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Abstract

Objective: Few biomarkers for dietary intake of various food groups have been
established. The aim of the present study was to explore whether selenium (Se),
iodine, mercury (Hg) or arsenic may serve as a biomarker for total fish and seafood
intake in addition to the traditionally used n-3 fatty acids EPA and DHA.
Design: Intake of fish and seafood estimated by an FFQ was compared with intake
assessed by a 4d weighed food diary and with biomarkers in blood and urine.
Setting: Validation study in the Norwegian Mother and Child Cohort Study (MoBa).
Subjects: One hundred and nineteen women.
Results: Total fish/seafood intake (median 39 g/d) calculated with the MoBa FFQ
was comparable to intake calculated by the food diary (median 30 g/d, rS 5 0?37,
P , 0?001). Erythrocyte DHA and blood Hg, Se and arsenic concentrations were
positively correlated with intake of fish and seafood, but the association for DHA
was weakened by the widespread use of supplements. The main finding was the
consistent positive association between the intake of fish/seafood and blood
arsenic concentration. In multivariate analyses, blood arsenic was associated with
blood Hg and fish and seafood intake. In these models, arsenic turned out to be
the best indicator of intake of fish and seafood, both totally and in subgroups of
fish/seafood intake.
Conclusions: While DHA reflected the intake of fatty fish and n-3 PUFA supple-
ments, blood arsenic concentration also reflected the intake of lean fish
and seafood. Blood arsenic appears to be a useful biomarker for total fish and
seafood intake.
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Assessing trends in eating habits and dietary patterns is an

essential component in the surveillance of population

health and the development of dietary advice and inter-

ventions. Dietary monitoring requires a tool validated in

the target population, and biomarkers of dietary exposure

may assist in uncovering the errors associated with the

method in use(1). For a biomarker to be used for valida-

tion of a dietary instrument, it should have a strong direct

and independent relationship with the nutrient or food

group of interest. Recovery biomarkers, like doubly

labelled water(2) and urinary N(3), are less influenced by

the body’s homeostatic control than concentration bio-

markers, which are extensively used in spite of their

weaker association with consumption(4).

Biomarkers that reflect the intake of a food group

rather than a specific nutrient are scarce. Plasma car-

otenoids and urinary flavonoids have been used as bio-

markers of fruit and vegetable groups(5,6) and plasma or

tissue n-3 PUFA, mainly EPA and DHA, have been used as

biomarkers of both total fish and fatty fish intake(7,8).

However, as lean or semi-lean fish and seafood comprise

nearly two-thirds of the total fish intake in Norway(9), a

biomarker related to total fish/seafood intake rather

than fatty fish and fish-oil supplements could contribute

to better validation of this food group than EPA or DHA.

Dietary fish and seafood are rich sources of the

essential trace elements iodine and Se, but are also a

major source of methylmercury and arsenic(10,11). The

presence of methylmercury in human tissues has been

shown to be directly related to intake of fish and sea-

food(10), whereas the relationship between blood arsenic,

blood Se and intake of fish and seafood has been inves-

tigated less. Arsenic in fish and seafood is predominantly

present in the organic form arsenobetaine. Organic forms

of arsenic are considered non-toxic compared with

inorganic arsenic from airborne industrial emissions and
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in drinking water(12). In Norway, arsenic levels in drink-

ing water are negligible (,0?2 mg/l). Fish and seafood are

good natural sources of iodine, but other food groups

have been identified as more important contributors to

dietary iodine in some countries(13–15).

Monitoring the dietary intake of foods like fish and

seafood is complex in large population surveys and often

relies on the use of an FFQ, whereas biological measures

are possible only in smaller population groups. Fish and

seafood intake during pregnancy is of particular interest

owing to the potential positive impact of this food group

on birth weight and neurodevelopment of the child(16–18).

The Norwegian Mother and Child Cohort Study

(MoBa), conducted at the Norwegian Institute of Public

Health, is a large pregnancy cohort aiming to include

110 000 pregnancies by the end of 2008(19). The aim of the

present study was to compare fish and seafood intake

assessed by the MoBa FFQ with intake assessed by a 4 d

weighed food diary, and to explore how Se, iodine, Hg

and arsenic compare with the traditionally used n-3 fatty

acids EPA and DHA as biomarkers for total fish and

seafood intake.

