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Summary: Let A' = (^i^2 ' * ' Am) represent the deviations from expecta-
tion of a set of multinomial or independent Poisson variables, and H be a
positive definite matrix. A lower bound is obtained for Pr{A'HA ^ S) in
terms of Pr(d'Hd f^, S), where 6 is a vector of normal variables with the
same mean and covariance matrix as A.

1. One often has occasion to consider the distribution of a positive definite
quadratic form in multinomial variables, the commonest instance being that
of the x2 statistic. If the variables are denoted Alt A%- • • Am, then another
instance is provided by the evaluation of probabilities of the type
Pr(\^kaikAk\ ^ a,-; / = 1, 2 •••/>), because for suitably chosen H this
probability is always greater than Pr(A'HA ^ 1), which may be easier to
calculate.

In many cases, that of the %2 statistic being the classic example, one
obtains an approximation to the distribution function of A'HA by assuming
the Aj to be normally distributed, with appropriate first and second moments.
The order of magnitude of the error entailed by this assumption has been
considered by several authors (see, for example, references 1, 2 and 3):
in this paper I intend to calculate an explicit lower bound for Pr(A'HA ^ S)
which, while not as close as it might be (see the discussion in section 2)
nevertheless gives a definite bound of the correct asymptotic form.

I consider first the case of a set of Poisson variables, since this is very
similar to the multinomial case, but substantially simpler in one respect.

THEOREM: Let nf(j — 1, 2 • • • m) denote a set of independent Poisson
variables with £(%) = kit let H — (hik) be a positive definite matrix, and let

(1) Ai = ni- A, \j = 1, 2 • • • m)

Then

(2) Pri.A'MA ^ S)
m
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provided

(3) mh/4: ^ 5 ^ g min A,

A, g denote respectively the greatest eigenvalue of It and the least eigenvalue

of Q= (h

(4) , u = [1 -

and 6 is a random normal vector with mean E(A) and covariance matrix
E(AA').

THEOREM: Let nt(j = 1, 2 • • • m) denote a set of multinomial variables with

E(n,) =Npf, Zp

(5)

Then

(6) Pr{A'H

provided

(?)

'^ ^ S)

/^i H be a positive defin

A, = n, - Npj

.—mSHfiNg min pf)

J J (1 + {SjNgpj) *̂) ̂ *
i

mA/4 < 5 < Ng min />,-

where h, g denote respectively the greatest eigenvalue of H and the least eigenvalue

of G =

(8)

and 6 is a random normal vector with mean E{A) and covariance matrix
E{AA').

Thus, for the case of the x2 statistic

(9) X* = 2 Al

we have
e-mS/8Np

(10) Pr(X* g S )

)

provided

(11)

where £ is the least of the £,, and a , ^ has a ^2 distribution function with
(m — 1) degrees of freedom.
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2. The two sources of error in the normal approximation are, first, that the
non-zero ordinates of the joint A distribution are not truly proportional to
normal ordinates, and second, that the distribution is a discrete one. Bounds
for the first type of deviation are relatively easily obtained; I have tried,
however, to find bounds which are simple rather than close, since it is actually
the second type of error which limits the accuracy of the estimate.

The most serious consequence of the discrete nature of the distribution is
an edge-effect: the probability content of the region

(12) AHA ^ S

is not a continuous function of S. One would have to use advanced methods
to obtain an adequate treatment of this effect, methods similar to those
used to estimate the number of lattice points in an ellipsoid (see ref. 4),
a problem not yet fully treated. The crude method used in the present paper
(section 5) yields an estimate of order N~y* for the error due to edge-effect;
it seems likely that the actual order is N~m/2, at least for the Poisson case.

It will be noted that in the above two theorems the quantity g, the least

eigenvalue of (hik'VxiXk) or its multinomial counterpart, plays a role. This
would be a weakness if there were any considerable spread in the eigenvalues
of this matrix, i.e., if the surfaces A'HA = const., 2^iM> = const-, were
considerably different in form. The difficulty could be overcome by exploit-
ing the fact that the part of the ellipsoid (12) which lies outside some partic-
ular contour 2 ^ / ^ = const, will make little contribution to the total
probability content of (12). However, I have not thought it worthwhile to
introduce the extra modification here.

3. Consider a set of m independent Poisson variables n} with means
A, (j = 1, 2, • • • m). If

(13) A t = nt — Xf

we wish to calculate a lower bound to the probability that relation (12) is
fulfilled, i.e. we wish to calculate the sum of all terms

for which the representative point A lies inside the solid ellipsoid (12).
We shall suppose that

(15) A} ^ 0V% ^ A, (/ = 1, 2 • • • m)

Inequality (12) will certainly be consistent with the first inequality of (15) if

(16) 5 < 6*g

The simplest way to ensure the validity of (16) is to use the equality sign
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in this relation to define 0. The second inequality of (15) will then be
fulfilled if

(17) S ^ g min X5.

Now

log f(n) = — A -\- n log A — log n!

