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Clifford relations

Clifford algebras and Clifford relations were studied by mathematicians long
before canonical anti-commutation relations were considered by physicists. Actu-
ally, the “(neutral) CAR representations” that we introduced in Def. 12.1 could
be called “representations of self-adjoint Clifford relations”.

We will use the name “Clifford relations” for anti-commutation relations iden-
tical to those of Def. 12.1, but without assuming that the underlying vector space
is real, the corresponding operators are self-adjoint or that they even act on a
Hilbert space.

In our short presentation we will restrict ourselves mostly to Clifford rela-
tions over finite-dimensional pseudo-Euclidean spaces. Our main motivation is
to describe spinor representations of the Lorentz group (in any dimension).
Nevertheless, we will consider the case of a general signature as well.

Some real Clifford algebras are closely related to the quaternion algebra,
denoted by H. Therefore, we devote Sect. 15.2 to a brief summary of its
properties.

We will use the shorthand K(n) := L(Kn ), where K = R, C, H. We will write
[x] for the integer part of x ∈ R.

15.1 Clifford algebras

15.1.1 Representations of Clifford relations

Let K be an arbitrary field and Y a vector space over K. We assume that Y is
equipped with a symmetric bilinear form ν.

Let V be another vector space (possibly over a bigger field).

Definition 15.1 We will say that a linear map

Y � y �→ γπ (y) ∈ L(V) (15.1)

is a representation of Clifford relations or, for brevity, a Clifford representation
over Y in V if

[
γπ (y1), γπ (y2)

]
+ = 2y1 ·νy21l, y1 , y2 ∈ Y. (15.2)
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15.1 Clifford algebras 369

15.1.2 Clifford algebras

Definition 15.2 The Clifford algebra Cliff(Y) is the unital algebra over K
generated by elements γ(y), y ∈ Y, with relations

γ(λy) = λγ(y), λ ∈ K, γ(y1 + y2) = γ(y1) + γ(y2),

γ(y1)γ(y2) + γ(y2)γ(y1) = 2y1 ·νy21l.

We have the following analog of Prop. 12.31:

Proposition 15.3 If

Y � y �→ γπ (y) ∈ L(V)

is a representation of Clifford relations, then there exists a unique homomorphism

π : Cliff(Y) → L(V)

such that π(1l) = 1lV and π(γ(y)) = γπ (y), y ∈ Y.

Many concepts and facts described in the context of the CAR apply almost
verbatim to Clifford relations and algebras. For instance, α(φ(y)) = −φ(y), y ∈
Y, extends to a unique involutive automorphism α of Cliff(Y). Clifford algebras
split into their even and odd parts: Cliff(Y) = Cliff0(Y)⊕ Cliff1(Y). Cliff0(Y)
is a sub-algebra of Cliff(Y), which differs from Cliff(Y) if the field K has a
characteristic different from 2 (which is the case for K = R, C).

There also exists a unique anti-automorphism A → A†, called the transposi-
tion, which on products of γ(y) equals

(γ(y1) · · · γ(yk ))† = γ(yk ) · · · γ(y1).

15.1.3 Complex Clifford algebras

Let us consider an n-dimensional space Y over C equipped with a non-degenerate
form ν. All such forms are isomorphic to one another, so it is enough to assume

that Y = Cn and z·νz =
n∑

j=1
(zj )2 for z = (z1 , . . . , zn ) ∈ Cn . It is easy to see that

in this case

Cliff(C2m ) = C(2m ),

Cliff(C2m+1) = C(2m )⊕ C(2m ).

Thus, as an algebra, Cliff(Cn ) coincides with CAR(Rn ) defined in Def. 12.30,
where the transposition † coincides with # . However, we forget about the Her-
mitian conjugation ∗, the complex conjugation c and the norm ‖ · ‖. (CAR(Rn )
is a C∗-algebra, whereas Cliff(Cn ) is not.)
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Suppose now that the space Y is oriented (see Subsect. 3.6.8 for the definition
of an orientation of a complex space). Let (e1 , . . . , en ) be an o.n. basis of Y
compatible with its orientation, and write γj for γ(ej ).

Definition 15.4 The volume element is defined as

ω := γ1 · · · γn .

Note that ω depends on the o.n. basis (e1 , . . . , en ) only through its orienta-
tion. Set m := [n/2]. The following table summarizes the form of the algebras
Cliff(Cn ):

Table 15.1 Form of Cliff(Cn )

n (mod 4) ω2 Cliff0 (Cn ) Cliff(Cn )

0 1l C(2m −1 ) ⊕ C(2m −1 ) C(2m )
1 1l C(2m ) C(2m ) ⊕ C(2m )
2 −1l C(2m −1 ) ⊕ C(2m −1 ) C(2m )
3 −1l C(2m ) C(2m ) ⊕ C(2m )

15.2 Quaternions

In this section we briefly recall the properties of quaternions.

