ON SOME FRACTIONAL INTEGRALS AND THEIR APPLICATIONS

by J. S. LOWNDES

(Received 4th May 1984)

1. The symmetric operators

In previous papers [3, 4] the author has discussed the symmetric generalised ErdélyiKober operators of fractional integration defined by

$$
\begin{align*}
& \Im_{\lambda}(\eta, \alpha) F(x)=2^{\alpha} \lambda^{1-\alpha} x^{-2(\alpha+\eta)} \int_{0}^{x} u^{2 \eta+1}\left(x^{2}-u^{2}\right)^{(\alpha-1) / 2} J_{\alpha-1}\left\{\lambda \sqrt{ }\left(x^{2}-u^{2}\right)\right\} F(u) d u, \tag{1}\\
& \Omega_{\lambda}(\eta, \alpha) F(x)=2^{\alpha} \lambda^{1-\alpha} x^{2 \eta} \int_{x}^{\infty} u^{1-2(\alpha+\eta)}\left(u^{2}-x^{2}\right)^{(\alpha-1) / 2} J_{\alpha-1}\left\{\lambda \sqrt{ }\left(u^{2}-x^{2}\right)\right\} F(u) d u, \tag{2}
\end{align*}
$$

where $\alpha>0, \lambda \geqq 0$ and the operators $\mathfrak{I}_{i \lambda}(\eta, \alpha)$ and $\Omega_{i \lambda}(\eta, \alpha)$ defined as in equations (1) and (2) respectively but with $J_{\alpha-1}$, the Bessel function of the first kind replaced by $I_{\alpha-1}$, the modified Bessel function of the first kind.

In this paper we introduce two new operators of fractional integration and discuss some of their properties together with a number of their applications.

2. The unsymmetric operators

In the definitions (1) and (2) $\lambda \geqq 0$ is a constant. If we now set $\lambda=k x, k \geqq 0$ we find, after a simple change of variables, that they become the unsymmetric operators defined by

$$
\begin{align*}
& I_{k}(\eta, \alpha) f(x)=2^{\alpha-1} k^{1-\alpha} x^{-(\alpha+\eta)} \int_{0}^{x} u^{\eta}\left[\frac{x-u}{x}\right]^{(\alpha-1) / 2} J_{\alpha-1}\left\{k \sqrt{ }\left(x^{2}-x u\right)\right\} f(u) d u, \tag{3}\\
& K_{k}(\eta, \alpha) f(x)=2^{\alpha-1} k^{1-\alpha} x^{n} \int_{x}^{\infty} u^{-(\alpha+\eta)}\left[\frac{u-x}{x}\right]^{(\alpha-1) / 2} J_{\alpha-1}\left\{k \sqrt{ }\left(x u-x^{2}\right)\right\} f(u) d u, \tag{4}
\end{align*}
$$

where $\alpha>0$ and the operators $I_{i k}(\eta, \alpha)$ and $K_{i k}(\eta, \alpha)$ defined by equations (3) and (4) respectively with $J_{\alpha-1}$ replaced by $I_{\alpha-1}$.

When $k=0$ the above operators reduce to the familiar Erdélyi-Kober operators of
fractional integration given by

$$
\begin{gather*}
I_{0}(\eta, \alpha) f(x)=I_{x}^{\eta, \alpha} f(x)=x^{-(\alpha+\eta)} I_{x}^{\alpha} x^{\eta} f(x) \tag{5}\\
K_{0}(\eta, \alpha) f(x)=K_{x}^{\eta, \alpha} f(x)=x^{\eta} K_{x}^{\alpha} x^{-(\alpha+\eta)} f(x) \tag{6}
\end{gather*}
$$

where

$$
\begin{align*}
& I_{x}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-u)^{\alpha-1} f(u) d u, \quad \alpha>0 \tag{7}\\
& K_{x}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{\infty}(u-x)^{\alpha-1} f(u) d u, \quad \alpha>0 \tag{8}
\end{align*}
$$

