximation is either not possible
or extremely tedious to obtain.

The outstanding case of interest is when the centre manifold is of infinite di-
mension. This case is most often seen as an amplitude evolving in time which is
also a function of a space coordinate x; the centre manifold then being a function
space. More generally, the amplitude could be an evolving vector-valued func-
tion of more than one space dimension. Some examples of asymptotic theories
which, in essence, involve just such an infinite-dimensional centre manifold are
shallow-water theory, convection with the heat flux prescribed on the bound-
aries, one-dimensional models of rivers, slowly varying waves (Roberts [9]), and
gas dynamics.
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Here we extend the procedure of Coullet and Spiegel [4] to a case of an infinite-
dimensional centre manifold. The procedure is developed through a sequence of
simple systems of equations, successive systems introducing new details of the
procedure. The basic system of equations is derived from a model of solute
transport in soil, the two components in (2.1) representing the advection by
water around the soil particles and the advection through the soil particles,
together with an exchange term. The basic approximation to be employed is
that the solution is slowly varying in the space coordinate x; that is, the small
parameter in the problem is d/dx. The amplitude of the solution is then a
function of x, and we want to find a description of its evolution in time.

In Section 2 we consider a linear problem which is transformed so that centre-
manifold theory (as described by Carr [3]) can be directly applied. In Section 3,
the same problem is approached via the new procedure. The results are the same,
which gives confidence that the procedure works. However, note that an infinite-
dimensional centre-manifold theorem has apparently not yet been proved. What
is presented here is just a formal procedure which is a generalisation of the
method of Coullet and Spiegel [4] for finite-dimensional centre manifolds. Proofs
of existence and estimates of error bounds are not yet available; further work
needs to be done.

We then introduce nonlinearity into the problem. In Section 4, the nonlinear-
ity is specially designed so that the only approximation made is that the solution
is slowly varying in x. This problem is unusual among nonlinear problems, in
that normally a small amplitude has to be assumed as well. Thus in Section 5
and Section 6 we change the nonlinearity and investigate the typical approach
of assuming that both the amplitude and the dependence upon x are small.

One difficulty which arises is in deciding what sort of boundary condition to
apply when using the results of this analysis. The problem is that the evolu-
tion on the centre manifold is often govened by a differential equation of higher
differential order than the original equations; for example, compare (2.19) with
the original system (2.1). It would appear that near a boundary the system
may (although not necessarily) be held away from the state of near equilibrium
expressed by the centre manifold. Thus some sort of transition layer between the
boundary and the interior of the domain may be needed, and this is discussed
further at the end of Section 2.

2. The spectral evolution of a two component flow

Here we begin investigating a problem with the property that its solutions
typically evolve to be slowly varying in space. In this section, we analyse it via

https://doi.org/10.1017/S0334270000005968 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005968


[4] Evolution of systems in space 483

a spectral approach which enables a more-or-less rigorous application of centre-
manifold theory. The problem is to study the solutions of the coupled pair of
linear differential equations

vada/dx = (-a + b)/2,

db/dt + vbdb/dx = (+a - 6)/2,

where va and Vb are the velocities with which interacting components a and b,
respectively, are being transported in a one-dimensional continuum. No matter
what the initial conditions are, the solutions behave like this. Over a long enough
time the interaction, represented on the right-hand-side of equation (2.1), tends
to equalise the values of a and b at any point. The difference between the
advection velocities, va and Vb, combined with this interaction, tends to smooth
the dependence of a and b upon space x. Thus the solutions are eventually
slowly varying in space, and this process is precisely what centre-manifold theory
quantifies.

Equation (2.1) may be written equivalently in terms of U = (a, b)T as

dU/dt = LV- MdV/dx, (2.2)

where

Upon taking the spatial Fourier transform of equation (2.2), using K to denote
the wavenumber and ~to denote transformed quantities, we can write down that

dV/dt = LU - IKMV. (2.4)

The utility of the Fourier transform in this linear problem can now be seen: the
evolution equation (2.4) for each wavenumber component has become completely
uncoupled from other wavenumbers. Thus the evolution of each wavenumber will
be treated separately, and then combined together at the end.