15.2.1 Basic definitions

Definition 15.5 The real algebra H with basis 1, i, j, k satisfying the relations

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j

is called the algebra of quaternions. It is equipped with an involution ∗ acting as

1∗ = 1, i∗ = −i, j∗ = −j, k∗ = −k.

For x ∈ H, we set

Re x :=
1
2
(x + x∗), |x| := √

x∗x.

(Note that x∗x is always real positive.)

If x = x1 + xi i + xj j + xkk with x1 , xi, xj , xk ∈ R, then

Re x = x1 , |x| =
√

x2
1 + x2

i + x2
j + x2

k .

Note that | · | is a norm on the algebra H. If x, y ∈ H, then |xy| = |x||y|. H is an
example of a real C∗-algebra.
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H is a real Hilbert space with the scalar product

〈x|y〉 := Rex∗y = x1y1 + xiyi + xjyj + xkyk , x, y ∈ H.

Definition 15.6 An algebra all of whose non-zero elements are invertible is
called a division algebra.

Clearly, H is a division algebra.

15.2.2 Quaternionic vector spaces

Quaternionic vector spaces and finite-dimensional quaternionic vector spaces
have obvious definitions. Every finite-dimensional quaternionic vector space is
isomorphic to Hn for some n. Note the identifications

Rn ⊗ C = Cn , Rn ⊗H = Hn .

H-linear transformations on a quaternionic vector space have an obvious def-
inition. Note the identifications

R(n)⊗ C = C(n), R(n)⊗H = H(n).

Definition 15.7 Suppose that X is a quaternionic vector space, equipped (as
a real space) with a scalar product 〈x|y〉 ∈ R, x, y ∈ X . We say that this scalar
product is compatible with the quaternionic structure if

〈λx|λy〉 = |λ|2〈x|y〉, λ ∈ H, x, y ∈ X .

A quaternionic space with a compatible scalar product complete in the corres-
ponding norm is called a quaternionic Hilbert space.

Every finite-dimensional quaternionic Hilbert space is isomorphic to Hn with
the scalar product

〈x|y〉 :=
∑

Re x∗
i yi , x, y ∈ Hn .

15.2.3 Embedding complex numbers in quaternions

Clearly, there exists exactly one continuous injective homomorphism R → H.
However, there exist many continuous injective homomorphisms C → H. Such a
homomorphism is determined uniquely if we fix the image of i ∈ C inside H. It
is natural to denote it also by i.

Let us fix such a homomorphism C → H. Now H becomes a two-dimensional
vector space over the field C. The map

H � x �→ 1
2
(x− ixi) ∈ C (15.3)
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is a projection. H is equipped with a sesquilinear scalar product

(x|y) :=
1
2
(yx∗ − iyx∗i). (15.4)

In fact, by (15.3), the values of this scalar product are in C. The computation

(x|zy) =
1
2
(zyx∗ − izyx∗i) = z(x|y),

(zx|y) =
1
2
(yx∗z − iyx∗zi) = (x|y)z, z ∈ C,

shows that (15.4) is sesquilinear.
Note that the real scalar product is compatible with the complex scalar prod-

uct: 〈x|y〉 = Re(x|y).
(1, j) is an example of an o.n. basis of H w.r.t. (15.4).
If we fix an embedding (15.3), then quaternionic vector spaces can be re-

interpreted as complex vector spaces, and quaternionic Hilbert spaces as complex
Hilbert spaces.

Definition 15.8 If X is a quaternionic vector space, then XC will denote the
same X understood as a complex space. It will be called the complex form of X .

15.2.4 Matrix representation of quaternions

Quaternions can be represented by the Pauli matrices multiplied by i:

π(1) =
[

1 0
0 1

]
, π(i) =

[
i 0
0 −i

]
, π(j) =

[
0 1
−1 0

]
, π(k) =

[
0 i
i 0

]
.

Thus we obtain a representation of quaternions on the Hilbert space C2 :

π : H → B(C2). (15.5)

In this representation,

π(x∗) = π(x)∗, |x| =
√

det π(x). (15.6)

We have

π(H) =
{
λU : U ∈ SU(2), λ ∈ [0,∞[

}
.

Another useful relation, which depends on the representation chosen above, is

π(H) =
{
A ∈ B(C2) : A = RAR−1}, (15.7)

where A is the usual complex conjugation of the matrix A and R = π(j). Note
that RR = −1l.

If we replace (15.5) by Wπ(·)W ∗ for some unitary W , then R is replaced by
RW := WRW

∗
. Note that RW RW = −1l as well.
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15.2.5 Real simple algebras

It is well known that one can classify all simple finite-dimensional algebras over
C and R. The complex case is particularly simple.

Theorem 15.9 Let A be a complex finite-dimensional simple algebra. Then there
exists a positive integer n such that A is isomorphic to C(n).

The corresponding classification in the real case is more complicated.

Theorem 15.10 Let A be a real finite-dimensional simple algebra. Then there
exists a positive integer n such that A is isomorphic to C(n), R(n) or H(n).