Experimental methods

Validation study subjects and design

The present study was part of a validation study of a new

FFQ developed for use in the MoBa study(20). Other

results of the validation study have been published else-

where(21). Healthy pregnant women in MoBa referred to

Bærum Hospital (Norway) were invited to participate

in the validation study when they came for routine

ultrasound examination at 17–18 weeks of gestation.

Exclusion criteria were hyperemesis and anorexia. Before

inclusion, subjects had to have completed the MoBa FFQ.

The inclusion period lasted from 15 January 2003 to

1 February 2004.

Participants were asked to keep a 4 d weighed food

diary (FD) and to provide one 24 h urine collection and a

blood sample. Age, self-reported height and weight were

recorded. Data pertaining to smoking and education were

collected from a separate MoBa questionnaire in which

participants answered questions related to lifestyle and

demographic factors. Of 120 subjects included, one

dropped out due to illness. The average time interval

between completion of the FFQ and participation in the

study was 24 (SD 12) d. The study protocol was approved

by the Regional Ethics Committee of Southern Norway,

and informed written consent was obtained from all

participants in the validation study.

The FFQ

The MoBa FFQ (available at http://www.fhi.no/dav/

22CA50E0D7.pdf) was mailed to all participants around

the 15th week of gestation. It is a semi-quantitative

questionnaire designed to capture dietary habits and

intake of dietary supplements during the first four months

of pregnancy. The FFQ includes questions about the

intake of 255 food items including ten questions about

cold cuts and spreads made of fish/shellfish, sixteen ques-

tions about fish/shellfish eaten for dinner, and four ques-

tions about cod-liver oil/fish oil/n-3 supplement use.

The questionnaires were optically read. Consumption

frequencies were converted into food amounts (g/d) by the

use of standard Norwegian portion sizes. FoodCalc(22) and

the Norwegian food composition table(23) were used for

calculating nutrients from food. A database containing details

of the declared content of supplements was developed for

the calculation of nutrients from dietary supplements(24).

4 d weighed food diary

Participants were asked to weigh and record all foods,

beverages and dietary supplements consumed during

three consecutive weekdays and one weekend day. Each

participant was given an FD and a digital balance, and

asked to continue with their normal food intake. Each

completed FD was checked for completeness of

description by the project nutritionist (A.L.B.).

Blood sampling

Non-fasting blood samples were drawn by venepuncture at

the time of recruitment into Vacutainers intended for trace

element measurement (Becton and Dickinson, Plymouth,

UK). After collection, the blood tubes were inverted to

ensure complete mixing of the anticoagulant. Samples were

stored at 2708C within 2h of venepuncture. Erythrocytes for

lipid measurements were isolated by centrifugation for

10min at 250g, washed with 0?9% (w/v) NaCl, resuspended

in NaCl and stored at 2708C until analysis.

24 h urinary collection

At the end of the FD period, each participant provided one

24h urine collection taken on a weekday. On the first

morning of the urine collection, participants were asked to

discard their first urine specimen and to collect all speci-

mens for the next 24h. Participants were provided with a

funnel and bottles. All urine was pooled for each participant

and the samples stored at 2208C within 8h of collection.

Analysis of biomarkers

Blood concentrations of arsenic, Se and Hg were deter-

mined by inductively coupled plasma–sector field mass

spectrometry using an Element 2 mass spectrometer

(Thermo Electron, Bremen, Germany) following pre-

viously described methods(25). In short, 1?5 ml of 65 %

(w/v) ultrapure nitric acid was added to 1 ml of whole

blood in a polypropylene digestion tube and then heated

to 958C for 1 h. After cooling, an internal standard solu-

tion (containing 205Tl for 200,201,202Hg; 72Ge for 75As and
77,78,82Se) was added to the digested blood sample before
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dilution to volume (14 ml). The instrument was calibrated

with whole blood matrix matched standard solution and

the accuracy was determined by use of Seronorm Trace

Elements human whole blood quality control samples

(Sero Ltd, Asker, Norway). The measured values for

arsenic, Se and Hg were on average within 65 % of the

recommended values supported by the producer. The

within-assay precision was typically 3–5 %.

