A SPECIAL CASE OF THE VANISHING OF A (G, σ) -PRODUCT IN A (G, σ) -SPACE

by K. SINGH

In [1] we constructed a (G, σ) -space and determined a condition which is both necessary and sufficient for the (G, σ) -product of the vectors v_1, v_2, \ldots, v_n to be zero. The purpose of the present paper is to give a criterion for $v_1 \Delta v_2 \Delta \cdots \Delta v_n$ to be zero, in the particular case when V is a unitary space and the group G belongs to a special class of groups which we shall define below. As a result, we get a criterion which is very simple to determine whether $v_1 \Delta v_2 \Delta \cdots \Delta v_n$ is zero or not. We repeat some definitions and results of [1] in order to make this paper self-contained.

1. Let G be a permutation group on the set $I = \{1, 2, 3, ..., n\}$, F an arbitrary field, σ a linear character of G into F*, the multiplicative group of the field F. Consider the Cartesian product $W = V \times V \times \cdots \times V$ (n copies), where V is an *m*-dimensional vector space over F.

1.1 DEFINITION. A mapping $f: W \to U$, where U is any vector space over F, is called (G, σ) iff

$$(w_1, w_2, \ldots, w_n)f = \sigma(g)(w_{g(1)}, w_{g(2)}, \ldots, w_{g(n)})f$$

for all $g \in G$, $w_i \in V$, and $i \in I$.

1.2 DEFINITION. An element $(w_1, w_2, ..., w_n) \in W$ is called a (G, σ) element iff $\exists g \in G$ such that $\sigma(g) \neq 1$ and w_i , $w_{g(i)}$ are linearly dependent for all $i \in I$.

1.3 DEFINITION. A vector space T over F is called a (G, σ) -space of W, iff \exists a mapping τ on W into T such that

(i) τ is multilinear and (G, σ) .

(ii) T has a "Universal mapping property", i.e. if U is any vector space over F and f is any multilinear and (G, σ) mapping of W into U, then \exists a unique linear transformation \overline{f} of T into U, such that $\tau \overline{f} = f$.

In [1] we have shown that, given G, σ , and W, there exists a (G, σ)-space which is unique up to isomorphism.

1.4 Notation. If $(w_1, w_2, \ldots, w_n) \in W$, we denote its image $(w_1, w_2, \ldots, w_n)\tau$ under τ by $w_1 \bigtriangleup w_2 \bigtriangleup \cdots \bigtriangleup w_n$ and call it the (G, σ) -product of the vectors w_1, w_2, \ldots, w_n .

Received by the editors October 17, 1969 and, in revised form, July 21, 1970.

1.5 DEFINITION. An element $(w_1, w_2, ..., w_n) \in W$ is called a trivial element iff $w_1=0$ for some *i*. Otherwise it is called nontrivial.

1.6 REMARK. If $(w_1, w_2, \ldots, w_n) \in W$ is a trivial element, then since τ is multilinear, we have $w_1 \bigtriangleup w_2 \bigtriangleup \cdots \bigtriangleup w_n = 0$. Thus we shall assume from here on that (w_1, w_2, \ldots, w_n) is a nontrivial element of W.

We have the following sufficient condition for $v_1 \triangle v_2 \triangle \cdots \triangle v_n = 0$.

1.7 THEOREM. If $(v_1, v_2, ..., v_n) \in W$ is nontrivial and $a(G, \sigma)$ element, then $v_1 \triangle v_2 \triangle \cdots \triangle v_n = 0$.

Proof. (v_1, v_2, \ldots, v_n) is a (G, σ) element implies there exists $g \in G$ such that $\sigma(g) \neq 1$ and $v_i, v_{g(i)}$ are linearly dependent for all $i \in I$. Let $v_{g(i)} = \lambda_{g(i)}v_i$, where $\lambda_{g(i)} \in F$ for all $i \in I$. We shall first show that $\lambda_{g(1)}\lambda_{g(2)}\ldots\lambda_{g(n)}=1$. Let $g=C_1C_2\ldots C_k$ be the cyclic decomposition of g, which also includes the cycles of length one, if any. Let $D_i = \text{dom } C_i, i=1, 2, \ldots, k$. Then $I = \bigcup_{i=1}^k D_i$ and if $i, j \in I, i \neq j$, then $D_i \cap D_j = \emptyset$. Let $C_i = (\alpha_{i,1}, \alpha_{i,2}, \ldots, \alpha_{i,n_i})$, where $n_i \ge 1$ is the length of the cycle $C_i, i=1, 2, \ldots, k$. Then $n_1 + n_2 + \cdots + n_k = n$.

$$v_{\alpha_{i,n_{i}}} = v_{g(\alpha_{i,n_{i}-1})} = \lambda_{g(\alpha_{i,n_{i}-1})} v_{\alpha_{i,n_{i}-1}} = \cdots = \cdots$$
$$= \lambda_{g(\alpha_{i,n_{i}-1})} \dots \lambda_{g(\alpha_{i,1})} \lambda_{g(\alpha_{i,n_{i}})} v_{\alpha_{i,n_{i}}}.$$