From the definitions (3) to (8) it can easily be shown that the unsymmetric operators have the following properties,

$$
\begin{gather*}
I_{p}(\eta, \alpha) x^{\sigma} f(x)=x^{\sigma} I_{p}(\eta+\sigma, \alpha) f(x), \tag{9}\\
K_{p}(\eta, \alpha) x^{\sigma} f(x)=x^{\sigma} K_{p}(\eta-\sigma, \alpha) f(x), \tag{10}\\
I_{p}(\eta, \alpha) I_{x}^{\eta-\beta, \beta} f(x)=I_{p}(\eta-\beta, \alpha+\beta) f(x), \tag{11}\\
K_{p}(\eta, \alpha) K_{x}^{\eta+\alpha, \beta} f(x)=K_{p}(\eta, \alpha+\beta) f(x), \tag{12}
\end{gather*}
$$

where $\alpha, \beta>0$ and $p=k$ or $p=i k, k \geqq 0$.
In this paper we shall confine our attention to the operators $I_{p}(\eta, \alpha)$ and postpone a consideration of the operators $K_{p}(\eta, \alpha)$ until a later date.

3. The operators $I_{p}(\eta, \alpha), \alpha>0$

We shall now show that there is a useful connection between the operators $I_{p}(\eta, \alpha)$ and the differential operator $M_{\gamma}^{(x)}$ defined by

$$
\begin{equation*}
M_{\gamma}^{(x)}=x^{-(\gamma-1)} D x^{\gamma+1} D=x^{2} D^{2}+x(\gamma+1) D \tag{13}
\end{equation*}
$$

where

$$
D=\frac{d}{d x}
$$

Theorem 1. If $\alpha>0, f \in C^{2}(0, b), b>0, x^{n+m} D^{m} f(x), m=0,1,2$ are integrable at the origin and $x^{\eta+1} f(x) \rightarrow 0$ as $x \rightarrow 0+$; then

$$
\begin{equation*}
I_{p}(\eta, \alpha) M_{2(\alpha+\eta)}^{(x)} f(x)=\left[M_{2(\alpha+\eta)}^{(x)}+(p x)^{2}\right] I_{p}(\eta, \alpha) f(x), \quad x>0, \tag{14}
\end{equation*}
$$

where $p=k$ or $p=i k, k \geqq 0$.

Proof. We set

$$
\begin{equation*}
H(x)=I_{k}(\eta, \alpha) f(x)=2^{\alpha-1}(k x)^{1-\alpha} \int_{0}^{1} t^{\eta}(1-t)^{(\alpha-1) / 2} J_{\alpha-1}(\xi) f(x t) d t \tag{15}
\end{equation*}
$$

where $\alpha>0$ and $\xi=k x \sqrt{ }(1-t)$.
Since $H(x)$ is differentiable we have

$$
\begin{align*}
H^{\prime}(x)= & -2^{\alpha-1} k(k x)^{1-\alpha} \int_{0}^{1} t^{\eta}(1-t)^{\alpha / 2} J_{\alpha}(\xi) f(x t) d t \\
& +2^{\alpha-1}(k x)^{1-\alpha} \int_{0}^{1} t^{1+\eta}(1-t)^{(\alpha-1) / 2} J_{\alpha-1}(\xi) f^{\prime}(x t) d t . \tag{16}
\end{align*}
$$

An application of the operator $x^{-(\eta-1)} D x^{\eta+1}$ to both sides of the above equation yields the expression

$$
\begin{align*}
M_{\eta}^{(x)} H(x)= & I_{k}(\eta, \alpha) M_{\eta}^{(x)} f(x) \\
& +2^{\alpha-1}(k x)^{2-\alpha} \int_{0}^{1} t^{\eta}(1-t)^{\alpha / 2}\left[\xi J_{\alpha+1}(\xi)-(\eta+2) J_{\alpha}(\xi)\right] f(x t) d t \\
& -2^{\alpha} x(k x)^{2-\alpha} \int_{0}^{1} t^{1+\eta}(1-t)^{\alpha / 2} J_{\alpha}(\xi) f^{\prime}(x t) d t . \tag{17}
\end{align*}
$$

