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Boundary layer transition over a lifting body of 1.6 m length at 2◦ angle of attack has
been simulated at Mach 6 and a unit Reynolds number 1.0 × 107 m−1. The model
geometry is the same as the Hypersonic Transition Research Vehicle designed by the
China Aerodynamics Research and Development Center. Four distinct transitional regions
are identified, i.e. windward vortex region, shoulder vortex region, windward cross-flow
region and shoulder cross-flow region. Multi-dimensional linear stability analyses by
solving the two-dimensional eigenvalue problem (spatial BiGlobal approach) and the
plane-marching parabolized stability equations (PSE3D approach) are further carried out
to uncover the dominant instabilities in the last three regions as well as the shoulder
attachment-line region. The shoulder vortex is conducive to both inner and outer modes
of shear-layer instability, of which the latter most likely trigger the vortex breakdown.
A novel method is presented to substantially reduce the computational cost of BiGlobal
and PSE3D in resolving the cross-flow instabilities in cross-flow regions. The peak
frequencies of cross-flow modes lie between 15 and 45 kHz. Whereas oblique second
Mack modes are marginally unstable in the windward cross-flow region, they could
be strong enough to compete with the cross-flow modes in the shoulder cross-flow
region. In the shoulder attachment-line region, there exists only one unstable mode of
Mack instability, differing from previous studies that show a hierarchy of modes in
the context of symmetrical attachment-line flows. Results of the numerical simulation
and multi-dimensional stability analyses are compared when possible, showing a fair
agreement between the two approaches and highlighting the necessity of considering
non-parallel effects.
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1. Introduction

Laminar–turbulent transition can induce huge variations of skin friction and heat
transfer, and is therefore very important in designing hypersonic vehicles. While
transition mechanisms of essentially two-dimensional (2-D) boundary layers of simple
configurations (such as a flat plate, a concave wall, a circular cone at zero angle of
attack) have been well studied (Mack 1984; Fedorov 2011; Schneider 2015), investigation
of stability of three-dimensional (3-D) boundary layers, in which two essentially
inhomogeneous spatial directions exist, is still in its infancy stage. Since 3-D boundary
layers are more relevant in hypersonic flights, the related transition problem receives
ever growing attention despite significantly increased complexity compared to its 2-D
counterpart. Typical configurations utilized in studying 3-D boundary layer transition
include circular cones with non-zero angles of attack, elliptic cones (say HIFiRE-5 model,
Kimmel, Adamczak & Juliano 2013), the BoLT model (Wheaton et al. 2020) and the
lifting body (the Hypersonic Transition Research Vehicle, HyTRV) (Chen et al. 2021). The
most prominent feature of 3-D boundary layers is notable azimuthal pressure gradients that
transport fluid from the high-pressure region to concentrate in the low-pressure region. As
a result, 3-D boundary layers generally consist of three distinct unstable regions, that is,
the attachment-line region near the high-pressure region, the (streamwise) vortex region
in the vicinity of the low-pressure region, and the cross-flow region in between. Below we
give a brief summary of previous studies on these three flow regions.

Through extensive studies, good knowledge has been obtained for stability
characteristics of streamwise vortices on different configurations, such as an elliptic
cone (Choudhari et al. 2009; Juliano & Schneider 2010; Paredes et al. 2016; Li et al.
2018; Choudhari, Li & Paredes 2020), BoLT (Berridge et al. 2019; Knutson, Thome &
Candler 2019; Kostak & Browersox 2020; Li, Choudhari & Paredes 2020a) and a yawed
cone (Chen et al. 2020; Li et al. 2020b). Streamwise vortices would greatly distort the
profiles in the cross-section, forming mushroom structures with multiple high-shear layers.
Substantial variations in the azimuthal direction render the failure of one-dimensional
(1-D) stability analyses (linear stability theory, LST and parabolized stability equations,
PSE) and the necessity of multi-dimensional stability analyses (BiGlobal and PSE3D).
Each high-shear layer likely supports one or several unstable modes, which ultimately
lead to the breakdown of streamwise vortices. Unstable shear-layer modes can be further
classified as odd (sinuous) and even (varicose) modes according to the spanwise symmetry,
or inner and outer modes according to the spatial distribution, or Y and Z modes according
to the dominant energy production. Which type of mode dominates the transition process
depends on the specific flow configurations.

