# A SPECIAL CASE OF THE VANISHING OF A $(G, \sigma)$-PRODUCT IN A $(G, \sigma)$-SPACE 

BY<br>K. SINGH

In [1] we constructed a ( $G, \sigma$ )-space and determined a condition which is both necessary and sufficient for the ( $G, \sigma$ ) -product of the vectors $v_{1}, v_{2}, \ldots, v_{n}$ to be zero. The purpose of the present paper is to give a criterion for $v_{1} \Delta v_{2} \Delta \cdots \Delta v_{n}$ to be zero, in the particular case when $V$ is a unitary space and the group $G$ belongs to a special class of groups which we shall define below. As a result, we get a criterion which is very simple to determine whether $v_{1} \Delta v_{2} \Delta \cdots \Delta v_{n}$ is zero or not. We repeat some definitions and results of [1] in order to make this paper self-contained.

1. Let $G$ be a permutation group on the set $I=\{1,2,3, \ldots, n\}, F$ an arbitrary field, $\sigma$ a linear character of $G$ into $F^{*}$, the multiplicative group of the field $F$. Consider the Cartesian product $W=V \times V \times \cdots \times V$ ( $n$ copies), where $V$ is an $m$-dimensional vector space over $F$.
1.1 Definition. A mapping $f: W \rightarrow U$, where $U$ is any vector space over $F$, is called ( $G, \sigma$ ) iff

$$
\left(w_{1}, w_{2}, \ldots, w_{n}\right) f=\sigma(g)\left(w_{g(1)}, w_{g(2)}, \ldots, w_{g(n)}\right) f
$$

for all $g \in G, w_{i} \in V$, and $i \in I$.
1.2 Definition. An element $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W$ is called a $(G, \sigma)$ element iff $\exists g \in G$ such that $\sigma(g) \neq 1$ and $w_{i}, w_{g(i)}$ are linearly dependent for all $i \in I$.
1.3 Definition. A vector space $T$ over $F$ is called a $(G, \sigma)$-space of $W$, iff $\exists$ a mapping $\tau$ on $W$ into $T$ such that
(i) $\tau$ is multilinear and $(G, \sigma)$.
(ii) $T$ has a "Universal mapping property", i.e. if $U$ is any vector space over $F$ and $f$ is any multilinear and $(G, \sigma)$ mapping of $W$ into $U$, then $\exists$ a unique linear transformation $\bar{f}$ of $T$ into $U$, such that $\bar{\tau} \bar{f}=f$.

In [1] we have shown that, given $G, \sigma$, and $W$, there exists a $(G, \sigma)$-space which is unique up to isomorphism.
1.4 Notation. If $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W$, we denote its image $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \tau$ under $\tau$ by $w_{1} \Delta w_{2} \Delta \cdots \Delta w_{n}$ and call it the ( $G, \sigma$ )-product of the vectors $w_{1}, w_{2}, \ldots, w_{n}$.

Received by the editors October 17, 1969 and, in revised form, July 21, 1970.
1.5 Defintition. An element $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W$ is called a trivial element iff $w_{i}=0$ for some $i$. Otherwise it is called nontrivial.
1.6 Remark. If $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W$ is a trivial element, then since $\tau$ is multilinear, we have $w_{1} \Delta w_{2} \Delta \cdots \Delta w_{n}=0$. Thus we shall assume from here on that ( $w_{1}, w_{2}, \ldots, w_{n}$ ) is a nontrivial element of $W$.

We have the following sufficient condition for $v_{1} \Delta v_{2} \Delta \cdots \Delta v_{n}=0$.
1.7 Theorem. If $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in W$ is nontrivial and $a(G, \sigma)$ element, then $v_{1} \Delta v_{2}$ $\Delta \cdots \Delta v_{n}=0$.

Proof. $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a $(G, \sigma)$ element implies there exists $g \in G$ such that $\sigma(g) \neq 1$ and $v_{i}, v_{g(i)}$ are linearly dependent for all $i \in I$. Let $v_{g(i)}=\lambda_{g(i)} v_{i}$, where $\lambda_{g(i)} \in F$ for all $i \in I$. We shall first show that $\lambda_{g(1)} \lambda_{g(2)} \ldots \lambda_{g(n)}=1$. Let $g=C_{1} C_{2} \ldots C_{k}$ be the cyclic decomposition of $g$, which also includes the cycles of length one, if any. Let $D_{i}=\operatorname{dom} C_{i}, i=1,2, \ldots, k$. Then $I=\bigcup_{i=1}^{k} D_{i}$ and if $i, j \in I, i \neq j$, then $D_{i} \cap D_{j}=\varnothing$. Let $C_{i}=\left(\alpha_{i, 1}, \alpha_{i, 2}, \ldots, \alpha_{i, n_{i}}\right)$, where $n_{i} \geq 1$ is the length of the cycle $C_{i}, i=1,2, \ldots, k$. Then $n_{1}+n_{2}+\cdots+n_{k}=n$.

$$
\begin{aligned}
v_{\alpha_{i, n_{i}}} & =v_{g\left(\alpha_{\left.i, n_{i}-1\right)}\right)}=\lambda_{g\left(\alpha_{i, n_{i}-1}-1\right.} v_{\alpha_{i, n_{i}-1}}=\cdots=\cdots \\
& =\lambda_{g\left(\alpha_{i, n_{i}-1}\right)} \ldots \lambda_{g\left(\alpha_{i, 1}\right)} \lambda_{g\left(\alpha_{i, n}, n_{i}\right.} v_{\alpha_{i, n_{i}}}
\end{aligned}
$$