Integrating the last integral by parts and noting that by assumption the integrated part vanishes, we find, after some manipulation, that equation (17) can be brought to the form

$$
\begin{align*}
M_{\eta}^{(x)} H(x)+(k x)^{2} H(x)= & I_{k}(\eta, \alpha) M_{\eta}^{(x)} f(x) \\
& +2^{\alpha-1}(k x)^{2-\alpha}(2 \alpha+\eta) \int_{0}^{1} t^{\eta}(1-t)^{\alpha / 2} J_{\alpha}(\xi) f(x t) d t . \tag{18}
\end{align*}
$$

Finally, on using equation (16), we have

$$
\begin{equation*}
M_{\eta}^{(x)} H(x)+x(2 \alpha+\eta) H^{\prime}(x)+(k x)^{2} H(x)=I_{k}(\eta, \alpha)\left[M_{\eta}^{(x)} f(x)+x(2 \alpha+\eta) f^{\prime}(x)\right], \tag{19}
\end{equation*}
$$

which is the required result.
Similarly we can prove the theorem when $p=i k$.

4. Applications

(a) As a first example we consider the generalised biaxially symmetric potential equation (GBSPE)

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{2 \alpha}{x} \frac{\partial u}{\partial x}+\frac{2 \beta}{y} \frac{\partial u}{\partial y}=0, \quad \alpha, \beta>0 \tag{20}
\end{equation*}
$$

and confine our attention to solutions $u(x, y) \in C^{2}$ in some neighbourhood of the origin that are even in x and y. In this case we must have $u_{x}(0, y)=u_{y}(x, 0)=0$.

Expressed in polar coordinates $x=r \cos \theta, y=r \sin \theta$, with $u=u(r, \theta)$, the above equation is

$$
\begin{equation*}
M_{2(\alpha+\beta)}^{(r)} u+\frac{\partial^{2} u}{\partial \theta^{2}}+2(\beta \cot \theta-\alpha \tan \theta) \frac{\partial u}{\partial \theta}=0 \tag{21}
\end{equation*}
$$

where

$$
M_{\gamma}^{(r)}=r^{2} \frac{\partial^{2}}{\partial r^{2}}+r(\gamma+1) \frac{\partial}{\partial r}
$$

On separating the variables we find that a complete set of solutions of equation (21) that are analytic in a neighbourhood of the origin is given by

$$
\begin{equation*}
u_{n}(r, \theta)=a_{n} r^{2 n} P_{n}^{(\beta-1 / 2, \alpha-1 / 2)}(\cos 2 \theta), \quad n=0,1,2, \ldots \tag{22}
\end{equation*}
$$

where the $P_{n}^{(a, b)}(\xi)$ are the Jacobi polynomials [5] and the a_{n} are constants.
In order to obtain a complete set of solutions of the corresponding generalised biaxially symmetric Helmholtz equation (GBSHE)

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{2 \alpha}{x} \frac{\partial v}{\partial x}+\frac{2 \beta}{y} \frac{\partial v}{\partial y}+k^{2} v=0, \quad k \geqq 0 \tag{23}
\end{equation*}
$$

we can use the result of Theorem 1 in the following way.
Applying the operator $I_{k}(\beta, \alpha)$ to equations (21) and (22) we find that a complete set of solutions of the GBSHE

$$
\begin{equation*}
M_{2(\alpha+\beta)}^{(r)} v+\frac{\partial^{2} v}{\partial \theta^{2}}+2(\beta \cot \theta-\alpha \tan \theta) \frac{\partial v}{\partial \theta}+(k r)^{2} v=0 \tag{24}
\end{equation*}
$$

that are analytic about the origin, is given by

$$
\begin{equation*}
v_{n}(r, \theta)=I_{k}(\beta, \alpha) u_{n}(r, \theta)=a_{n} P_{n}^{(\beta-1 / 2, \alpha-1 / 2)}(\cos 2 \theta) I_{k}(\beta, \alpha) r^{2 n} \tag{25}
\end{equation*}
$$