Moreover, suppose that π : A→ L(V) is a representation of A in a complex
space V. (Such a representation always exists.) Define the complex conjugate
representation π : A→ L(V) by π(A) := π(A), A ∈ A. Then the following are
true:

(1) A � C(n) iff there exists no R : V → V linear invertible such that π(A)R =
Rπ(A).

(2) A � R(n) iff there exists R : V → V linear invertible such that π(A)R =
Rπ(A) and RR = 1l.

(3) A � H(n) iff there exists R : V → V linear invertible such that π(A)R =
Rπ(A) and RR = −1l.

If π is irreducible, then R in (2) and (3) is defined uniquely up to a phase factor.

Remark 15.11 Note that we have the following equivalent versions of (1), (2)
and (3) of the above theorem:

(1) There exists no anti-linear invertible χ on V such that π(A)χ = χπ(A).
(2) There exists an anti-linear invertible χ on V such that π(A)χ = χπ(A) and

χ2 = 1l.
(3) There exists an anti-linear invertible χ on V such that π(A)χ = χπ(A) and

χ2 = −1l.

We can pass from χ to R by χv = Rv.

In particular, R(n) can be embedded in C(n), and then R = 1l. H(n) can be
embedded in C(2)⊗ C(n), so that R = π(j)⊗ 1l.

15.3 Clifford relations over Rq ,p

Let us consider an n-dimensional vector space over R equipped with a non-
degenerate symmetric form ν. All such forms are determined by their signa-
ture, that is, a pair of non-negative integers q, p with n = q + p, so that by an
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appropriate choice of a basis the form ν can be written as

y·νy = −
q∑

j=1

(yj )2 +
n∑

j=q+1

(yj )2 . (15.8)

Definition 15.12 The vector space Rn equipped with form (15.8) will be denoted
Rq ,p .

In this section we will study representations of Clifford relations over Rq ,p .

Definition 15.13 A representation of Clifford relations will then be called a
real, complex, resp. quaternionic representation, if it acts on a real, complex,
resp. quaternionic space V. Elements of V will be called real, complex, resp.
quaternionic spinors.

Of course, the complex case is the most important.

15.3.1 Basic facts

Let

Rq ,p � y �→ γπ (y) ∈ L(V) (15.9)

be a Clifford representation.

Definition 15.14 We set γπ
i := γπ (ei), where ei is the canonical basis of Rq ,p ,

and the volume element of the representation γπ is defined as

ωπ = γπ
1 · · · γπ

n . (15.10)

Proposition 15.15 Consider the Clifford representation (15.9). Then

Rq ,p � y �→ −γπ (y) ∈ L(V) (15.11)

is also a Clifford representation. If n is even, then

ωπ γπ (y)(ωπ )−1 = −γπ (y),

so ωπ implements the equivalence between (15.9) and (15.11).

The following proposition is proven by mimicking the arguments of Thms.
12.27 and 12.28. Recall that q + p = n.

Proposition 15.16 (1) Let n be even. Then all complex irreducible Clifford
representations over Rq ,p are equivalent and act on Cn/2 .

(2) Let n be odd. Then there exist exactly two inequivalent complex irreducible
Clifford representations over Rq ,p . Moreover, if (15.9) is irreducible, then so
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is (15.11), and they are inequivalent. They act on C(n−1)/2 and satisfy

ωπ = ±i(n−1)/2+q1l. (15.12)

(3) If γπ is an irreducible complex Clifford representation, then the complex alge-
bra generated by γπ (y), y ∈ Y, is isomorphic to C(2[n ]/2).

The following proposition shows that it is easy to pass from the signature q, p

to p, q.

Proposition 15.17 Suppose that V is complex. Let the linear map ε : Rp,q →
Rq ,p be defined by εej = eq+j for 1 ≤ j ≤ p, εep+j = ej for 1 ≤ j ≤ q, where
e1 , . . . , en is the canonical basis. Then

Rp,q � y �→ iγπ (εy) ∈ L(V) (15.13)

is a representation of Clifford relations.

15.3.2 Charge reversal

In this section we consider a representation (15.9) of Clifford relations in a com-
plex space V. For simplicity, we drop the superscript π.

Definition 15.18 Suppose that χ+ and χ− are anti-linear operators on V.

(1) χ+ is called a real charge reversal if

χ+γ(y)χ−1
+ = γ(y), χ2

+ = 1l.

(2) χ+ is called a quaternionic charge reversal if

χ+γ(y)χ−1
+ = γ(y), χ2

+ = −1l.

(3) χ− is called a pseudo-real charge reversal if

χ−γ(y)χ−1
− = −γ(y), χ2

− = 1l.

(4) χ− is called a pseudo-quaternionic charge reversal if

χ−γ(y)χ−1
− = −γ(y), χ2

− = −1l.

In the case of an irreducible representation, the operators χ± are determined
uniquely up to a phase factor.