To apply the centre-manifold theory to (2.4), we now change the basis of
the U-plane to a basis which clearly separates the long term structure of the
solutions from the short term. Introducing the two new unknowns

c = a + b and d = a-b, (2.5)

we expect d to become very small and c to evolve slowly in space. After making
this substitution, (2.4) becomes

dc/dt = 0 — IK(VC + vd),

dd/dt = -d- IK{VC + vd),
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where
v = {va + vb)/2 and v = {va - vb)/2. (2.7)

Observe that v is the mean advection velocity of the two components, while v
gives the difference from this mean of the actual velocities. To apply centre-
manifold theory to (2.6), the linear part of the right-hand-side must have one or
more zero eigenvalues corresponding to the dominant long lasting modes, and
the rest of the eigenvalues must be negative. Since we consider K to be constant,
we can arrange this by supplementing (2.6) with

dn/dt = 0, (2.8)

and temporarily consider K to be a dependent variable. Then the terms involving
K in (2.6) become nonlinear terms, and hence the linear part of the combined
system (2.6) and (2.8) has two zero eigenvalues and one negative eigenvalue (—1).

Applying centre-manifold theory (Carr [3]) to (2.6) and (2.8), we know that
there exists a centre manifold

d = h(c, K) such that /i(0,0) = dh/dc(0,0) = d/i/d«(0,0) = 0, (2.9)

on which c and K evolve according to

dc/dt = g{c, K) and dn/dt = 0, (2.10)

where g and h are yet to be determined. Furthermore, we know that the centre
manifold (2.9) is approached exponentially-quickly in time. However, note that
the concept of a centre manifold is only clear-cut for small c and small K; that is,
for weak variations in x. Although there is typically a unique centre manifold in
some finite domain, the separation of the system into an exponential approach
and a slow evolution is only valid near the origin. See Figure 1 in Roberts [6]
for an illustration of this.

Upon substituting (2.10) into the first equation of (2.6), we find that

g(c, K) = -IK[VC + vh{c, K)]. (2.11)

Upon substituting the ansatz (2.9) and (2.10) into the second equation of (2.6),
and using the above expression for g, we find that h should satisfy the following
equation

-iK—{vc + vh) = -h- iK,{vc + vh), (2.12)
oc

together with the conditions on h at the origin. Now, as this problem is originally
linear, the exact description of the centre manifold can be found to be

h(c, K) = ^T- (-1 + \ / l - 4tJ2K2) c, (2.13)

on which c evolves according to

dc/dt = g(c, K) = [-ivK - \ + f \ / l -4v 2 /c 2 ] c. (2.14)
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However, being able to find an exact solution is not typical. In general, the
centre manifold can only be described near the origin and only asymptotically.

Approximations to the centre manifold can be easily found by iteration. Re-
arrange (2.12) into the iteration scheme:

ho = 0,
.- „ _ _ • dhn._._, . (2.15)

hn+i = —IVKC — ivK,hn + iK-—-(vc + vnn)oc
(a form which is analogous to those used in later sections). We find, for example,
that

This represents, of course, the first two terms of the Taylor series expansion
of (2.13). Another theorem from centre-manifold theory says that if (2.12) is
satisfied to some order of accuracy when the independent variables c, K —• 0,
then the centre manifold is approximated to the same order of accuracy. Thus

K)\5), (2.16)

on which c evolves according to

dc/dt = g(c, K) = -tvKc - V2K?C - V*K4C + O(\(c, /c)|6), (2.17)

and where /c is constant, according to (2.10).
To return to spatial dependence, we now take the inverse Fourier transform

of (2.16) and (2.17) to obtain

where c evolves according to

Thus upon inverting (2.5) we find that the centre manifold is approximately
described by

c v3

where the evolution on the centre manifold is described by (2.19).
As predicted at the start of this section, we have observed that solutions to

(2.1) evolve exponentially-quickly to the centre manifold (2.20), a state where
the two components are nearly equal. Furthermore, the evolution on the centre
manifold is governed by (2.19), which indicates that spatial variations in a and
b are primarily advected with the mean velocity v, and also diffuse depending
upon the difference in the velocities, v; in other problems this is known as shear
diffusion. However, in more interesting nonlinear problems the process of taking
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the Fourier transform and changing the basis is not one which is easily managed.
A more direct approach is desirable, and this is developed in the next section.