On using the definition (3) we have that

$$
\begin{align*}
I_{k}(\beta, \alpha) r^{2 n} & =2^{\alpha-1} r^{2 n}(k r)^{1-\alpha} \int_{0}^{1} t^{\beta+2 n}(1-t)^{(\alpha-1) / 2} J_{\alpha-1}\{k r \sqrt{ }(1-t)\} d t \\
& =2^{\alpha} r^{2 n}(k r)^{1-\alpha} \int_{0}^{\pi / 2} J_{\alpha-1}(k r \sin \phi) \sin ^{\alpha} \phi(\cos \phi)^{4 n+2 \beta+1} d \phi \\
& =\left(\frac{2}{k}\right)^{2 n+\alpha+\beta} \Gamma(2 n+\beta+1) r^{-\alpha-\beta} J_{2 n+\alpha+\beta}(k r) \tag{26}
\end{align*}
$$

where the integral has been evaluated by using a result in [5].

In this way we find that the required set of solutions of the GBSHE is

$$
\begin{equation*}
v_{n}(r, \theta)=A_{n} r^{-\alpha-\beta} J_{2 n+\alpha+\beta}(k r) P_{n}^{(\beta-1 / 2, \alpha-1 / 2)}(\cos 2 \theta), \quad n=0,1,2, \ldots, \tag{27}
\end{equation*}
$$

where the A_{n} are constants and this agrees with the result found in [1].
(b) We next turn our attention to the generalised axially symmetric potential equation in ($n+1$)-variables (GASPEN)

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{s}{\rho} \frac{\partial u}{\partial \rho}=0, \quad s>-1 \tag{28}
\end{equation*}
$$

Introducing the zonal coordinates

$$
\begin{equation*}
x_{i}=r \theta_{i}, i=1,2, \ldots, n ; \quad \rho=r\left[1-\sum_{i=1}^{n} \theta_{i}^{2}\right]^{1 / 2} ; \quad r^{2}=\rho^{2}+\sum_{i=1}^{n} x_{i}^{2} \tag{29}
\end{equation*}
$$

we see that the GASPEN becomes [1]

$$
\begin{equation*}
M_{n+s-1}^{(r)} u+n(s-1) u+\sum_{i=1}^{n} \frac{\partial}{\partial \theta_{i}}\left\{\frac{\partial u}{\partial \theta_{i}}-\theta_{i}\left[\sum_{k=1}^{n} \theta_{k} \frac{\partial u}{\partial \theta_{k}}+(s-1) u\right]\right\}=0 \tag{30}
\end{equation*}
$$

where $u=u(r ; \theta)$ and $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$.
By separating the variables it can be shown that the family of functions

$$
\begin{equation*}
u_{M}(r ; \theta)=b_{M} r^{\mu} V_{M}^{(s)}(\theta) \tag{31}
\end{equation*}
$$

where the b_{M} are constants, form a complete system of solutions of the GASPEN which is analytic about $r=0$.

The $V_{M}^{(s)}(\theta)$ are polynomial functions uniquely determined by their generating function

$$
\begin{equation*}
\left[1-2(a, \theta)+\|a\|^{2}\right]^{1 / 2(1-n-s)}=\sum_{M=0}^{\infty} a^{M} V_{M}^{(s)}(\theta) \tag{32}
\end{equation*}
$$

where

$$
\begin{gathered}
(a, \theta)=\sum_{i=1}^{n} a_{i} \theta_{i},\|a\|^{2}=(a, a), a^{M}=\prod_{i=1}^{n} a_{i}^{m_{i}} \\
M=\left(m_{1}, m_{2}, \ldots, m_{n}\right), \sum_{M=0}^{\infty}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty},
\end{gathered}
$$

and

$$
\begin{equation*}
\mu=|M|=m_{1}+m_{2}+\cdots+m_{n} . \tag{33}
\end{equation*}
$$