Theorem 15.19 A complex irreducible representation of Clifford relations over
Rq ,p possesses a charge reversal of the following types:
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p− q (mod 8)

0 real pseudo-real
1 real
2 real pseudo-quaternionic
3 pseudo-quaternionic
4 quaternionic pseudo-quaternionic
5 quaternionic
6 quaternionic pseudo-real
7 pseudo-real

If both χ− and χ+ exist (which is the case for all even n), then χ+χ− is
proportional to ω (see Def. 15.14).

Proof Prop. 15.17 shows that it is enough to prove the real and quaternionic
parts of Thm. 15.19. In fact, (15.9) is irreducible iff (15.13) is. Moreover, (15.9)
possesses a real, resp. quaternionic charge reversal iff (15.13) possesses a pseudo-
real, resp. pseudo-quaternionic charge reversal.

For the proof of Thm. 15.19, it is convenient to use real Pauli matrices, that
is,

θ1 := σ1 =
[

0 1
1 0

]
, θ2 :=

1
i
σ2 =

[
0 −1
1 0

]
, θ3 := σ3 =

[
1 0
0 −1

]
.

Note that θ2
1 = −θ2

2 = θ2
3 = 1l, and

θ1θ2 = −θ2θ1 = θ3 ,

θ2θ3 = −θ3θ2 = θ1 ,

θ3θ1 = −θ1θ3 = θ2 .

Moreover, R(2) is generated by θ1 , θ2 .
Let us now start the main part of the proof. Recall that n = q + p. For any

(q, p) with m = [(q + p)/2], we will construct a family of matrices in R(2m ),

γq,p
1 , . . . , γq,p

q+p ,

such that

[γq,p
i , γq,p

j ]+ = 0, 0 ≤ i < j ≤ n,

(γq,p
j )2 = −1l for q distinct j and (γq,p

j )2 = 1l for p distinct j. If possible, we will
also construct a real matrix Rq,p

+ such that Rq,p
+ γq,p

j (Rq,p
+ )−1 = γq,p

j and (Rq,p
+ )2 =

±1l.
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First assume that q + p is even. The case q = p is particularly easy. We
set

γq,q
2j−1 := θ

⊗(j−1)
3 ⊗ θ1 ,

γq,q
2j := θ

⊗(j−1)
3 ⊗ θ2 , j = 1, . . . , q,

Rq,q
+ := 1l⊗q . (15.14)

For q < p, we set

γq,p
2j := iγ

q + p
2 , q + p

2
2j , j = 1, . . . ,

p− q

2
;

γq,p
k := γ

q + p
2 , q + p

2
k , for remaining k;

Rq,p
+ := (θ1 ⊗ θ2)

p −q
4 , for even

p− q

2
, then (Rq,p

+ )2 = (−1l)
p −q

4 ;

Rq,p
+ := (θ1 ⊗ θ2)

p −q −2
4 ⊗ θ1 ⊗ θp

3 , for odd
p− q

2
, then (Rq,p

+ )2 = (−1l)
p −q −2

4 .

For q > p, we define

γq,p
2j−1 := iγ

q + p
2 , q + p

2
2j−1 , j = 1, . . . ,

q − p

2
;

γq,p
k := γ

q + p
2 , q + p

2
k , for remaining k;

Rq,p
+ := (θ2 ⊗ θ1)

q −p
4 , for even

p− q

2
, then (Rq,p

+ )2 = (−1l)
p −q

4 ;

Rq,p
+ := (θ2 ⊗ θ1)

p −q + 2
4 ⊗ θ2 ⊗ θp

3 , for odd
p− q

2
, then (Rq,p

+ )2 = (−1l)
p −q −2

4 .

This ends the proof of the real and quaternionic cases for q + p even.
Next assume that q + p is odd. This time, the case q + 1 = p is particularly

easy. We set

γq,q+1
2j−1 := θ

⊗(j−1)
3 ⊗ θ1 ,

γq,q+1
2j := θ

⊗(j−1)
3 ⊗ θ2 , j = 1, . . . , q,

γq,q+1
2q+1 := θ⊗q

3 ,

Rq,q+1
+ := 1l⊗q . (15.15)

For q < p− 1, we set

γq,p
2j := iγ

q + p −1
2 , q + p + 1

2
2j , j = 1, . . . ,

p− q − 1
2

;

γq,p
k := γ

q + p −1
2 , q + p + 1

2
k , for remaining k;

Rq,p
+ := (θ1 ⊗ θ2)

p −q −1
4 , for even

p− q − 1
2

, then (Rq,p
+ )2 = (−1l)

p −q −1
4 ;

Rq,p
+ does not exist for odd

p− q − 1
2

.
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For q > p− 1, we define

γq,p
2j−1 := iγ

q + p −1
2 , q + p + 1

2
2j−1 , j = 1, . . . ,

q − p + 1
2

;

γq,p
k := γ

q + p −1
2 , q + p + 1

2
k , for remaining k;

Rq,p
+ := (θ2 ⊗ θ1)

q −p + 1
4 , for even

p− q − 1
2

, then (Rq,p
+ )2 = (−1l)

p −q −1
4 ;

Rq,p
+ does not exist for odd

p− q − 1
2

.