In a cross-flow region, the cross-flow velocity profile has an inflectional point, and is
thereby conducive to the cross-flow instability (Saric, Reed & White 2003). In addition,
oblique (second) Mack modes, rather than the planar counterpart that is typically more
unstable in 2-D boundary layers, are likely present (Balakumar & Reed 1991). Base flow
in the cross-flow region varies relatively slightly in the azimuthal direction, hence 1-D
stability analyses appear to be amenable. In order to obtain the evolution of cross-flow
vortices, a common practice is to first model a vortex path and the azimuthal wavenumber
variation along the path, and then integrate the nonlinear parabolized stability equations
(NPSE) with assumption of azimuthal periodicity (Oliviero et al. 2015; Kocian et al.
2017; Moyes et al. 2017a,b). However, there still exist some difficulties. First, how to
accurately predict the disturbance trajectory and the azimuthal wavelength variation along
the trajectory are still open to question, although some progress has been made recently
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Hypersonic transition

(Kocian et al. 2019). Second, nonlinear interactions among multiple modes, which is
essential in understanding the transition mechanism, cannot be tackled by local analyses
since local modes may have different trajectories and thus may not interact. Third,
unstable modes generally exhibit a wavepacket structure in the azimuthal direction, which
is hard to model by 1-D stability analyses. These difficulties would be overcome by
multi-dimensional stability analyses. A major drawback of multi-dimensional stability
analyses is their large time and storage consumption (Tullio et al. 2013), especially for
the cross-flow mode, whose wide spatial distribution and small wave scale require a
large number of azimuthal grid points (about O(1000)) to resolve. As far as the authors
know, only Paredes et al. (2016) and Lakebrink, Paredes & Borg (2017) have investigated
cross-flow instabilities via BiGlobal analysis for the HIFiRE-5 elliptic cone, and, in
particular, the latter have observed notable discrepancies in growth rates between BiGlobal
and LST results.

Extensive experimental studies have also been conducted to trace evolution of cross-flow
vortices, to reveal possible nonlinear modal interactions, to clarify effects of freestream
disturbances and surface inhomogeneity, and to explore transition control approaches
(Borg, Kimmel & Stanfield 2011, 2012, 2013; Borg et al. 2015; Ward, Henderson &
Schneider 2015; Craig & Saric 2016; Lakebrink & Borg 2016; Corke et al. 2018;
Neel, Leidy & Bowersox 2018; Arndt et al. 2020). Several important results are
listed below. First, stationary and travelling cross-flow vortices coexist in both quiet
(low-noise conditions) and conventional (high-noise conditions) wind tunnels, and their
interactions are also detected. Second, stationary cross-flow vortices are dominant for
quiet flow, whereas travelling cross-flow waves are more relevant for noisy flow. Third,
interactions between stationary and travelling cross-flow modes, and interactions between
Mack instabilities and cross-flow vortices, likely coexist, and it is hard to distinguish
experimentally between Mack instabilities and secondary instabilities of cross-flow
vortices.

Many studies have focused on the transition process of cross-flow vortices in 3-D
boundary layers with help of numerical simulations. Boundary layer transition induced
by roughness (Balakumar & Owens 2010; Choudhari, Li & Paredes 2017) or by random
blowing and suction immediately downstream of the tip (Dong et al. 2020) over a
straight cone at non-zero angle of attack and Mach number 6 have been computed.
Roughness can effectively trigger stationary cross-flow vortices, whereas blowing and
suction tend to induce travelling cross-flow vortices. Therefore, the transition pattern of
the former is similar to experimental observation in quiet wind tunnels, while the latter
is more like noisy cases. Nevertheless, Mack modes are observed to be substantially
destabilized by cross-flow vortices in both cases. Dinzl & Candler (2015) emphasized the
necessity of carefully considering the grid distribution and numerical schemes to obtain
disturbance-free laminar flow for the HIFiRE-5 elliptic cone. They subsequently (Dinzl
& Candler 2017) conducted direct numerical simulation (DNS) of evolution of stationary
cross-flow vortices excited by the distributed roughness near the nose of the cone, and
observed similar heat flux streak patterns as observed in experiments. Recently, Tufts et al.
(2020) performed high-fidelity simulations of HIFiRE-5 boundary layer transition. Their
results suggested that travelling cross-flow waves may play a significant role in transition
processes under both low- and high-freestream disturbances.