Urinary concentration of iodine was determined by

inductively coupled plasma–mass spectrometry (Agilent

Quadrupole 7500c mass spectrometer; Agilent Technol-

ogies, Santa Clara, CA, USA)(26).

For analysis of the fatty acid pattern in erythrocytes,

approximately 4 3 109 cells were used. Erythrocyte lipids

were extracted by the method of Folch et al.(27). The

phospholipid fraction was separated from neutral lipids

using bonded silica gel columns (Analytical International,

Harbor City, CA, USA) by sequential elution with CHCl3
and MeOH(28). It was then transmethylated(29) and ana-

lysed by GC using an SP-2340 capillary column on a

Hewlett-Packard 5880A gas chromatograph (Palo Alto,

CA, USA) equipped with a flame-ionization detector, with

Ar as the carrier gas. The oven temperature was main-

tained at 1408C for 10 min and then increased by 38C/min

up to 2508C. The fatty acids were identified by comparing

retention times with authentic standards. The fatty acid

pattern in erythrocyte phospholipids was not obtained in

twenty-five subjects owing to technical problems in the

fatty acid analysis and insufficient amounts of samples for

re-analysis.

Statistical analysis

The differences between food intakes calculated by the

FFQ and the FD were tested with the Wilcoxon signed rank

test (paired data) and the differences between groups were

tested using the Mann–Whitney U test (unpaired data). The

linear trend in blood arsenic, Se and Hg, urinary iodine

excretion, erythrocyte EPA and erythrocyte DHA with fish

and seafood intake was assessed by regression.

The FFQ and the FD may be considered as two inde-

pendent, unbiased methods for assessing dietary intake

and therefore their estimation errors may be expected to

partially cancel out, making their average a better esti-

mate of true intake than either. As the averages provided

better model fits, they were used in subsequent analyses.

For analysis of the association between blood and

urine data and indicators of fish intake, fish spread and

fatty fish were aggregated into one variable (as fish

spreads are mainly fatty fish) and, likewise, lean fish and

processed fish foods were aggregated.

The associations between the parameters were ana-

lysed by multiple regression. The dependent variables

were transformed to the power giving best model fits

and, in order to compare coefficients as easily as possible,

they were ‘standardized’ to a mean of 1. When several

explanatory variables were used in a model, they were

transformed to make an independent set. The basic

assumption of ordinary regression analysis – that for every

combination of the explanatory variables, the dependent

variable follows distributions with the same variance – was

in no case shown to be false. Only covariates significantly

different from zero were retained in the models.

Regression coefficients from standardized models are

reported, as well as adjusted correlation coefficients

describing total model fit.

The significance level was set at 5 % (two-tailed) and all

analyses were performed using the SPSS statistical soft-

ware package version 14 (SPSS Inc., Chicago, IL, USA).

Results

Among the 119 participants in the study, there was large

dispersion with regard to age, BMI, education, parity and

smoking status (Table 1). Mean daily total fish and sea-

food intake was 42 g (median 39 g) by the FFQ, 37 g

(median 30 g) by the FD and 40 g (median 38 g) as an

average of the two methods. Processed fish, i.e. fish in

fish fingers, fish burgers, fish pudding and fish au gratin,

was the largest contributor to total fish intake (Table 2).

Intakes calculated by the two dietary methods correlated

significantly for fish used for sandwich spread (fish

spread), tuna, shellfish and total fish/seafood intake

(Table 2). Three participants (2?5 %) reported no intake of

fish or seafood in the FFQ and twenty-one participants

(17?6 %) reported no intake of fish and seafood in the FD.

One subject with extremely high blood arsenic con-

centration (.6 SD above the 95th percentile) was exclu-

ded from analyses regarding arsenic. The mean, median

and range indicator values of biomarkers of the different

nutrients in all participants and supplement non-users are

presented in Table 3.

Use of dietary supplements containing Se was reported

by twenty-seven women in the FFQ and by thirty women

in the FD. No statistical difference was found in blood Se

between users and non-users of Se supplements. Iodine-

containing supplement use was reported by twenty-three

women in the FFQ and by twenty-five women in the FD.

Urinary iodine excretion was twice as high in participants

taking an iodine-containing dietary supplement (median

at time of the FD: 220 mg/24 h) than in non-users of iodine

supplements (median: 110 mg/24 h, P 5 0?001).