This ends the proof of the real and quaternionic cases for q + p odd. �

15.3.3 Real spinors

In this subsection we consider real representations of Clifford relations.
Note that if we have a Clifford representation on a real space, then by

replacing this space with its complexification we obtain a complex Clifford
representation.

Conversely, if we have a Clifford representation on a complex space V equipped
with a charge reversal χ+ of real type, then we can decompose V into a direct
sum of real subspaces, V = Vχ+ ⊕ V−χ+ , where

Vχ+ := {v ∈ V : χ+v = v}, V−χ+ := {v ∈ V : χ+v = −v}.

Clearly, we can restrict the representation of Clifford relations to real spaces Vχ+

and V−χ+ .
Suppose that p− q equals 0, 1 or 2 modulo 8. Recall that in this case irre-

ducible complex Clifford representations are equipped with a real type charge
conjugation. Therefore, there exists a real representation of Clifford relations over
Rq ,p in R2[n / 2 ]

. If γπ is such a representation, then the real algebra generated by
γπ (y), y ∈ Y, equals R(2[n/2]).

Clifford representations possessing a real type charge reversal that appeared
in the proof of Thm. 15.19 used complex matrices. It is possible to redefine those
representations so that they involve purely real matrices. Such representations
are often more complicated than those appearing in the proof of Thm. 15.19. In
what follows we will construct such Clifford representations for all real cases of
(q, p). They will be generalizations of the Majorana representation, well known
in physics in the case (1, 3).

First recall that for q = p the representation described in (15.14) involved only
real matrices. Then we describe real representations with one of q, p equal to zero
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and the other ≤ 8. First we consider the Euclidean case:

γ0,1
1 := 1l, γ0,2

1 := θ1 , γ0,8
1 := θ1 ⊗ 1l⊗ 1l⊗ 1l,

γ0,2
2 := θ3 , γ0,8

2 := θ3 ⊗ 1l⊗ 1l⊗ 1l,
γ0,8

3 := θ2 ⊗ θ2 ⊗ θ1 ⊗ 1l,
γ0,8

4 := θ2 ⊗ θ2 ⊗ θ3 ⊗ 1l,
γ0,8

5 := θ2 ⊗ 1l⊗ θ2 ⊗ θ1 ,

γ0,8
6 := θ2 ⊗ 1l⊗ θ2 ⊗ θ3 ,

γ0,8
7 := θ2 ⊗ θ1 ⊗ 1l⊗ θ2 ,

γ0,8
8 := θ2 ⊗ θ3 ⊗ 1l⊗ θ2 ,

ω0,1 := 1l, ω0,2 := θ2 , ω0,8 := θ2 ⊗ θ2 ⊗ θ2 ⊗ θ2 .

Next we consider the anti-Euclidean case:

γ6,0
1 := θ2 ⊗ 1l⊗ 1l, γ7,0

1 := θ2 ⊗ 1l⊗ 1l, γ8,0
1 := θ2 ⊗ 1l⊗ 1l⊗ 1l,

γ6,0
2 := θ1 ⊗ θ2 ⊗ 1l, γ7,0

2 := θ1 ⊗ θ2 ⊗ 1l, γ8,0
2 := θ3 ⊗ θ2 ⊗ θ2 ⊗ θ2 ,

γ6,0
3 := θ1 ⊗ θ1 ⊗ θ2 , γ7,0

3 := θ1 ⊗ θ1 ⊗ θ2 , γ8,0
3 := θ3 ⊗ θ2 ⊗ θ1 ⊗ 1l,

γ6,0
4 := θ1 ⊗ θ3 ⊗ θ2 , γ7,0

4 := θ1 ⊗ θ3 ⊗ θ2 , γ8,0
4 := θ3 ⊗ θ2 ⊗ θ3 ⊗ 1l,

γ6,0
5 := θ3 ⊗ 1l⊗ θ2 , γ7,0

5 := θ3 ⊗ 1l⊗ θ2 , γ8,0
5 := θ3 ⊗ 1l⊗ θ2 ⊗ θ1 ,

γ6,0
6 := θ3 ⊗ θ2 ⊗ θ1 , γ7,0

6 := θ3 ⊗ θ2 ⊗ θ1 , γ8,0
6 := θ3 ⊗ 1l⊗ θ2 ⊗ θ3 ,

γ7,0
7 := θ3 ⊗ θ2 ⊗ θ3 , γ8,0

7 := θ3 ⊗ θ1 ⊗ 1l⊗ θ2 ,

γ8,0
8 := θ3 ⊗ θ3 ⊗ 1l⊗ θ2 ,

ω6,0 := θ2 ⊗ 1l⊗ 1l, ω7,0 := 1l⊗ 1l⊗ 1l, ω8,0 := θ1 ⊗ 1l⊗ 1l⊗ 1l.