In the vicinity of an attachment line, the streamlines diverge and the boundary layer
exhibits non-negligible variations of the base flow components with respect to the
azimuthal direction. Studies of attachment-line transition have been conducted mostly
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in the context of incompressible and compressible flows with moderate Mach numbers
over swept wings or cylinders (see, for example, Gennaro et al. (2013), and references
therein). Investigations on hypersonic attachment-line boundary layer transition over 3-D
configurations are relatively scarce. Borg et al. (2011) examined experimentally the critical
roughness height for the leading edge boundary of the HIFiRE-5 configuration. The
critical roughness height is defined as the minimum roughness height that first causes
transition to move forward relative to the smooth-wall transition location for both 2-D
and 3-D roughness geometries. It is found that the critical roughness height remarkably
increases when the freestream noise decreases from noisy to quiet levels. However,
they did not observe the natural attachment-line transition under quiet-flow conditions.
Attachment-line transition occurred under noisy-flow conditions in several ground tests,
which is always the most downstream point in the transitional front and appears to be
due to contamination from the outboard transition (Tufts, Gosse & Kimmel 2017). A
distinct attachment-line transition lobe seems to be observed only in tests performed
at CUBRC, where the wall temperature ratio closely approximates flight conditions
(Holden et al. 2009; Tufts et al. 2017). Paredes et al. (2016) performed BiGlobal stability
analysis on the HIFiRE-5 attachment-line boundary layer. They found that symmetrical
and antisymmetrical Mack modes alternatively emerge in the spectrum. Their results
also indicate that the connection between attachment-line instabilities and cross-flow
instabilities, as suggested in incompressible cases (Mack, Schmid & Sesterhenn 2008),
no longer exists in their case.

Despite the progress made above, some questions still remain. First, detailed transition
information of 3-D boundary layers in terms of flow structures, disturbance spectrum and
amplitude evolution is lacking. Second, systematic multi-dimensional stability analyses
over the whole 3-D model accounting for streamwise non-parallel effects, and their
verification with numerical simulations, have not yet been reported. Third, boundary
layer instabilities for a more realistic configuration where streamwise vortices and the
attachment-line base flow may lose symmetry remain largely unknown. The lifting-body
shape of the HyTRV model resembles typical hypersonic vehicles, and is generated by
analytical functions that are easy to share with the community. Chen et al. (2021) have
performed a parametric study of the HyTRV model under various angles of attack,
regarding the base flow features and linear stability characteristics via 1-D stability
analyses. Upon the completion of the present study, we came across the recently
published work by Qi et al. (2021), who numerically simulated the boundary layer
transition over the HyTRV model under typical wind tunnel conditions, and performed
the proper orthogonal decomposition analysis for the shoulder vortical region. In this
paper, large-scale numerical simulations with up to 3.1 billion grid points were performed
to capture the transition process of the HyTRV model with nominally the same flow
conditions except for the angle of attack as Qi et al. (2021). Systematic multi-dimensional
stability analyses that take into account curvatures and streamwise boundary layer growth
were then carried out to reveal the dominant transition mechanisms on some selected
regions of interest and to serve as a cross-verification with numerical simulation results.
Particular attention will be paid to instabilities in cross-flow regions where theoretical
results are few in the literature.