Use of EPA- and DHA-containing supplements was

reported by eighty-two women in the FFQ and by seventy-

nine in the FD, whereas twenty-nine women had not taken

any supplements containing n-3. The sum of erythrocyte

n-3 fatty acids differed significantly between users and non-

users of n-3 supplements (P , 0?001), but not erythrocyte

DHA and EPA alone. Erythrocyte membrane EPA (% of fatty

acids) did not correlate with dietary EPA (diet and supple-

ments), whereas erythrocyte membrane DHA (% of fatty

acids) correlated significantly with dietary DHA estimated

56 AL Brantsæter et al.

https://doi.org/10.1017/S1368980009005904 Published online by Cambridge University Press

https://doi.org/10.1017/S1368980009005904


by the FFQ (r 5 0?25, P 5 0?014), the FD (r 5 0?24, P 5

0?018) and the average (r 5 0?28, P 5 0?006).

Cod-liver oil is the most common vehicle for n-3 fatty

acids in food supplements in Norway. Thus this oil might

also serve as a vehicle for the non-essential elements

under investigation in the present survey. We lack data for

the arsenic and Hg content of cod-liver oil but personal

communication from the main Norwegian producer

(M +oller’s) indicated that the concentrations are very low,

and there was no difference in blood values between

supplement users and non-users when it came to these

two elements.

Women who were daily smokers in pregnancy (n 3)

had lower blood Se concentration (median 77 mg/l) than

non-smokers (median 106 mg/l, P 5 0?001) and lower

blood arsenic concentration (median 0?80 mg/l in smokers

and 1?80 mg/l in non-smokers, P 5 0?023). Blood Se was

positively correlated with age (r 5 0?31). Furthermore,

there was a positive association between blood Se and Hg

and education level. We found no differences in the

intake of fish and seafood between the women with

regard to smoking status or education, but the total intake

of fish/seafood increased with increasing age (average of

FFQ and FD v. age: r 5 0?29, P 5 0?003).

Three women who reported no intake of fish or seafood

in the FFQ and twenty-one women who reported no intake

of fish or seafood in the FD had significantly lower blood

arsenic and Hg concentrations than women who reported

intake of this food group (PFFQ 5 0?003 for arsenic and

PFFQ 5 0?019 for Hg, PFD , 0?001 for arsenic and PFD 5

0?008 for Hg). However, the only significant difference

between fish-eaters and non-eaters for blood Se, urinary

iodine excretion or erythrocyte EPA or DHA was in ery-

throcyte DHA when n-3 dietary supplement users were

excluded. There was no significant positive correlation

between fish/seafood intake and erythrocyte EPA.

Blood arsenic was correlated with blood Se (r 5 0?25,

P , 0?005) and blood Hg (r 5 0?44, P , 1?0 3 1025), and

blood Se and Hg were correlated (r 5 0?28, P , 0?003).

However, the associations with Se lost significance when

adjusting for intake of fish and seafood, whereas the

arsenic–Hg relationship persisted (r 5 0?34, P , 0?0002).

No other factors were significantly associated with blood

arsenic when entered into models together with fish/

seafood intake and blood Hg.

There was no correlation between lean and fatty fish

intake in the population studied. In multivariate analyses,

total fish/seafood intake and blood Hg (adjusted for

fish/seafood intake) emerged as the variables most

closely associated with blood arsenic, together covering

about 22 % of the variation in blood arsenic (Table 4).

The association was non-linear in arsenic, having the

equation:

½Arsenic�0
.5 ¼ 0.74þ 0.26ð�0.06Þ � fish=seafood

þ 0.21ð�0.05Þ � ½Hg�adj

(adjusted R2 5 0?22, P , 2?0 3 1027; P (coefficient for

fish/seafood 5 0) 5 1?2 3 1025).