Applying the operator $I_{k}\left(-\frac{1}{2}, \frac{1}{2} n+\frac{1}{2} s\right)$ to equations (30) and (31) and using Theorem 1
we find that the solutions of the generalised axially symmetric Helmholtz equation in $(n+1)$-variables (GASHEN)

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial^{2} w}{\partial x_{i}^{2}}+\frac{\partial^{2} w}{\partial \rho^{2}}+\frac{s}{\rho} \frac{\partial w}{\partial \rho}+k^{2} w=0, \quad k \geqq 0, \quad s>-1 \tag{34}
\end{equation*}
$$

which are analytic in a neighbourhood of $r=0$, are of the form

$$
\begin{align*}
w_{M}(r ; \theta) & =b_{M} V_{M}^{(s)}(\theta) I_{k}\left(-\frac{1}{2}, \frac{1}{2} n+\frac{1}{2} s\right) r^{\mu} \\
& =B_{M} V_{M}^{(s)}(\theta) r^{-(n+s-1) / 2} J_{\mu+1 / 2(n+s-1)}(k r) \tag{35}
\end{align*}
$$

where the B_{M} are constants.

5. The operators $I_{p}(\eta, \alpha), \alpha \leqq 0$

To obtain expressions for the operators $I_{p}(\eta, \alpha)$ when α is zero or negative, we write

$$
\begin{equation*}
I_{x}^{\eta-\beta, \beta} f(x)=g(x), f(x)=I_{x}^{\eta,-\beta} g(x) \tag{36}
\end{equation*}
$$

in equation (11) to find that it becomes

$$
\begin{align*}
I_{p}(\eta, \alpha) g(x) & =I_{p}(\eta-\beta, \alpha+\beta) I_{x}^{\eta,-\beta} g(x) \\
& =I_{p}(\eta-\beta, \alpha+\beta) x^{\beta-\eta} I_{x}^{-\beta} x^{\eta} g(x) \\
& =x^{\beta-\eta} I_{p}(0, \alpha+\beta) I_{x}^{-\beta} x^{\eta} g(x), \tag{37}
\end{align*}
$$

where we have used the results (5) and (9).
The right hand side of equation (37) is defined when $\alpha+\beta>0$. Therefore taking $\beta=m$, the positive integer for which $0<\alpha+m \leqq 1$, when $\alpha \leqq 0$ and noting that $I_{x}^{-m}=D^{m}$, we deduce that when $\alpha \leqq 0$ the operators are defined by

$$
\begin{equation*}
I_{p}(\eta, \alpha) g(x)=x^{m-\eta} I_{p}(0, \alpha+m) D^{m} x^{\eta} g(x) . \tag{38}
\end{equation*}
$$

In particular, when $\alpha=0, m=1, D x^{\eta} f(x)$ is integrable at the origin and $x^{\eta} f(x) \rightarrow 0$ as $x \rightarrow 0$, we have the zero-order operators

$$
\begin{align*}
I_{k}(\eta, 0) f(x) & =x^{1-\eta} I_{k}(0,1) D x^{\eta} f(x) \\
& =x^{-\eta} \int_{0}^{x} J_{0}\left\{k \sqrt{ }\left(x^{2}-x u\right)\right\} D u^{\eta} f(u) d u \\
& =f(x)-\frac{k x^{1 / 2-\eta}}{2} \int_{0}^{x} \frac{u^{\eta}}{\sqrt{(x-u)}} J_{1}\left\{k \sqrt{ }\left(x^{2}-x u\right)\right\} f(u) d u \tag{39}
\end{align*}
$$

and

$$
\begin{equation*}
I_{i k}(\eta, 0) f(x)=x^{-\eta} \int_{0}^{x} I_{0}\left\{k \sqrt{ }\left(x^{2}-x u\right)\right\} D u^{\eta} f(u) d u \tag{40}
\end{equation*}
$$