The paper is organized as follows. The numerical settings and multi-dimensional
stability theories are introduced in § 2. Results of numerical simulation and stability
analyses are presented in § 3. A summary and concluding remarks are offered in § 4.
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2. Numerical settings and linear stability theory

The numerical simulation and stability analysis are based on the equations of ideal gas
flow written in dimensionless form as

∂ρ

∂t
+ ∇ · (ρV ) = 0, (2.1)

ρ

[
∂V
∂t

+ (V · ∇)V
]

= −∇p + 1
R

∇ ·
[
μ

(
∇V + ∇V t − 2

3
∇ · V I

)]
, (2.2)

ρ

[
∂T
∂t

+ (V · ∇)T
]

= (γ − 1)M2
[
∂P
∂t

+ (V · ∇)P
]

+ 1
RPr

∇ · (κ∇T)

+(γ − 1)M2μ

2R

(
∇V + ∇V t − 2

3
∇ · V I

)
:
(

∇V + ∇V t − 2
3
∇ · V I

)
, (2.3)

where V = (U,V,W) is the velocity vector, I is the identity tensor, ρ is the density, P
is the pressure, T is the temperature, M is the Mach number, R is the Reynolds number,
Pr = 0.7 is the Prandtl number, γ = 1.4 is the specific heat coefficient, κ is the thermal
conductivity and μ is the first coefficient of viscosity. The reference values of velocity
and temperature are the corresponding values at the free stream with the subscript ∞. The
reference value for pressure is ρ∗∞U∗2∞ . The equation of state is p = ρT/(γM2). Stokes’
law has been assumed, and the viscosity coefficient is estimated by Sutherland’s law

μ = T3/2 1 + Cs
T + Cs

, (2.4)

with Cs = 110.4K/T∗∞ for air in standard conditions. The dimensional variables are
denoted with the superscript ∗.

2.1. The HyTRV model and flow conditions
The HyTRV model and coordinates are sketched in figure 1. The detailed geometry
information can be found in Liu et al. (2021). The model’s head is an elliptic cone
with aspect ratio 2 : 1. The body cross-section is generated separately in the windward
and leeward sides. The windward part is an aspect ratio 4 : 1 elliptic cone, while the
leeward part is a linear combination of a class function and shape function transformation
technique (CST) curve and an elliptic curve with aspect ratio 4 : 1. The generation function
for the leeward curve in the bottom cross-section is

z = cos θW, (2.5)

y = (1 − χ) [(1 + cos θ)4(1 − cos θ)4]Hl︸ ︷︷ ︸
CST curve

+χ sin θHw︸ ︷︷ ︸
elliptic curve

, θ ∈ [0,π], (2.6)

where W is the half-width of the cross-section, Hl is the leeward height, Hw ≡ 1/4W
is the windward height and χ ≡ (1 − Hw/Hl) to assure local azimuthal symmetry with
respect to the shoulder line. Here, θ is a parameter ranging from 0 to π and has no
geometric meaning. The head and bottom of the model connect by a straight line so that the
streamwise slope remains continuous. The whole length is 1600 mm. The angle of attack
is 2◦. Typical Mach 6 wind tunnel flow conditions are used, i.e. static temperature 79 K,
unit Reynolds number 107 m−1, and wall temperature 300 K. The Cartesian coordinates
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Flow direction
1600 mm

X (ξ)

Hl = 270 mm

Hw = 75 mm

W = 300 mm

Side view

Front view

Z

Y p

Leeward side

Windward side

Y

φ = 0

φ = 90°

Mach number: 6

Unit Reynolds number: 107 m–1

Angle of attack: 2°

Static temperature: 79 K

Wall temperature: 300 K

Flow conditions:

δ
φ

Figure 1. Front and side views of the HyTRV model. The inflow conditions, the Cartesian coordinate system
(X,Y,Z) and the body-oriented coordinate system (ξ, δ, φ) are also shown (X ≡ ξ ).

are represented by (X, Y, Z), and (U,V,W) are corresponding velocity components.
The body-oriented coordinates are represented by (ξ, δ, φ), where ξ ≡ X denotes the
axial coordinate, δ the wall-normal coordinate and φ ≡ arctan Y/Z the azimuthal angle
coordinate.