> — A + n log X — \ log 2TT + n — (« + | ) log n

since the remainder in Stirling's approximation for log n\ is positive. Ex-
panding expression (18) in powers of A = n — X we have then

oo Aj+1

log/(») > - ilog 2n(X + A) + 2 —
(19)

It thus follows that

( 2 0 )

4. We wish now to relate the discrete probability distribution F(A) to a
continuous normal density.

Let us associate with the point A (corresponding to a particular set of
integers nt) the rectangular cell QA whose vertices have coordinates Ax ± h
A2 db \ '' ' Am Jr- | . These cells fill the whole J-space simply. We shall now
prove that

LJ n
i

where

( 2 2 ) C =

We have

(23) f e - s v m , dw = TT

and

(24) oo (Al91\2i
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Combining equations (20), (23) and (24) we obtain the desired result (21;.
5. Let us denote the solid ellipsoid (12) by E. Relation (21) enables us to

replace the summation of F(A) over all appropriate points A in E by the
integration of a normal density over E. There will be an edge-effect, however,
due to the fact that the surface of E will cut through a number of cells, some
of whose centres A will lie in E, and some of whom will not.

We can obtain a conservative result if we take a smaller region E' which
just excludes any cells which were cut by the surface of E, but whose centres
did not lie in E. We are thus led to consider a region

(25) AHA ^ (JLS

where fi is chosen so that the least radius of the ellipsoid has contracted by
an amount equal to the greatest radius of a cell QA (which will be half the
principal diagonal, or \/m/2). That is,

(26) " ~

a relation equivalent to (4) if
mh

(27) S^T'

Extending the integration in (21) over the whole region (25), and setting

0 = VS/g, we obtain the result expressed in the first theorem.
6. The calculation for a multinomial distribution is largely analogous.

In this case the inequality corresponding to (20) is

(28) F{A)=N\U^>

The conditions

(29)

(30) S <iNg min pi
i

are certainly sufficient for the validity of (28).
A complication of the multinomial case is that the variables are constrained

by the relation
m

(31) 2 ^ = 0.
1

It will be convenient to take coordinates in the hyperplane(31); we shall
show in fact that (28). can be written

m-l
I- nl i - J l

(32) '
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where yx, y2 • • • ym-\ constitute a set of orthogonal coordinates in the
hyperplane (31) (and so together with ym = ]Tzl3./m

y* are derived from the
Aj by an orthogonal transformation).

We obtain the principal axes of the quadric formed by the section of
^tf/Nfij = const, by the hyperplane (31) if we note that the stationary
values 0 of a quadratic form A'A A, given A' A = 1, /?' A = 0, satisfy the
relation

(33) /*' adj (A - <£/)/? = 0

as may be shown by a direct minimisation of the form, using Lagrange
multipliers to allow for the two side-conditions.

For the case /? = (1, 1 • • • 1), A = dmg.(l/Np1 • • • l/Npm) we have then

(34) 2 L_ = 0

or, for <f> = l/Np,

(35)

Now, the exponents of the two expressions (28), (32) are certainly equal,
since ^vVPi *s nothing but the standard form for the quadratic 2^Vfti o n

(31). To prove the equality of the remaining parts of the two expressions,
we note from equation (35), an equation for p with roots px, p2 • • • pm_lt that

(36)

from which the equivalence of (28), (32) follows.
Another consequence of relation (31) is that it is not now such a direct

matter to associate a cell with the representative points A (or y). The final
integration must be restricted to the hyperplane (31), and so the cell asso-
ciated with the point must also lie wholly in the hyperplane. However, the
lattice formed by the representative points A {or y) in the (m— 1)-space (31)
is not a rectangular one, and the appropriate division of the space into cells
not so obvious.

Probably the simplest way of dividing the space is to take the w-dimen-
sional unit hypercube which has A as centre, project it orthogonally on to
the hyperplane (31), and take the outline of the figure thus formed as the
cell to be associated with the corresponding y. These cells cover the space
(31) simply, and in fact form a regular honeycomb in the space. The cells
may be regarded as being constructed of m (tn—1) -dimensional unit hyper-
cubes (the faces of the w-dimensional hypercube which can be seen from one
vertex) foreshortened along a principal diagonal in the ratio \\y/m (the
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cosine of the angle between planes As = const., '^Ai= const.) and fitted
together at the "blunt" vertices so as to fill the whole solid angle. Thus,
for m = 3, the cell is a hexagon, composed of three foreshortened squares.
For m = 4 it is a rhombic dodecahedron, composed of four foreshortened
cubes.

The metric content of the cell is tnjy/m = y/m, and the maximum radius
is not greater than y/mj2.

If the cell associated with y is denoted Wy, we shall now prove that

p-ff
where

(38) C' =

We have, as in (24)

(39) f g-S«,"/tNP/d = -s i fA^p, f

Since the function of v, exp [—^yjVjNpf], is convex, its mean value over
Wo will be less than its mean value over the circumscribed hypersphere
of radius R = -\fm\1. This observation leads to the inequality

]
2 k [ r

(40) \ 2

where

(41) tf*
Now

max

(42)
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Combining relations (32), (39), (40) and (42) we obtain the desired inequality
(37). This inequality is the one analogous to (21), and all that remains now
is to evaluate the edge-effect, which is done exactly as before.

By taking account of restriction (31) we could have replaced h and g by
quantities respectively smaller and larger. However, this improvement will
only occasionally be significant.
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