Using the Laplace transform we can establish, for suitable functions f, the following expressions for the inverse operators of zero-order.

$$
\begin{align*}
& I_{k}^{-1}(\eta, 0) f(x)=x^{1-\eta} \frac{\partial}{\partial x} \int_{0}^{x} u^{\eta-1} I_{0}\left\{k \sqrt{ }\left(u x-u^{2}\right)\right\} f(u) d u, \tag{41}\\
& I_{i k}^{-1}(\eta, 0) f(x)=x^{1-\eta} \frac{\partial}{\partial x} \int_{0}^{x} u^{\eta-1} J_{0}\left\{k \sqrt{ }\left(u x-u^{2}\right)\right\} f(u) d u . \tag{42}
\end{align*}
$$

When $\eta=0$ the operators defined by equations (39) and (41) are identical with those introduced by Vekua [6, p. 59].

The following theorem can be proved in a fairly straightforward way.

Theorem 2. If $f \in C^{2}(0, b), b>0, x^{n+m-1} D^{m} f(x), m=0,1,2$, are integrable at the origin and $x^{\eta+m} D^{m} f(x) \rightarrow 0$ as $x \rightarrow 0+$; then

$$
\begin{equation*}
I_{p}(\eta, 0) M_{2 \eta}^{(x)} f(x)=\left[M_{2 \eta}^{(x)}+(p x)^{2}\right] I_{p}(\eta, 0) f(x), \quad x>0, \tag{43}
\end{equation*}
$$

where $p=k$ or $p=i k, k \geqq 0$.

6. Applications

(a) The generalised axially symmetric potential equation (GASPE)

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{2 \alpha}{y} \frac{\partial u}{\partial y}=0, \quad \alpha>0, \tag{44}
\end{equation*}
$$

when expressed in the polar coordinates $x=r \cos \theta, y=r \sin \theta$ becomes

$$
\begin{equation*}
M_{2 \alpha}^{(r)} u+\frac{\partial^{2} u}{\partial \theta^{2}}+2 \alpha \cot \theta \frac{\partial u}{\partial \theta}=0 \tag{45}
\end{equation*}
$$

It is well known that a complete set of solutions of this equation that are analytic in a neighbourhood of the origin is

$$
\begin{equation*}
u_{n}(r, \theta)=a_{n} r^{n} C_{n}^{\alpha}(\cos \theta), \quad n=0,1,2, \ldots, \tag{46}
\end{equation*}
$$

where the a_{n} are constants and $C_{n}^{\alpha}(\cos \theta)$ the Gegenbauer polynomials [5].
Applying the operator $I_{k}(\alpha, 0)$ to equations (45) and (46) and using Theorem 2 , we
find that the corresponding set of solutions of the generalised axially symmetric Helmholtz equation (GASHE)

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{2 \alpha}{y} \frac{\partial v}{\partial y}+k^{2} v=0, \quad k \geqq 0 \tag{47}
\end{equation*}
$$

which are analytic about the origin is given by

$$
\begin{align*}
v_{n}(r, \theta) & =a_{n} C_{n}^{\alpha}(\cos \theta) I_{k}(\alpha, 0) r^{n} \\
& =a_{n}(\alpha+n) C_{n}^{\alpha}(\cos \theta) r^{-\alpha} \int_{0}^{r} J_{0}\left\{k \sqrt{ }\left(r^{2}-r u\right)\right\} u^{\alpha+n-1} d u \\
& =A_{n} C_{n}^{\alpha}(\cos \theta) r^{-\alpha} J_{n+a}(k r), \quad n=0,1,2, \ldots \tag{48}
\end{align*}
$$

where the A_{n} are constants.
(b) As a final example we show that the operators can be used to obtain a formal derivation of the inversion formula for the Kontorovich-Lebedev transform of the function $f(x), 0 \leqq x<\infty$, which is defined by