It is apparent from (2.19) that the equation describing the evolution on the
centre manifold is of higher differential order than the original problem (2.1).
The question then is: what sort of boundary conditions should be applied on
a spatial boundary? The difficulty which arises is really due to the fact that
asymptotically-slow variations in space and a finite spatial extent do not fit to-
gether; the limit K - » 0 implicitly needs an infinite spatial extent to be realised.
However, many problems involving the slowly-varying approximation (for ex-
ample, the evolution of water waves) are discussed without reference to spatial
boundaries, the boundary conditions being left open. Other problems (for ex-
ample, convection near the onset of motion) use periodic boundary conditions
which are just as easy to express for the centre manifold as for the full problem.

However, some problems do involve a nontrivial boundary (for example: the
shallow-water approximation near a beach). In these cases, the description of
the centre manifold supplies boundary conditions for the evolution on the centre
manifold. For example, if in the above problem the condition that a = UQ and
b = bo is given at some point x = XQ then (2.20) supplies the conditions

c = ao + £>o and - v— + ir ^-» = ao - b0 at x = x0,ox axa

for the evolution equation (2.19). However, some boundary conditions will be
incompatible with the description of the centre manifold, such a boundary con-
dition acts to hold the system away from the centre manifold. Since the centre
manifold is stable, we expect that there must then be a region near the bound-
ary in which an exponential transition is made to the centre manifold. Such
boundary layers are familiar in many mathematical approximations.

Moreover, some equations of unquestioned practical value have similar prob-
lems. For example, the Euler equation is used widely in fluid mechanics at high
Reynolds numbers, the presence of viscous boundary layers being of little impor-
tance to the main flow, unless flow separation occurs. Even the more accurate
Navier-Stokes equation, which needs more boundary conditions to accommodate
its higher differential order, can fail at a boundary, namely near a moving con-
tact line or the tip of a crack. It would seem that the difficulties with the centre
manifold near a boundary are surmountable, but need more attention.

3. The spatial evolution of a two-component flow

Here we re-examine the problem (2.1), with the aim of deriving the description
of the centre manifold (2.20) and the evolution on it (2.19) via a more direct
approach than that employed in Section 2. We follow the procedure outlined in
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Coullet and Spiegel [4], but generalised, via concepts taken from the theory of
calculus of variations, to an infinite-dimensional centre manifold (assuming that
it exists and is sufficiently well-behaved).

We first have to define some measure of the local "amplitude" of solutions
to (2.1). Recognising that solutions typically have the two components a and b
nearly equal, an obvious choice for a local amplitude is

A{x,t) = a + b = Ul + U2. (3.1)

Almost any other definition will do, but this one has the advantage that the
results of this section can be directly compared with those of Section 2.

We then suppose that the centre manifold can be described by

U(z,0=V[A;x], (3.2)

where the evolution on the centre manifold is described by

dA/dt = G[A;x], (3.3)

where square brackets are used to denote a functional dependence in x upon the
argument A. For example: G[A; x] indicates that G depends upon A, dA/dx,
d2A/dx2,...; thus we may write

where we shall use ' to denote differentiation with respect to x. In a simplistic
fashion we consider functions of x to be a vector space and choose the functions
(x — io)n/n! (where XQ is any point) to be a basis for this space. Thus the
independent components of A with respect to this basis are the coefficients of
the Taylor series of A about XQ, namely (A, A', A",...).

To substitute the ansatz (3.2) and (3.3) into the governing differential equation
(2.2), we have to be careful about differentiation, just as in the calculus of
variations. We use partials to denote the total derivative with respect to a
given variable, while a subscript will denote differentiation with respect to that
subscript symbol. Thus, assuming (3.2) and (3.3) and that A is a differentiate
function of (x, t), we observe

where
dG/dx = GAA' + GA'A" + • • • ,

and so on for higher-order derivatives. Upon substituting (3.2) and (3.3) into
(2.2), we can then derive that V and G must satisfy

LV = \VAG + VA'-^ + V A - - ~ + ••)+ M(VAA' + VA.A" + • • • ) . ( 3 . 4 )
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We have arranged the equation into this form so that the left-hand-side, the
linear LV, equates to the "small" terms on the right-hand-side (recognising that
the right-hand-side represents only the slowly-varying terms dV/dt and dU/dx).
To an initial approximation, the right-hand-side terms can be neglected and thus
V lies approximately in the null space of L, proportional to (1, l ) r , and is some
function of x and t. This observation is what we now develop systematically.