Table 1 Demographic and lifestyle information of validation study participants: subset of pregnant women (n 119) in the Norwegian Mother
and Child Cohort Study (MoBa)

Summary statistic

Factor Mean SD Min, max

Age (years) 31?2 4?1 23, 44
BMI prior to pregnancy (kg/m2) 23?2 3?6 17, 43
BMI at time of validation study (kg/m2) 24?8 3?5 18, 41
No. of weeks pregnant- when filling in the FFQ 17 2
No. of weeks pregnant- when entering validation study 20 2

n %

Nausea at time of filling in the FFQ 18 15
Parity

0 66 55
1 25 21
21 28 24

Education (highest level completed)
#12 years 20 17
13–16 years 58 49
.16 years 41 34

Smoking status in pregnancy
Daily 3 3
Occasionally 0
Non-smoker 116 97

Dietary supplement use at time of the FFQ or FD
Se 39 33
Iodine 25 21
n-3 fatty acids 90 76

FD, 4 d weighed food diary.
-No. of weeks pregnant calculated based on days since date of last menstruation.
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In the regression models Hg and Se were significantly

correlated with tuna and lean/processed fish, DHA was

significantly correlated with spread/fatty fish and lean/

processed fish, whereas arsenic was significantly (or

nearly significantly) correlated with all items (Table 4).

Figure 1 demonstrates how the daily intakes of the

separate fish/seafood items as well as total fish/seafood

(average of the FFQ and FD) are related to blood arsenic

(n 118). Figure 2 illustrates the differences between n-3

supplement users and non-users regarding the association

between erythrocyte DHA and fish/seafood intake: the

association, as measured by the slopes of the regression

lines, is attenuated by the use of supplements (P 5 0?002,

P 5 0?368 and P 5 0?005 for zero slope in supplement non-

users, supplement users and the whole group, respectively).

Discussion

In the current study we first compared the intakes of fish

and seafood calculated by a new FFQ with intakes cal-

culated by a weighed food diary, and then examined the

association between the FFQ and FD intakes of fish and

seafood with potential biomarkers in blood and urine.

The intakes of the different items of fish and seafood

calculated with the new FFQ were confirmed by the

intakes recorded in the food diary. Within the methods’

limits of precision, the results may be considered a vali-

dation of the FFQ for fish and seafood intake. Our main

finding was the positive association between the intake of

fish and seafood and blood arsenic concentration in all

fish/seafood categories and irrespective of the fatty acid

content of the fish (Table 4). This indicates that blood

arsenic may be a useful biomarker for short- and medium-

term fish and seafood intake.

The average fish consumption in our study population

(40 g/d, Table 2) was larger than that reported in pregnant

women in Denmark (27 g/d)(30) and Mexico (32 g/d)(31),

but lower than that reported in pregnant Icelandic

women (47 g/d)(16). In general, young women have the

lowest fish consumption in Norway and, in agreement

with previous studies, we found that approximately two-

thirds of the ingested fish and seafood was lean or semi-

lean species(9).

Biomarkers reflect actual rather than reported intakes

and are thus unaffected by respondents’ reporting bias,

typical of diet records and recalls(32). The most frequently

used biomarkers for intake of fish are the marine n-3 fatty

acids EPA (20 : 5n-3) and DHA (22 : 6n-3) in adipose

tissue, plasma or erythrocytes(8,33,34). They reflect fatty

fish ingestion and intake of fish-liver oil and other

n-3-containing supplements(34). In Norway, there is a

high frequency of cod-liver oil/fish-oil supplement

use(35,36). Most fish consumers eat a mixture of lean and

fatty fish, making EPA/DHA fairly good biomarkers in

subjects not taking n-3 supplements; however, for theT
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reasons mentioned, they cannot be considered very

robust indicators.

In our subjects, erythrocyte DHA, but not EPA, con-

centration was significantly associated with the total

intake of fish/seafood. The association was significant in

the whole group, but was far stronger in the subjects

not taking n-3-containing supplements (Fig. 2). We have

previously reported a significant positive correlation

Table 4 Coefficients in regression models with all variables standardized to unit means, describing the association between the potential
biomarkers and total fish/seafood intake and separate items of fish/seafood intake: subset of pregnant women (n 118 for arsenic, Hg and
Se; n 94 for DHA) in the Norwegian Mother and Child Cohort Study (MoBa)

Total fish/seafood Tuna Spread/fatty fish Lean/processed Shellfish

Biomarker b SE Adj. R2 b SE Adj. R2 b SE Adj. R2 b SE Adj. R2 b SE Adj. R2

Blood arsenic0?5 0?26*** 0?06 0?22- 0?03* 0?02 0?12- 0?07(*) 0?04 0?11 0?17*** 0?05 0?18- 0?05* 0?02 0?12
Blood Hg 0?36*** 0?10 0?15-