Hence $\prod_{\alpha \in D_i} \lambda_{g(\alpha)} = 1$, and since *i* is arbitrary, we have

$$\prod_{\alpha\in D}\lambda_{g(\alpha)}=\prod_{i=1}^{k}\prod_{\alpha\in D_{i}}\lambda_{g(\alpha)}=1$$

Thus,

$$v_1 \bigtriangleup v_2 \bigtriangleup \cdots \bigtriangleup v_n = (v_1, v_2, \dots, v_n)\tau$$

= $\sigma(g)(v_{g(1)}, v_{g(2)}, \dots, v_{g(n)})\tau$
= $\sigma(g)(\lambda_{g(1)}v_1, \lambda_{g(2)}v_2, \dots, \lambda_{g(n)}v_{g(n)})\tau$
= $\sigma(g) \prod_{\alpha \in D} \lambda_{g(\alpha)}(v_1, v_2, \dots, v_n)\tau$
= $\sigma(g)v_1 \bigtriangleup v_2 \bigtriangleup \cdots \bigtriangleup v_n$

and since $\sigma(g) \neq 1$, we have $v_1 \bigtriangleup v_2 \bigtriangleup \cdots \bigtriangleup v_n = 0$.

1.8 REMARK. The converse of Theorem 1.7 is false; for take $G = S_3$, and $\sigma: G \rightarrow F^*$, defined by

$$\sigma(g) = \begin{cases} 1 \text{ if } g \text{ is an even permutation,} \\ -1 \text{ if } g \text{ is an odd permutation.} \end{cases}$$

Then the (G, σ) space in this case is the Grassman space $\bigwedge^3 V$. Clearly $(v_1, v_2, v_1+v_2) \in W$ is not a (G, σ) element, but it is well known in the theory of Grassman space that since v_1, v_2, v_1+v_2 are linearly dependent, we have

$$v_1 \bigtriangleup v_2 \bigtriangleup (v_1 + v_2) = v_1 \land v_2 \land (v_1 + v_2) = 0.$$

https://doi.org/10.4153/CMB-1971-039-1 Published online by Cambridge University Press

232

However if V is a unitary space and G belongs to a certain class of groups G, which we shall define below, then the converse of the Theorem 1.7 is also true.

2. Particularizing V and G. Let G be a subgroup of S_n , the symmetric group of degree n. If T is an orbit of G, let g^T denote the restriction of g to T. Let $G^T = \{g^T \mid g \in G\}$. Then G^T is a subgroup of S_T , the symmetric group on T. Let $\mathbf{G} = \{G \mid G \text{ is a subgroup of } S_n \text{ and if } T \text{ is any orbit of } G$, then G^T is cyclic}. Clearly **G** contains every cyclic group. As to the other members of **G**, they are all abelian.

Let $G \in \mathbf{G}$ and $W = V \times V \times \cdots \times V$ (*n* copies), where V is a unitary space of dimension m. Let σ be any linear character of G and consider the (G, σ) -space of W.

2.1 DEFINITION. If $v = (v_1, v_2, ..., v_n) \in W$, then a mapping $\gamma: I \to I$ is called an indicator of v iff $\gamma_i = \gamma_j$, where $\gamma_i = \gamma(i)$, when and only when v_i and v_j are linearly dependent.

2.2 DEFINITION. If γ is an indicator of v, then we define $G_{\gamma} = \{g \mid g \in G, \gamma_i = \gamma_{g(i)}$ for all $i \in I\}$. It is proved in [2, Theorem 5, p. 4], that $v_1 \bigtriangleup v_2 \bigtriangleup \cdots \bigtriangleup v_n = 0$ iff $\sum_{g \in G_{\gamma}} \sigma(g) = 0$, for any indicator γ of v.

2.3 THEOREM. With G and W as defined in §2, $v_1 riangle v_2 riangle \cdots riangle v_n = 0$ iff (v_1, v_2, \ldots, v_n) is a (G, σ) element.

Proof. (\Leftarrow) It is a particular case of Theorem 1.7. (\Rightarrow) Let γ be any indicator of $v = (v_1, v_2, \ldots, v_n)$. Then $\sum_{g \in G} \sigma(g) = 0$. This implies that there exists $g \in G$ such that $\sigma(g) \neq 1$. Also $g \in G_{\gamma}$ implies $\gamma_i = g(i)$ for all $i \in I$ and this implies that v_i and $v_{g(i)}$ are linearly dependent for all $i \in I$. Thus there exists $g \in G$ such that $\sigma(g) \neq 1$ and v_i and $v_{g(i)}$ are linearly dependent for all $i \in I$, i.e. (v_1, v_2, \ldots, v_n) is a (G, σ) -element.

References

1. K. Singh, On the vanishing of a (G, σ) -product in a (G, σ) -space, Canad. J. Math. (2) XXII (1970), 363-371.

2. Stanley Gill Williamson, A characterization of the homogeneous zero element in certain symmetry classes of tensors, Ph.D. Thesis, Univ. of California at Santa Barbara, California, 1964.

UNIVERSITY OF NEW BRUNSWICK,

FREDERICTON, NEW BRUNSWICK