Given the typical situation where the exact description of G[A; x] and V[/i; x)
cannot be found, we then wish to find asymptotic expressions for them. In
principle (and necessarily so in later sections), the expressions for G and V are
multinomials in the independent variables (the indeterminates) A, A', A",
However, as this problem is linear, the multinomials must be linear, and hence
we can take a short cut by assuming this now. Thus we try the linear form

and G-^G^W, (3.5)
fc=O fc=O

where the superscript on G and V denotes a member of a family rather than
exponentiation, and where A^ is the symbol for the fcth derivative of A with
respect to x. Upon substituting (3.5) into (3.4) and equating the coefficients of
the independent variables, A, A', A",..., we find the sequence of equations

LV° = G°V°,
k

L V ^ M V ^ + ^G'V*" 1 , A; = 1,2,.... (3.6)
1=0

The k = 0 equation is just an eigenproblem for the eigenvalue G° and cor-
responding eigenvector V° of L. The eigenvalues of L are 0 and —1. The slow
evolution along the centre manifold can only be deduced from the presence of the
0 eigenvalue; the eigenvalue —1 is irrelevant as it only describes the exponential
approach to the centre manifold. V° is a corresponding eigenvector and is thus
proportional to (1, l ) r . To fix the particular multiple, we use the definition (3.1)
of the local "amplitude" A. From (3.1), (3.2) and (3.5) we know

A = C/x + U2 =
k=0

and so by equating the coefficients of the independent variables we want

. , f 1, k = 0
1 2 l O , fc = l , 2 , . . . '

(3.7)

where V* and V2
fc are the two components of Vfc. Thus the solution of the k = 0

equations is

G°=0 and V°=[}/
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[10] Evolution of systems in space 489

which is just the basic approximation that the two components o and b eventually
equalise.

The k = 1 equation of (3.6) reduces to

P
For general values of the as-yet-unknown G1, this equation cannot be solved as
L is singular; only if G1 is chosen appropriately can we solve it for V1. To find
G1 we find first the left-eigenvector;

z = [1 1], (3.10)

of L corresponding to the eigenvalue G° = 0; in more general situations z would
be in the null space of the adjoint of L. Upon multiplying (3.9) on the left by z,
we deduce

G1 = («« + vb)/2 = -v, (3.11)

which is often known as a solvability condition. Upon using the amplitude equa-
tions (3.7), the solution for V1 becomes unique and is

_ \{vb-va)/4] __v [ 1
- l ( ) / 4 j - 2 L-

In an exactly similar manner to the above, the equations (3.6) and (3.7) can
be solved for k = 2 ,3 , . . . in succession to give

G2 = v2 and V2 = 0, (3.13)

G3 = 0 and V ^ y ^ ] , (3.14)

G4 = -v4 and V4 = 0, (3.15)

etc. Thus the centre manifold (3.2) is described by

on which the evolution takes place according to (3.3) which is

dA/dt ~ -vA' + v2A" - v4A"". (3.17)

This is precisely the same approximation, (2.19) and (2.20), as derived in Section
2.

This approach to describing the long-time evolution of solutions to (2.1) is
apparently valid provided the high-order derivatives of A are sufficiently small; it
is essentially a perturbation expansion in d/dx. Although no error bounds can be
obtained at the moment, the derivation of this same approximation in Section 2
suggests that it does indeed become invalid if the spatial variations are too rapid.
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In Section 2, the exact description in Fourier space of the centre manifold and its
evolution, (2.13) and (2.14), exhibits a square-root singularity at a wavenumber
of K = \/2v. Thus the asymptotic descriptions must surely become invalid if the
solutions obtained involve significant components at wavenumbers higher than
this.

The actual procedure in finding the Gk and V* is very familiar to anyone
who has done a multiple-scale or slowly-varying asymptotic analysis. The main
difference is that this procedure has a different theoretical background, that of
centre-manifold theory. It is this different background which enables a number
of artifices in conventional slowly-varying analyses to be avoided. For example:
there is no need to shift to a moving frame of reference as is often done to get a
significant approximation (here the fact that the components move at the mean
advection velocity appears naturally and does not affect the rest of the analysis);
there is no need to introduce super-slow and extra-super-slow space-time scales
to refine the description of the ultimate evolution (here the extra terms in the
refinement appear naturally); there is no redundant algebra which the technique
of reconstitution involves.