-

0?09*** 0?02 0?15-

-

0?05 0?06 0?05 0?25** 0?08 0?12-

-

0?08(*) 0?04 0?07
Blood Se 0?12*** 0?04 0?15-

-

0?02* 0?01 0?08-

-

0?05* 0?02 0?08 0?08** 0?02 0?11-

-

0?00 0?01 0?03
DHA 0?11** 0?03 0?08-

-

0?01 0?01 0?02-

-

0?05* 0?02 0?05 0?06* 0?03 0?05-

-

0?00 0?03 0?01

( *) 0?05 , P , 0?06, *P , 0?05, **P , 0?01, ***P , 0?001.
-Model includes fish item and blood Hg adjusted for total fish/seafood intake.
-

-

Model includes fish item and categories of maternal education.
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Fig. 1 Median and 75th percentile (P75) daily intake (g/d) of
tuna (&), shellfish (’), fish spread/fatty fish ( ), lean/
processed fish ( ) and total fish/seafood ( ) by quintile of
blood arsenic concentration. Intake estimates are calculated
as the average of FFQ and food diary consumption data
among a subset of pregnant women (n 118) in the Norwegian
Mother and Child Cohort Study (MoBa)

Table 3 Summary statistics for biomarkers of the different nutrients, in all participants and supplement non-users: subset of pregnant
women (n 119) in the Norwegian Mother and Child Cohort Study (MoBa)

All Supplement non-users only

Biomarker n Mean SD Median P5, P95 n Mean SD Median P5, P95

Erythrocyte membrane DHA (% of fatty acids) 94- 9?0 1?9 9?2 5?8, 11?5 24 8?6 2?6 8?2 6?3, 10?6
Erythrocyte membrane EPA (% of fatty acids) 94- 1?7 1?3 1?7 0, 3?7 24 1?3 1?5 0 0, 3?5
Urinary iodine excretion (mg/24 h) 119 161 97 131 44, 365 84 140 90 110 44, 321
Blood Se (mg/l) 119 107 21?4 106 77?0, 141 80 106 20?7 106 74?0, 135?2
Blood Hg (mg/l) 119 1?88 1?21 1?67 0?32, 4?30
Blood arsenic (mg/l) 118-

-

2?57 2?19 1?78 0?80, 7?24

P5, 5th percentile; P95, 95th percentile.
-Erythrocyte fatty acid results available for ninety-four subjects only.
-

-

One outlier excluded.
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Fig. 2 Impact of fish and seafood intake on erythrocyte DHA in
n-3 supplement users (– –J– –; r2 linear 5 0?014) and non-
users (—m—; r2 linear 5 0?342) among a subset of pregnant
women (n 118) in the Norwegian Mother and Child Cohort
Study (MoBa)
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between the erythrocyte membrane phospholipid n-6:n-3

fatty acid ratio and dietary n-6:n-3 fatty acid ratio(24).

Williams et al. found a strong positive correlation for

frequency of fish consumption in early pregnancy with

both erythrocyte DHA and EPA(37), whereas Parra et al.,

like us, found a significant positive association between

dietary intake and erythrocyte DHA, but not EPA(31).

Matorras et al. found no association between dietary

intake and erythrocyte membrane fatty acids(38). During

pregnancy, there is a faster turnover of fat storage that

may modify the profile of erythrocyte n-3 fatty acids and

lower the correlation between dietary intake and ery-

throcyte n-3 fatty acids(31). It has been suggested that EPA

is under different homeostatic and metabolic control than

DHA(34). The percentage of DHA in erythrocyte mem-

branes is quantitatively much larger than EPA, and during

pregnancy the conversion of EPA to DHA is given prior-

ity(39). The present study is in accordance with previous

studies in that the relationship between fish consumption

and serum/tissue DHA applies primarily to intake of fatty

fish and n-3 supplements(34,40,41).

When total intake of milk and other dairy products,

containing iodine from mandatory fodder fortifica-

tion(14,42), was included as a covariate, no fish variables

were significantly associated with urinary iodine excre-

tion(43). Urinary iodine excretion is therefore not suitable

as a biomarker for fish and seafood intake in Norwegians.