2.2. Numerical simulations
The parallel computational fluid dynamics software OPENCFD, developed by (Li, Fu
& Ma 2008), was used for the numerical simulation. The simulation strategy consists
of two steps. First, the steady base flow of the entire model is computed using the
finite-volume algorithm with a second-order accurate scheme, as a laminar simulation. In
the second step, the calculated steady flow serves as initial and out-boundary conditions
for the laminar and transition simulations that are both performed for a smaller block
(X∗ ∈ [30 mm, 1600 mm]) downstream of the nose part. The laminar simulation is aimed
at obtaining the adequately resolved laminar boundary layer for stability analysis. The
convective and viscous terms are discretized with a fifth-order accurate upwind scheme
and a sixth-order accurate central difference scheme. Exploiting the symmetry of the
HyTRV geometry, only half of the model is modelled with symmetry boundary conditions
being forced in the leeward and windward centrelines. The computational domain is
resolved using 520, 741 and 241 nodes in the streamwise, azimuthal and wall-normal
directions, respectively. The azimuthal grid points are distributed in a manner such that
more points lie in the regions where streamwise vortices are expected to be present.
Compared with the previous DNS study on a similar configuration (Chen et al. 2021),
the basic flow can be adequately resolved under this grid resolution.

In the transition simulation, the inviscid fluxes are computed by using a seventh-order
weighted essentially non-oscillatory (WENO) finite difference scheme, while the viscous
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Figure 2. Grid distribution for the transition simulation. (a) Axial grid distribution. (b) Sketch of the mesh
grid on a cross-section. For clarity, every fifth grid point is shown in the fine-grid region φ ∈ [−22.5, 202.5]◦.

fluxes are discretized using a sixth-order central difference scheme. The time integration
is performed using a third-order Runge–Kutta scheme.

Blowing and suction fluctuations are introduced continuously into the boundary layer.
The forcing amplitude is given by

A(x, φ, t) = A0(2r(φ)− 1) sin3(π(x∗ − x∗
1)/(x

∗
2 − x∗

1)), (2.7)

where A0, equal to 0.1 % of streamwise velocity, is the maximum forcing amplitude,
r ∈ [0, 1] is a pseudorandom number generated at every time step for each azimuthal
point, and x∗

1 = 90 mm, x∗
2 = 100 mm. By forcing stochastically, the initial perturbations

contain a broad spectrum of frequencies and azimuthal wavenumbers (see also Li, Fu &
Ma 2010; Knutson et al. 2019). The grid system has 3000 axial grid points, 3200 azimuthal
grid points, and 161 wall-normal grid points, resulting in a total of 1.55 billion points.
The grid distribution in the axial direction is adjusted so that more points are distributed
in the region of X∗ ∈ [800 mm, 1300 mm] where most of the instabilities reside; see
figure 2(a). Furthermore, the mesh sizing increases approaching the rear part of the model,
diminishing the fluctuation reflection from the outlet. Because the flow configuration is
symmetrical with respect to the leeward centreline (φ = 0) and the windward centreline
(φ = 180◦), we need to examine the boundary layer transition over only half of the
lifting body. On the other hand, instantaneous fluctuations are not symmetrical at these
centrelines, hence employing symmetry boundary conditions is inappropriate. Here, 3100
points are distributed in the azimuthal direction from φ = −22.5◦ to φ = 202.5◦, with
equal spacings in φ, and another 100 points cover the rest interval (coarse-grid region),
with spacings being increased away from the fine-grid region, as depicted in figure 2(b).
Such a distribution strategy of azimuthal grid points proved to achieve a good balance
between accurately capturing the boundary layer transition process and minimizing the
computational cost (Li et al. 2008, 2010). The boundary layer is resolved by at least 80 grid
points in the wall-normal direction for most of the lifting body, and the first-layer spacing
in wall unit, Δy+

min, is below 0.45. Detailed grid resolution presented in Appendix A
shows that the flow upstream of the late transition stage is fully resolved with respect
to DNS standards, except for the attachment-line instabilities. When the flow becomes
turbulent and the wall-shear stress is maximum, the boundary layer based on this mesh
sizing becomes slightly under-resolved and the resolution is in between the typical LES
and DNS resolutions (Garnier, Adams & Sagaut 2009; Lugrin et al. 2021). Therefore, the
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computation corresponds to a quasi-direct numerical simulation (QDNS, such as defined
by Spalart 2000). In this paper, our aim is to capture the evolution of linear instabilities
preceding the transition, hence the resolution is sufficiently fine. Grid convergence is
partially performed by doubling the grid points in the axial direction, leading to a total
of 3.1 billion points. The results indicate that the transitional flow pattern remains the
same; see Appendix A.