Now let us consider a pair q < p. Let p = q + 8r + u, 0 ≤ u < 8. Clearly, u =
0, 1 or 2. Then we set (where we drop the factors of 1l tensor multiplied on the
right)

γq,p
k := γq,q

k , k = 1, . . . , 2q;

γq,p
2q+8i+j := ωq,q ⊗ (ω0,8)⊗i ⊗ γ0,8

j , i = 0, . . . , r − 1, j = 1, . . . , 8;

γq,p
2q+8r+j := ωq,q ⊗ (ω0,8)⊗r ⊗ γ0,u

j , j = 1, . . . , u;

Rq,p
+ := 1l⊗4q ⊗ (R0,8

+ )⊗r ⊗R0,u
+ . (15.16)

Similarly, for a pair q > p, we write q = p + 8r + u, 0 ≤ u < 8. We have u = 0, 6
or 7. We set

γq,p
k := γp,p

k , k = 1, . . . , 2p;

γq,p
2p+8i+j := ωp,p ⊗ (ω8,0)⊗i ⊗ γ8,0

j , i = 0, . . . , r − 1, j = 1, . . . , 8;

γq,p
2q+8r+j := ωp,p ⊗ (ω8,0)⊗r ⊗ γu,0

j , j = 1, . . . , u;

Rq,p
+ := 1l⊗4p ⊗ (R8,0

+ )⊗r ⊗Ru,0
+ . (15.17)

�
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15.3.4 Quaternionic spinors

In this subsection we consider quaternionic representations of Clifford relations.
Recall that a quaternionic vector space, after embedding C in H, can be inter-

preted as a complex vector space. Therefore, every Clifford representation on a
quaternionic vector space V can be interpreted as a complex Clifford represen-
tation on VC.

Conversely, if we have a complex Clifford representation with a quaternionic
charge reversal χ+, then setting j := χ+ we can consider V as a vector space over
H. The Clifford representation then becomes H-linear.

Suppose that p− q equals 4, 5 or 6 modulo 8. Recall that in this case irre-
ducible complex representations possess a charge conjugation of quaternionic
type. Therefore, there exists a quaternionic representation of Clifford relations
over Rq ,p in H2[n / 2 ]−1

. If γπ is such a representation, then the real algebra gen-
erated by γπ (y), y ∈ Y, equals H(2[n/2]−1).

It is instructive to construct representations of Clifford relations for all quater-
nionic cases of (q, p) by matrices in H

(
2[n/2]

)
.

Note that the matrices 1l, iθ1 , θ2 , iθ3 can be viewed as the generators of quater-
nions. Moreover, a real matrix tensored with a quaternion is a quaternionic
matrix.

Let us first describe quaternionic representations with one of q, p equal to zero
and the other ≤ 8. First we consider the Euclidean case:

γ0,4
1 := θ1 ⊗ 1l, γ0,5

1 := θ1 ⊗ 1l, γ0,6
1 := θ1 ⊗ 1l⊗ 1l,

γ0,4
2 := θ3 ⊗ 1l, γ0,5

2 := θ3 ⊗ 1l, γ0,6
2 := θ3 ⊗ 1l⊗ 1l,

γ0,4
3 := θ2 ⊗ iθ1 , γ0,5

3 := θ2 ⊗ iθ1 , γ0,6
3 := θ2 ⊗ θ1 ⊗ θ2 ,

γ0,4
4 := θ2 ⊗ iθ3 , γ0,5

4 := θ2 ⊗ iθ3 , γ0,6
4 := θ2 ⊗ θ3 ⊗ θ2 ,

γ0,5
5 := θ2 ⊗ θ2 , γ0,6

5 := θ2 ⊗ 1l⊗ iθ1 ,

γ0,6
6 := θ2 ⊗ 1l⊗ iθ3 ,

R0,4
+ := 1l⊗ θ2 , R0,5

+ := 1l⊗ θ2 , R0,6
+ := 1l⊗ 1l⊗ θ2 .

Next we consider the anti-Euclidean case:

γ2,0
1 := θ2 , γ3,0

1 := θ2 , γ4,0
1 := θ2 ⊗ 1l,

γ2,0
2 := iθ1 , γ3,0

2 := iθ1 , γ4,0
2 := θ3 ⊗ θ2 ,

γ3,0
3 := iθ3 , γ4,0

3 := θ3 ⊗ iθ1 ,

γ4,0
4 := θ3 ⊗ iθ3 ,

R2,0
+ := θ2 , R3,0

+ := θ2 , R4,0
+ := 1l⊗ θ2 .

The case of arbitrary q, p is dealt with as in the case of real spinors; see (15.16)
and (15.17). �
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15.3.5 Representations of Clifford relations

on pseudo-unitary spaces

Let V be a finite-dimensional complex vector space and

Rq ,p � y �→ γ(y) ∈ L(V) (15.18)

be a Clifford representation. Recall that V∗ denotes the space of anti-linear func-
tionals on V. Clearly,

Rq ,p � y �→ ±γ(y)∗ ∈ L(V∗) (15.19)

are also Clifford representations. It is natural to ask when (15.18) and (15.19)
are equivalent. The following proposition answers this question for irreducible
representations.