While fish and shellfish is the main dietary source of

Hg, dietary sources of Se also include eggs, cereals and

meat(44). Several investigators have evaluated self-reports

of fish intake with blood concentrations of Hg and Se in

women of childbearing age(45–48). Bates et al. studied the

contribution of fish and other foods to variance of Se and

Hg status in British adults and concluded that dietary fish,

especially oily fish, was a strong predictor of blood Hg

and Se in this population(47). Bjornberg et al. found an

increase in blood Hg, but not in Se, with increasing fish

consumption in pregnant Swedish women(48).

Pregnant women have been shown to have lower

consumption of certain fish species owing to concerns

about Hg contamination(49). In Norway, pregnant women

are advised to limit the intake of large perch, wild trout

and halibut and to not eat pike, fish liver or exotic pre-

datory fish like fresh tuna. Canned tuna is considered

safe(50), although reports show that Hg concentrations

here may also vary considerably(51,52). In spite of the

relatively low intake of tuna (Table 2), this food item

was significantly associated with blood Hg (Table 4). All

tuna reported in the present study was in the form of

canned tuna or tuna products used as sandwich spread.

The overall low blood Hg levels in our subjects indicate

that pregnant Norwegian women do not, generally, need

to be more careful about their Hg intake than they

are already.

Few studies have examined the association between

fish consumption and blood arsenic concentration(53–55).

We found a positive association between blood arsenic

concentration and intake of fish and seafood, but it may

be asked whether this could be due to interactions with

other elements, such as Hg and Se, as these are also

associated with fish/seafood intake. Our data indicate an

independent role of arsenic for fish and seafood intake.

Arsenobetaine in fish is absorbed and rapidly eliminated

via the urine(12). Volunteers who ingested arsenobetaine

through seafood eliminated 70 % of the arsenic within the

first two days and 77 % within 8 d of ingestion, and in

volunteers who ingested radioactively labelled arseno-

betaine with fish, ,1 % of the ingested activity remained

in the body after 24 d(55). The effect of fish arsenic on

blood arsenic has, to our knowledge, been reported in

only one study. In a semi-controlled feeding study,

Meltzer et al. found a strong positive correlation (r 5 0?85,

P , 0?001) between dietary arsenic from fish (estimated

by analysis) and blood arsenic concentration and

between total grams of fish and blood arsenic con-

centration (r 5 0?41, P , 0?02)(54).

The rapid excretion might make blood arsenic a good

biomarker for short-term fish intake only, but our results

strongly indicate that arsenic might also be associated

with medium-term fish/seafood intake. Furthermore, the

independent association with Hg might indicate a similar

association with long-term intake not reflected in the

dietary assessment. Fish and seafood may be assumed to

be the most important contributor to the Hg load in these

women, with blood Hg partially reflecting historical

fish/seafood ingestion. To our knowledge, no specific

Hg–arsenic interactions have been described to account

for the observed association, so it might indicate historical

intake of a common source of Hg and arsenic. For blood

arsenic to be established as a biomarker for fish and

seafood intake, detailed short- and medium-term studies

are necessary.

The associations between the potential biomarkers

and various subgroups of fish and seafood intake in the

present study were generally not very strong, but prob-

ably close to what might be expected. The physiological

and metabolic changes related to pregnancy may have

attenuated some associations, but apart from possibly the

fatty acids, we have no indications that the results would

have been substantially different with non-pregnant

women. As opposed to Se, iodine and EPA/DHA, blood

arsenic will normally be minimally influenced by the use

of dietary supplements. Another advantage of blood

arsenic over the n-3 fatty acids as a biomarker for intake

of seafood is the ability to reflect total fish and seafood

intake independent of the fat content of ingested fish.

Blood arsenic is, however, not applicable as a biomarker

for fish intake in areas with high arsenic load from the

drinking water.

Exploration of Se, iodine, Hg, n-3 fatty acids and

arsenic as potential biomarkers of fish and seafood intake

showed that blood arsenic concentration appears to be
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a robust potential biomarker for fish and seafood intake.

Blood arsenic concentration reflected the intake of both

fatty and lean fish and seafood in this population of

pregnant women, and it is not influenced by dietary

supplement use and fat content of the ingested fish, as the

n-3 fatty acids are. More studies need to be carried out to

confirm the results obtained.
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