All these points indicate that this is a very powerful and widely applicable
technique. Further ramifications and developments of the method are illustrated
in the next two sections.

4. The spatial evolution of a special nonlinear problem

We now consider a modified version of the govening equations (2.1). Nonlinear
terms are introduced, but in such a fashion that the only approximation which
needs to be made is that the spatial derivatives are small. Nonlinear problems
typically require the additional assumption that the amplitude is also small; such
a problem is investigated in the next two sections.

Additionally we also permit the material properties, or parameters, of the
system to vary in space. As a particular example, we have suppose that the
advection velocities va and v\, are given, slowly-varying functions of x. Other
parameters of the system could also vary slowly in space (namely the exchange
L and the nonlinearity c), but to keep the results relatively simple we consider
them constant. Variations in time of the parameters can also be accomodated
(see Roberts [9]), but in essence it would introduce a second small parameter
into the problem, and so needs a double asymptotic sum (see the next section)
rather than the single asymptotic sum developed here.

Consider the problem

= LU - A l l
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where L and M are given by (2.3) and where

There is an exact solution to (4.1), namely

where A is any constant. It is the presence of this exact solution to the nonlinear
problem which enables the assumption that the solution is varying slowly in space
to be the only assumption made.

We now assume that d/dx is a "small quantity". Consequently, a term ap-
pearing in an equation will be called order k if it contains precisely k spatial
derivatives. For example: some terms of order 2 are

A", A12, AA", AA'2, vaA", v'bvaA', v'^A2.

Following Coullet & Spiegel [4] more closely now, we substitute the centre-
manifold ansatz, namely (3.2) and (3.3), into the governing (4.1) and seek the
asymptotic approximation

vfc[A;z] and G ~ £ Gk[A;x], (4.2)
fc=O fc=l

where Gk and Vfc contain all the terms of order k. Note that G*[.A;a:] is of
order k if Gk[A;X/e] = ekGk[A\ X] for all e; in this test, X is recognised to be
analogous to a long-space scale. (Note: we have anticipated that G° = 0, which
was found to be necessary in the previous section in order to describe the centre
manifold.) Upon equating all terms of the same order together in the equations
we find that

LV° = -cN°,

* - ^ X ; i ; t e ^ ) . * = 1,2,.. ,(4.3)
where the nonlinear terms are represented by

t=lp=0

k

= £ ( W ~ ' - V2
eVte), (4.4)

e=o
in which V\ and V2 are the two components of V. Observe in (4.3) that the
sum over p (that is, the differentiation with respect to the derivatives of A) is
truncated to p = k — I as V*"* can have no more than k — t spatial derivatives
in it. The definition of the local amplitude must also be considered. Upon
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substituting (4.2) into (3.1) and equating all terms of the same order we find
that

A, k = 0+ vHo, *>a
We now proceed to solve (4.3) and (4.5) sequentially.

The k = 0 equation is

] (4.6)
which, together with (4.5), has the solution

Once again, this just represents the fact that over long enough times the two
components tend to equalise.

After substituting the solution for V° into (4.3), the k = 1 equation becomes

This equation has some rather unusual features. The unknowns V1 and G1

are multinomials in the indeterminates A and A'. Thus the equation is like a
polynomial one, and a solution can only be found if, in some sense, the factor
L + c[l — 1)A "divides" the right-hand-side. It turns out that we can be assured
of this only if the two components of c are equal; hence the choice for c. Upon
multiplying (4.8) on the left by the left-eigenvector z, just as in the previous
section, we deduce that

G1+vA' + v'A = 2{l -1]AV\ (4.9)

which reflects an unusual feature in this type of problem in that G1 is finally
determined only after V1 is, rather than before. After substituting (4.9) into
equation (4.8) it reduces to

which, together with (4.5), has the solution

and consequently

G1 = -vA' - 2vAA' -rfA- 2v'A2. (4.11)

The first nontrivial approximation to the centre manifold is thus
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on which the quantities evolve according to

dA/dt ~ -{vA)' - 2A{vA)'. (4.13)

The above approximation may be refined further by calculating more terms
of the asymptotic expansion. The general scheme needed is no more complicated
that that described above for the k = 1 case, the only complication being that
the number of terms increases. For example, the solution for order-2 quantities
is

V2 = - [_\] {(vA(vA)'y + \{vl?A - v'vA)'} , u)