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} K_{s}(k x) x^{-1} f(x) d x, \quad \operatorname{Re}(s)<0, \quad k \geqq 0 \tag{49}
\end{equation*}
$$

where $K_{s}(k x)$ is the modified Bessel function of the second kind.
Multiplying both sides of the above equation by

$$
2[\Gamma(-s)]^{-1}\left(\frac{k t}{2}\right)^{-s}, \quad t \geqq 0
$$

and applying the Mellin inversion formula we get

$$
\begin{align*}
\frac{1}{2 \pi i_{c}} \int_{-i \infty}^{c+i \infty} \frac{2 F(s)}{\Gamma(-s)}\left(\frac{k t}{2}\right)^{-s} d s & =\frac{-1}{2 \pi i} \int_{0}^{\infty} x^{-1} f(x) d x \int_{c-i \infty}^{c+i \infty} \frac{2 s}{\Gamma(1-s)} K_{s}(k x)\left(\frac{k t}{2}\right)^{-s} d s \\
& =\frac{t}{2 \pi i} \frac{\partial}{\partial t} \int_{0}^{\infty} x^{-1} f(x) d x \int_{c-i \infty}^{c+i \infty} \frac{2}{\Gamma(1-s)} K_{s}(k x)\left(\frac{k t}{2}\right)^{-s} d s \tag{50}
\end{align*}
$$

Making use of the result

$$
\begin{equation*}
\frac{1}{2 \pi i_{c}} \int_{-i \infty}^{c+i \infty} \frac{2}{\Gamma(1-s)} K_{s}(k x)\left(\frac{k t}{2}\right)^{-s} d s=J_{0}\left\{k \sqrt{ }\left(x t-x^{2}\right)\right\} H(t-x), \quad \operatorname{Re}(s)<0 \tag{51}
\end{equation*}
$$

where $H(x)$ is the Heaviside unit function, we find that equation (50) can be written as

$$
\begin{equation*}
I_{i k}^{-1}(0,0) f(t)=\frac{1}{2 \pi i_{c}} \int_{-i \infty}^{c+i \infty} \frac{2}{\Gamma(-s)} F(s)\left(\frac{k t}{2}\right)^{-s} d s \tag{52}
\end{equation*}
$$

where $I_{i k}^{-1}(0,0)$ is the inverse operator defined by equation (42) when $\eta=0$.
Applying the operator $I_{i k}(0,0)$, defined by equation (40), to both sides of the above equation we get

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{2}{\Gamma(-s)} F(s) I_{i k}(0,0)\left(\frac{k x}{2}\right)^{-s} d s \tag{53}
\end{equation*}
$$

Finally, on using the result

$$
I_{i k}(0,0)\left(\frac{k x}{2}\right)^{-s}=\Gamma(1-s) I_{-s}(k x), \quad \operatorname{Re}(s)<0
$$

we see that an inversion formula for the integral transform (49) is given by

$$
\begin{equation*}
f(x)=\frac{i}{\pi} \int_{-i \infty}^{c+i \infty} s F(s) I_{-s}(k x) d s, \quad \operatorname{Re}(s)<0 \tag{54}
\end{equation*}
$$

and this agrees with a result given in [2].

REFERENCES

1. R. P. Gilbert, Function theoretic methods in partial differential equations (Academic Press, 1969).
2. J. S. Lowndes, Parseval relations for Kontorovich-Lebedev transforms, Proc. Edinburgh Math. Soc. 13 (1962), 5-11.
3. J. S. Lowndes, A generalisation of the Erdélyi-Kober operators, Proc. Edinburgh Math. Soc. 17 (1970), 139-148.
4. J. S. Lowndes, An application of some fractional integrals, Glasgow Math. J. 20 (1979), 3541.
5. W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, 3rd ed. (Springer-Verlag, 1966).
6. I. N. Vekua, New methods for solving elliptic equations (North-Holland, 1967).