2.3. BiGlobal method
The stability analysis is performed on the body-oriented coordinate system. We consider
the stability characteristics in the cross-section by decomposing the flow field as

q(ξ, δ, φ, t) = q̄(δ, φ)+ q′(ξ, δ, φ, t) = q̄(δ, φ)+ε q̂(δ, φ) exp(iαξ−iωt)+c.c., ε�1,
(2.8)

where q = (U,V,W,P, T)t, q̄ are the basic states, q′ are the infinitesimal perturbations, q̂
is the shape function of the disturbances and α represents the axial wavenumber; ω is the
angular frequency, with the corresponding frequency denoted by f . After substituting the
above decompositions into the Navier–Stokes equations, subtracting the basic states and
neglecting the non-parallel and nonlinear terms, one obtains the eigenvalue problems as(

0 I
−A0 −A1

)(
q̂
αq̂

)
= α

(
I 0
0 A2

)(
q̂
αq̂

)
, (2.9)

for a spatial approach where α is to be solved with ω given. Here, A0,A1,A2 are
linear operators for which the representations are given in Appendix F, and I is the
identity matrix. The azimuthal boundary locations are chosen such that the instability
mode considered is essentially contained in the computation region, and the stability
characteristics remain unchanged when further expanding the computation region. Unless
otherwise stated, homogeneous boundary conditions are utilized for both wall-normal and
azimuthal boundaries:

Û = V̂ = Ŵ = T̂ = 0 at boundaries. (2.10)

It turns out that azimuthal boundary conditions have little effect on the instabilities
considered in this paper since the fluctuations are essentially localized and vanish towards
the azimuthal boundaries. These linear operators are discretized using the fourth-order
finite difference scheme in both the δ and φ directions. The eigenvalues are then
determined by using Arnoldi’s method.

2.4. The PSE3D method
In contrast to the local stability analysis introduced above, three-dimensional parabolized
stability equations (PSE3D) incorporate initial conditions and non-parallel effects. In the
PSE formulation, the disturbance is decomposed into a rapidly-varying wave-like part and
a slowly-varying shape function as

q(ξ, δ, φ, t) = q̄(ξ, δ, φ)+ ε q̂(ξ, δ, φ) exp
(

i
∫
ξ

α dξ − iωt
)

+ c.c., ε � 1, (2.11)

where q̂(ξ, δ, φ) is assumed to vary slowly with ξ so that ∂2q̂/∂ξ2 � 1. Substituting
(2.11) into the Navier–Stokes equations, and neglecting nonlinear terms as well as higher
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derivatives of q̂ with respect to ξ , yields linear PSE3D equations as

Lq̂ + M
∂ q̂
∂ξ

= 0. (2.12)

L and M are linear operators, and their entries are listed in Appendix G. To avoid the
ambiguity in the ξ -dependence between q̂ and α, the wavenumber at each station was
updated as

αnew = αold − i
1
E

∫∫
ρ̂+ ∂ρ̂

∂ξ

T̄
ρ̄γM2 + ρ̄

(
Û+ ∂Û

∂ξ
+ V̂+ ∂V̂

∂ξ
+ Ŵ+ ∂Ŵ

∂ξ

)

+ ρ̄T̂+ ∂T̂/∂ξ
γ (γ − 1)M2T̄

dδ dφ, (2.13)

where E is the disturbance energy defined as (Chu 1965; Hanifi, Schmid & Henningson
1996)