G2 = (v(vA)')' - AA(vA(vA)')' + 2A(v'vA - v&A)'.
Thus a second approximation to the centre manifold and the evolution on it is
given by

[-1J U + {vA{vA) ) + 2{VV A~vvA

dA/dt ~ -(vA)' - 2A{vA)' + {v(vA)')' - 4A{vA{vA)')' + 2A{v'vA - WA)'.
(4.15)

This nonlinear problem is rather special in that the only approximation made
was that the solution and the parameters are slowly-varying in space; conse-
quently it involved some unusual features. Most nonlinear problems will also
require that the solution be of small amplitude. This additional assumption re-
moves the above unusual features and makes the whole process very familiar; it
just has a different theoretical background.

5. Spatial evolution with a typical nonlinearity

We now turn to another modified version of (2.1). A more-or-less arbitrary
nonlinear term is introduced which necessitates the asymptotic description of the
centre manifold to involve two small parameters. We need to assume that both A
and d/dx are small. This type of problem, where the amplitude is assumed small
and the length scale is assumed long, is typical of many interesting problems.

Consider the problem

(5.1)

where L and M are given by (2.3) and where

For simplicity we consider that the parameters of the system are constant in both
space and time. The modification needed to include variations in x is trivial,
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and just leads to greater complexity in the results. Slow variations in time of the
parameters can also be included, but would introduce a third "small quantity",
namely d/dt. We omit such variation here (but see Roberts [9]).

We now assume that both d/dx and A are "small quantities". Consequently
a term appearing in an equation will be called order (k, m) if it contains precisely
A; spatial derivatives and precisely m amplitude factors A. For example: all the
terms of order (3.4) are

A3A'", A2A'A", and A{A'f.

We now substitute the centre-manifold ansatz, namely (3.2) and (3.3), into (5.1)
and seek the asymptotic description

V ~ £ £ V*-m[A; x) and G ~ £ jr Gk'm[A; x), (5.2)
fc=0m=l fc=Om=l

where Gk'm and Vfc>m contain all the terms of order (k,m). Note that a func-
tional f[A; x] is of order (*, m) if f[6B; X/e] = ek6mf[B; X], for all e and 6.

Upon equating all terms of the same order together we find that

—l.m
m k—la\/fc l.m

Lyk'm = M - \ x — cNk'm+

«=0n=lp=0

for all k and m, (5.3)

where V~1'm = 0 and where the nonlinear terms are represented by
k m-1

Nk,m _ j ^ ^ (V/'n + ^•n)(vi
fc-^m"n + Vf-t>m-n). (5.4)

f=0 n=l

The definition of the local amplitude must also be considered. Upon substituting
(5.2) into (3.1) and equating terms of the same order we find that

L 0, otherwise

We can now proceed to solve the doubly-infinite family of equations (5.3) and
(5.5), for all k and m. Any sequential order can be used, provided that all
quantities of order (£, n) such that £ < k and n < m are known, except (A;, m)
itself, before quantities of order (k, m) are calculated.

The crucial equation and its solution, from which all the other equations and
solutions follow, is the one of order (0,1). It is

LV°'1=V°/G0'1, (5.6)

which should be solved in conjunction with the appropriate version of (5.5). This
is, just as in Section 3, a sort of eigen-problem. The eigenvector which begins the
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description of the centre manifold is the one corresponding to the zero eigenvalue,
thus

G°.»=0 and V ° . 1 = [ J ^ ] A (5.7)
This is, as always, the basic approximate solution to this problem.

We now proceed to calculate higher-order quantities. First we shall arbitrarily
calculate quantities of order (0,2) and (0,3). We find that (5.3) with k = 0 and
m = 2 becomes

Once again, this should be regarded as a multinomial equation with the indeter-
minates A, A', A",.... However, unlike Section 4 there is never any difficulty in
doing this, as the unknown V0'2 is multiplied simply by a "constant" L. Thus
we can always find the solution by "dividing" through by L. In a now-familiar
process, we recognise that L is singular and so this equation can only be solved if
G0'2 is chosen appropriately. Upon multiplying on the left by the left-eigenvector
of L, namely z, we find G0'2 and then, in conjunction with (5.5), solve for V0'2

to find that

G°'2 = 2cA2 and V0-2 = c [ ^ 1 A2. (5.8)

The order-(0,3) version of (5.3) is

We can solve this in conjunction with (5.5) to give

G°-3 = 0 and V ^ ^ - ^ f M y l 3 . (5.9)

Equations (5.7), (5.8) and (5.9) provide an approximate description of the evo-
lution of the system, namely that the centre manifold is

U ~ [ V2
on which the system evolves according to

dA/dt ~ 2cA2.