Proposition 15.20 Let (15.18) be irreducible.

(1) There exists an invertible λ+ ∈ Lh(V,V∗) such that

γ(y)∗ = λ+γ(y)λ−1
+

iff p is odd or q is even.
(2) There exists an invertible λ− ∈ Lh(V,V∗) such that

−γ(y)∗ = λ−γ(y)λ−1
−

iff q is odd or p is even.

Proof Let γ1 , . . . , γn be an irreducible Clifford representation in the canonical
basis of Rq ,p . Then writing γj = iφj , j = 1, . . . , q and γj = φj , j = q + 1, . . . , n,
we obtain an irreducible Clifford representation over Rn , φ1 , . . . , φn . On the
space V we can fix a scalar product such that φi = φ∗

i , so that we obtain a CAR
representation. This scalar product allows us to identify the space V with V∗.

Obviously, γ∗
j = −γj , j = 1, . . . , q, and γ∗

j = γj , j = q + 1, . . . , n.
Now set

λ+ := ±iq/2γ1 · · · γq , even q;

λ− := ±i(q+1)/2γ1 · · · γq , odd q;

λ− := ±ip/2γq+1 · · · γn , even p;

λ+ := ±i(p−1)/2γq+1 · · · γn , odd p.

We check that λ∗
± = λ±, λ2

± = 1l and λ±γi = ±γ∗
i λ±.

Note that if n is odd, then we obtain two distinct formulas for λ+ or λ−. Using
(15.12), we easily see that they define the same operator. �

If the assumptions of Prop. 15.20 (1) are satisfied, so that λ+ exists, we endow
the space V with a non-degenerate Hermitian form

V × V � (v1 , v2) �→ v1 · λ+v2 .
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Definition 15.21 For every A ∈ L(V), we define its λ+ -adjoint, denoted A†, by

v1 · λ+Av2 = A†v1 · λ+v2 .

We have

γ(y)† = γ(y), y ∈ Y. (15.20)

If π : Cliff(Rq ,p) → L(V) is a representation, then

π(A)† = π(A†), A ∈ Cliff(Rq ,p). (15.21)

If we replace λ+ with λ−, then instead of (15.20) we have

γ(y)† = −γ(y), y ∈ Y.

Instead of (15.21), we have:

π(A)† = π(A†), A ∈ Cliff0(Rq ,p). (15.22)

15.4 Clifford algebras over Rq ,p

In this section we continue to study Clifford relations over Rq ,p . We adopt the
representation-independent point of view: we concentrate on the Clifford algebra
Cliff(Rq ,p).

For n = 0, 1, 2, Cliff(Rn,0) are division algebras. In fact, Cliff(R0,0) = R,
Cliff(R1,0) = C and Cliff(R2,0) = H.

15.4.1 Form of Clifford algebras for a general signature

Let q, p be arbitrary non-negative integers, n = q + p and m := [(q + p)/2]. Let
us consider the real algebra Cliff(Rq ,p).

We have the following counterpart of Def. 15.14:

Definition 15.22 We will write γi := γ(ei), where ei is the canonical basis of
Rq ,p . The volume element of Cliff(Rq ,p) will be denoted by

ω = γ1 · · · γn . (15.23)

Remark 15.23 In the case n = 4 with the Lorentz signature, particle physicists
often denote the operator ω by γ5 . This notation is so popular that it is sometimes
used in the case of a dimension different from 4.

It is possible to describe Cliff(Rq ,p) for an arbitrary q, p. Table 15.2, a well-
known table of real Clifford algebras, should be compared with the analogous
table for the complex case (see Table 15.1, Subsect. 15.1.3).

In the case of n odd all the algebras Cliff(Rq ,p) have a non-trivial center
spanned by 1l, ω.

If ω2 = 1l, which corresponds to cases 1 and 5, Cliff(Rq ,p) splits into a direct
sum and ω � 1l⊕ (−1l).
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Table 15.2 Form of Cliff(Rq ,p)

p − q (mod 8) ω2 Cliff0 (Rq ,p ) Cliff(Rq ,p )

0 1l C(2m −1 ) R(2m )
1 1l R(2m ) R(2m ) ⊕ R(2m )
2 −1l R(2m −1 ) ⊕ R(2m −1 ) R(2m )
3 −1l R(2m ) C(2m )
4 1l C(2m −1 ) H(2m −1 )
5 1l H(2m −1 ) H(2m −1 ) ⊕ H(2m −1 )
6 −1l H(2m −2 ) ⊕ H(2m −2 ) H(2m )
7 −1l H(2m −1 ) C(2m )

If ω2 = −1l, which corresponds to cases 3 and 7, the algebras are complex and
ω = i1l.