Hence $\prod_{\alpha \in D_{i}} \lambda_{g(\alpha)}=1$, and since $i$ is arbitrary, we have

$$
\prod_{\alpha \in D} \lambda_{g(\alpha)}=\prod_{i=1}^{k} \prod_{\alpha \in D_{i}} \lambda_{g(\alpha)}=1
$$

Thus,

$$
\begin{aligned}
v_{1} \Delta v_{2} \Delta \cdots \Delta v_{n} & =\left(v_{1}, v_{2}, \ldots, v_{n}\right) \tau \\
& =\sigma(g)\left(v_{g(1)}, v_{g(2)}, \ldots, v_{g(n)}\right) \tau \\
& =\sigma(g)\left(\lambda_{g(1)} v_{1}, \lambda_{g(2)} v_{2}, \ldots, \lambda_{g(n)} v_{g(n)}\right) \tau \\
& =\sigma(g) \prod_{\alpha \in D} \lambda_{g(\alpha)}\left(v_{1}, v_{2}, \ldots, v_{n}\right) \tau \\
& =\sigma(g) v_{1} \Delta v_{2} \Delta \cdots \Delta v_{n}
\end{aligned}
$$

and since $\sigma(g) \neq 1$, we have $v_{1} \Delta v_{2} \Delta \cdots \Delta v_{n}=0$.
1.8 Remark. The converse of Theorem 1.7 is false; for take $G=S_{3}$, and $\sigma: G \rightarrow F^{*}$, defined by

$$
\sigma(g)=\left\{\begin{array}{l}
1 \text { if } g \text { is an even permutation, } \\
-1 \text { if } g \text { is an odd permutation. }
\end{array}\right.
$$

Then the $(G, \sigma)$ space in this case is the Grassman space $\wedge^{3} V$. Clearly ( $v_{1}, v_{2}$, $\left.v_{1}+v_{2}\right) \in W$ is not a $(G, \sigma)$ element, but it is well known in the theory of Grassman space that since $v_{1}, v_{2}, v_{1}+v_{2}$ are linearly dependent, we have

$$
v_{1} \Delta v_{2} \Delta\left(v_{1}+v_{2}\right)=v_{1} \wedge v_{2} \wedge\left(v_{1}+v_{2}\right)=0
$$

However if $V$ is a unitary space and $G$ belongs to a certain class of groups $\mathbf{G}$, which we shall define below, then the converse of the Theorem 1.7 is also true.
2. Particularizing $V$ and $G$. Let $G$ be a subgroup of $S_{n}$, the symmetric group of degree $n$. If $T$ is an orbit of $G$, let $g^{T}$ denote the restriction of $g$ to $T$. Let $G^{T}=\left\{g^{T} \mid g \in G\right\}$. Then $G^{T}$ is a subgroup of $S_{T}$, the symmetric group on $T$. Let $\mathbf{G}=\left\{G \mid G\right.$ is a subgroup of $S_{n}$ and if $T$ is any orbit of $G$, then $G^{T}$ is cyclic $\}$. Clearly $\mathbf{G}$ contains every cyclic group. As to the other members of $\mathbf{G}$, they are all abelian.

Let $G \in \mathbf{G}$ and $W=V \times V \times \cdots \times V$ ( $n$ copies), where $V$ is a unitary space of dimension $m$. Let $\sigma$ be any linear character of $G$ and consider the ( $G, \sigma$ )-space of $W$.
2.1 Definition. If $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in W$, then a mapping $\gamma: I \rightarrow I$ is called an indicator of $v$ iff $\gamma_{i}=\gamma_{j}$, where $\gamma_{i}=\gamma(i)$, when and only when $v_{i}$ and $v_{j}$ are linearly dependent.
2.2 Definition. If $\gamma$ is an indicator of $v$, then we define $G_{\gamma}=\left\{g \mid g \in G, \gamma_{i}=\gamma_{g(i)}\right.$ for all $\boldsymbol{i} \in I\}$. It is proved in [2, Theorem 5, p. 4], that $v_{1} \Delta v_{2} \Delta \cdots \Delta v_{n}=0$ iff $\sum_{g \in G_{y}} \sigma(g)=0$, for any indicator $\gamma$ of $v$.
2.3 Theorem. With $G$ and $W$ as defined in $\S 2, v_{1} \Delta v_{2} \Delta \cdots \Delta v_{n}=0$ iff $\left(v_{1}, v_{2}, \ldots\right.$, $\left.v_{n}\right)$ is $a(G, \sigma)$ element.

Proof. $(\leftarrow)$ It is a particular case of Theorem 1.7. $(\Rightarrow)$ Let $\gamma$ be any indicator of $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Then $\sum_{g \in G} \sigma(g)=0$. This implies that there exists $g \in G$ such that $\sigma(g) \neq 1$. Also $g \in G_{\gamma}$ implies $\gamma_{i}=g(i)$ for all $i \in I$ and this implies that $v_{i}$ and $v_{g(i)}$ are linearly dependent for all $i \in I$. Thus there exists $g \in G$ such that $\sigma(g) \neq 1$ and $v_{i}$ and $v_{g(i)}$ are linearly dependent for all $i \in I$, i.e. $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a $(G, \sigma)-$ element.

## References

1. K. Singh, On the vanishing of $a(G, \sigma)$-product in $a(G, \sigma)$-space, Canad. J. Math. (2) XXII (1970), 363-371.
2. Stanley Gill Williamson, A characterization of the homogeneous zero element in certain symmetry classes of tensors, Ph.D. Thesis, Univ. of California at Santa Barbara, California, 1964.

University of New Brunswick, Fredericton, New Brunswick