In principle we could calculate an arbitrary number of terms in this asymptotic
expansion. However, this description is not adequate if any significant spatial
variations are present. All it does is describe the nonlinear evolution of the
system when every quantity is constant in x.

To take the spatial variations into account we have to calculate quantities
involving d/dx. Thus, here we calculate quantities of order (1,1) and (2,1)
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starting from the initial approximation (5.7). The equation corresponding to
k = 1 and m = 1 is

[ ] ^ 5
which, together with (5.5), has the solution

G1'1 = -vA; and V1-1 = -""- I ^ I A'. (5.10)

The equation corresponding to k = 2 and m = 1 is

which, in conjunction with (5.5), has the solution

G'2'l=v2A" and V 2 1 = 0. (5.11)

We can put (5.7), (5.10) and (5.11) together to give another approximate de-
scription of the centre manifold to be

on which the amplitude A evolves according to

dA/dt ~ -vA' + v2A".

In principle we could also extend this sequence to arbitrarily many terms. If this
were done we would obtain precisely the same asymptotic expansion as found
in Section 3 (compare the above with (3.16) and (3.17)); this is because this
sequence is always linear in the amplitude (as m = 1). Although this sequence
involves spatial variations, it takes no account of the nonlinear interaction terms
present in the original equations (5.1).

To derive a version of the centre manifold and the evolution on it which takes
account of the effects of both nonlinear interactions and also variations in x, we
could justifiably combine (5.7) through to (5.11). However, it is usual to include
terms which represent an action which is a mixture of the nonlinearity and the
spatial variations. We can do this by calculating terms of order (fc, m) where
k > 0 and m > 1; here we calculate just the term of order (1,2). This term's
equation is

LV1-2 = [I/2] G1'2 + 2cv f j l AA' - 2vc [ M AA'.j l AA 2vc [

Upon solving this we find that

G1'2 = -icvAA' and V1'2 = 26c f _X 1 AA'. (5.12)
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Another consistent approximation, for example, is then to combine terms of
order (fc, m) where 0 < k < 1 and 1 < m < 2 (here ignoring the fact that we
have found the terms of order (0,3) and order (2,1)). Combining (5.7), (5.8),
(5.10) and (5.12) we would then find that the centre manifold is

on which the evolution is

dA/dt ~ -vA' + 2cA2 - 4cvAA'.

This is another example of a description which involves both the nonlinear effects
and the spatial variations. Its new feature is that it possesses a term which
contains both effects mixed in.

The above is an example of the general scheme for applying a formal centre
manifold ansatz to nonlinear problems in which the centre manifold is of infinite
dimension. It can be readily generalised to cope with more than one indepen-
dent "amplitude", and more than one spatial dimension for the centre manifold.
However, the plethora of subscripts and superscripts becomes compounded in
more-involved problems. The next section describes briefly the consequences of
a common approach which simplifies the appearance of the process.

6. A comment on the combined slowly-varying
weakly-nonlinear assumption

In asymptotic expansions with two or more small parameters, as there are in
Section 5, it is often the case that the two (or more) small parameters are linked
together. For example, we could have assumed that d/dx is of the same order
as A, which is of the same order as some small number, say e. Exactly this
will be done here and, instead of having a doubly-infinite family of equations
to solve, we obtain a singly-infinite family as in the earlier sections. A further
simplification is that the algebraic form of the equations has considerably fewer
terms, the extra terms being hidden in the unknowns of the asymptotic analysis.
The price of all this simplification is the loss of flexibility in the choice of retained
quantities; a benefit is that it is easier to automate the whole process.

We reconsider equation (5.1) with constant parameters, and substitute the
centre-manifold ansatz, (3.2) and (3.3), and seek an asymptotic description of
the form

V~JTvk\A;x] and G ~ f^Gk\A;x], (6.1)
*=i fc=i

where Gk and V* contain all the terms of order k. In this section we say that
an functional expression f[A;x] is order k if f[eB\X/e) = ekf[B;X], for all e.
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For example, all the terms of order 4 are

A'", AA", (A1)2, A2A', and A4.