In the case p− q ≡ 0, 1, 2 (mod 8), Cliff(Rq ,p) can be represented as real
matrices, which will correspond to the real type in Thm. 15.19. In the case
p− q ≡ 4, 5, 6 (mod 8), Cliff(Rq ,p) can be represented as quaternionic matrices,
which corresponds to the quaternionic type in Thm. 15.19.

C⊗ Cliff(Rq ,p) coincides with the algebra Cliff(Cn ). In addition, it is equipped
with a unique complex conjugation such that Cliff(Rq ,p) consists of elements in
C⊗ Cliff(Rq ,p) fixed by this conjugation.

There exists a unique isomorphism of complex algebras ρ : C⊗ Cliff(Rq ,p) →
C⊗ Cliff(Rp,q ) satisfying

ρ(γ(y)) = iγ(y), y ∈ Y. (15.24)

(Note that on the left γ(y) is an element of C⊗ Cliff(Rq ,p), and on the right of
C⊗ Cliff(Rp,q ).) Under this isomorphism we have

ρ
(
Cliff0(Rq ,p)

)
= Cliff0(Rp,q ),

ρ
(
Cliff1(Rq ,p)

)
= iCliff1(Rp,q ).

15.4.2 Pseudo-Euclidean group

Recall that we can define the group O(Rq ,p) of linear transformations that pre-
serve the form (15.8). Obviously, we have a natural isomorphism O(Rq ,p) �
O(Rp,q ). The determinant defines a homomorphism of O(Rq ,p) into {1,−1}. Ele-
ments of O(Rq ,p) with the determinant 1 form a subgroup SO(Rq ,p) � SO(Rp,q ).
We have the exact sequence

1 → SO(Rq ,p) → O(Rq ,p) → Z2 → 1. (15.25)
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Definition 15.24 For any r ∈ O(Rq ,p),

r̂
(
γ(y)
)

= γ(ry), y ∈ Y,

defines a unique automorphism r̂ of Cliff(Rq ,p).

We have a homomorphism

O(Rq ,p) � r �→ r̂ ∈ Aut
(
Cliff(Rq ,p)

)
.

15.4.3 Pin group for a general signature

Definition 15.25 We define Pin(Rq ,p) as the set of all U ∈ Cliff(Rq ,p) such
that UU† = 1l or UU† = −1l, and{

Uγ(y)U−1 : y ∈ Y} =
{
γ(y) : y ∈ Y}.

We set

Spin(Rq ,p) := Pin(Rq ,p) ∩ Cliff0(Rq ,p).

Proposition 15.26 Let U ∈ Pin(Rq ,p). Then there exists a unique r ∈ O(Rq ,p)
such that

Uγ(y)U−1 = det(r)γ(ry), y ∈ Y. (15.26)

The map Pin(Rq ,p) → O(Rq ,p) obtained this way is a surjective homomorphism
of groups.

Definition 15.27 If (15.26) is satisfied, we say that U det-implements r.

Theorem 15.28 Let r ∈ O(Rq ,p).

(1) The set of elements of Cliff(Rq ,p) det-implementing r consists of a pair of
operators differing by sign, ±Ur = {Ur ,−Ur}.

(2) r ∈ SO(Rq ,p) iff Ur is even; r ∈ O(Rq ,p)\SO(Rq ,p) iff Ur is odd.
(3) If r1 , r2 ∈ O(Rq ,p), then Ur1 Ur2 = ±Ur1 r2 .

The above statements can be summarized by the following commuting diagram
of Lie groups and their continuous homomorphisms, where all vertical and hor-
izontal sequences are exact:

1 1
↓ ↓

1 → Z2 → Z2 → 1
↓ ↓ ↓

1 → Spin(Rq ,p) → Pin(Rq ,p) → Z2 → 1
↓ ↓ ↓

1 → SO(Rq ,p) → O(Rq ,p) → Z2 → 1
↓ ↓ ↓
1 1 1

(15.27)
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Moreover, Spin(Rq ,p) coincides with Spin(Rp,q ) in the sense that if Uq,p
r ∈

Cliff0(Rq ,p) and Up,q
r ∈ Cliff0(Rp,q ) both implement r ∈ O(Rq ,p) = O(Rp,q ), then

Uq,p
r = ±Up,q

r , where we use the isomorphism described at the end of Subsect.
15.4.1.

15.5 Notes

The so-called spinor representations of orthogonal groups were studied by Cartan
(1938) and Brauer–Weyl (1935).

In quantum physics, Clifford relations and spinor representations appear in
the description of spin 1

2 particles. In the non-relativistic case, where the group
Spin(3) � SU(2) replaces the group of rotations SO(3), this is due to Pauli
(1927). In the relativistic case, where the group Spin↑(1, 3) � SL(2, C) replaces
the Lorentz group, this is due to Dirac (1928).

Introductions to Clifford algebras can be found in Lawson–Michelson (1989)
and Trautman (2006).
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