This definition then implicitly links the amplitude A and the spatial variations
d/dx together to both be of the same magnitude, namely e. A useful conse-
quence, relating the definitions of order, is that a term of order (k, m) in Section
5 becomes a term of order k + m in this section. Upon substituting (6.1) and
equating all terms of the same order together we find that

IV1 =V\G1,

where the nonlinear terms are represented by
fc-i

Nk = YJVi + VfXV?-' + V2
h~e).

( 6 ' 2 )

(6.3)

The sequence of equations given by (6.2) must be solved in conjunction with the
definition of the local amplitude, which in this section requires

Vfc + V2
k = ( ' k~ l j (6.4)

I 0, k - 2 ,3 , . . . .
The procedure is now the same as in Section 5, except that quantities must be
found in a strict sequence; first fc = 1, then k = 2, then k — 3, etc.

However, all the terms which appear in the equations and their solutions in
Section 5 appear precisely the same here. A term of order (k, m) in Section 5
occurs correspondingly as a term of order k + m in this section. Thus, from the
results of Section 5,

k k

Gk = y^Gk~e<e and Vfc =
e=i

and the solutions can be written down to be

G*=0 and V x =

G2 = -vA' + 2cA2 and V2 =

A

_M (cA2 - ^

(6.5)

(6.6)

G3 = v2A" - 4cvAA' and V3 = f _M {2vcAA' - 4ccA3), (6.7)

and so on. Hence, upon truncating the sums in (6.1) to the first three terms, we
find that the centre manifold is given by

U ~ [ ] A + [
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on which the solution evolves according to

dA/dt ~ -vA' + 2cA2 + v2A" - AcvAA'. (6.9)

The reason that all this works is that the expressions are considered to be
multinomials in the independent indeterminates A, A', A"',... . Thus at each
order in the calculation the terms are always distinguishable by the different
products of these indeterminates in each term. This also means that, given
the results of Section 5, we can very easily vary the relative magnitudes of the
amplitude and the spatial variations. For example: suppose that the amplitude A
is of the size of e but that spatial variations are much smaller (but not negligible),
say of the size of e2; then quantities appearing at order (k, m) in Section 5 would
then appear at order 2k+m. Hence, assuming a connection between the relative
magnitudes of the various small parameters in a problem, and then truncating
the asymptotic sum (which is often done) is equivalent to drawing a line in the
plane (or space) of exponents, here the (k, m)-plane, and only including those
terms which lie on one side of the line.

7. Conclusion

The formal procedure proposed in this paper is simply a generalisation of that
of Coullet and Spiegel [4] to asymptotic problems which are conventionally known
as slowly varying in space and time. It generalises their procedure (also explained
in Roberts [8]), which deals with a finite-dimensional centre manifold, to the
case of an infinite-dimensional manifold. Instead of predicting the evolution of
a vector, we predict the evolution of a function of space from which the detailed
approximate solution can be found.

This procedure has many advantages over other methods which produce sim-
ilar approximations. The procedure is completely mechanistic once the initial
approximation has been identified; there is no need to go into long heuristic
arguments in the derivation of successive approximations. There is no need for
artifices such as transforming to a moving frame of reference, as is done, for ex-
ample, in the derivation of the nonlinear Schrodinger equation for slowly-varying
waves. There is no need to introduce extra super-slow space or time scales to
produce successive approximations, as is needed in the method of multiple scales
(see section 3.5 in Jeffrey and Kawahara [5] for example). There is no redundant
algebra as is needed in the method of reconstitution (see Roberts [6] and [7]).
Also there is no need, although it is often convenient, to make assumptions about
the relative magnitude of different "small" effects in the problem (for example,
the relative magnitude of nonlinearity and variations in space); thus it clarifies
the asymptotic analysis when two or more small parameters are involved.
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The last big advantage of this procedure is that it is inspired by centre-
manifold theory. Thus we can be reasonably confident that the proofs currently
in existence for finite-dimensional centre manifolds (see Carr [3]) can be gener-
alised to apply to these infinite-dimensional centre manifolds. However, a lot of
research remains to be done on the sort of problems to which this procedure is
valid, to determine how to obtain error bounds, and how to handle boundaries
in space.
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