E =
∫∫

T̄
ρ̄γM2 |ρ̂|2 + ρ̄(|Û|2 + |V̂|2 + |Ŵ|2)+ |T̂|2ρ̄

γ (γ − 1)M2T̄
dδ dφ, (2.14)

and the + symbol denotes the complex conjugate. Formulation (2.14) represents a
normalization on the shape function and ensures that the growth and the streamwise
periodic variation of the disturbance are mainly absorbed by the exponential part. This
iteration continued until the latest change was less than 10−5. The effective growth rate
computed by PSE3D is formulated as

σe = −αi + 1
2

d ln E
dξ

. (2.15)

The N-factor is then given by

N(ξ) =
∫ ξ

ξ0

σe dξ, (2.16)

where ξ0 corresponds to the upstream neutral location. Because the BiGlobal results for
the cross-flow instability are hard to converge (as will be shown later), exactly finding the
neutral location of the cross-flow mode seems impossible. Therefore, in the present study,
the inlet of PSE3D for the cross-flow instability is chosen such that the initial modal growth
rate is below a certain small value (relative to the maximum growth rate), for example, less
than 4 m−1 for the windward cross-flow instability. Since the growth rate increases rapidly
near the neutral location, the uncertainty of N-factors due to the neutral location is much
smaller than the difference caused by different inlet modes, and is thus acceptable.

The code has been well validated in previous studies (Chen et al. 2019a, 2020; Chen,
Huang & Lee 2019b). Grid convergence relative to the grid was assessed via spot checks
for different types of instabilities.

3. Results

3.1. Laminar flow pattern
Figure 3(a) displays the wall pressure distribution on the surface of the HyTRV model,
along with some representative streamlines. The corresponding time-averaged flow
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R1:

windward vortex region

R2: windward cross-flow region

R3:

R4: shoulder cross-flow region

R5: shoulder vortex region

R6: leeward cross-flow region

R7: leeward

attachment-line region

shoulder

attachment-line region

0

10.035

0.027

ŪP

(a) (b)

Figure 3. (a) Pressure distribution over the entire surface of the HyTRV model, and near-wall streamlines
showing motion of the fluid from the attachment line towards the low-pressure regions. The pressure field
on the leeward–windward symmetry plane is also displayed, clearly depicting the shock wave structure. (b)
Contours of axial velocity in several cross-sections (X∗ = 294 mm, 548 mm, 791 mm, 964 mm, 1136 mm,
1315 mm, 1594 mm). The flow in the region φ ∈ [−π, 0] (i.e. the left half part) has been replaced by the flow
in the right part (fine-grid region). The boundary layer over the HyTRV model is qualitatively divided into
seven regions according to the transition characteristics.

structures are illustrated in figure 3(b). One can observe that high-pressure regions
form in the vicinity of the shoulder attachment line and the leeward centreline, while
low-pressure regions lie in between. Fluid is driven away from high-pressure regions
to low-pressure regions where streamwise vortices and mushroom structures form. The
mushroom structure in the windward side closely resembles the centreline flow structure
on other 3-D configurations, such as an elliptic cone, BoLT or cone at non-zero angle
of attack, and is thus expected to be conducive to similar instabilities. In contrast, the
mushroom structure in the leeward side loses the azimuthal symmetry, and its stability
characteristics have not been studied before. It is convenient to divide the HyTRV model
roughly in seven regions, as shown in figure 3(b), and consider the boundary layer
transition separately. This approach is supported by the QDNS results, which show several
distinct transitional regions (see figure 8), and by the stability analysis results, which
indicate a localized perturbation distribution for all the instabilities. The boundary layers
in the last two regions, R6 and R7, are found to be stable, and thereby are not considered
hereafter. Moreover, we also omit the results in the windward vortex region (R1) where
the transition mechanisms turn out to be essentially the same as that in the shoulder vortex
region studied below.

It should be emphasized that the partition of the HyTRV model as shown in figure 3(b)
is very general. In calculations of multi-dimensional stability analyses, the computation
regions for certain type of instabilities would be adjusted following the principles
introduced in § 2.3, as shown in figure 4. Figure 5 displays the evolution of the boundary
layer thickness (based on total enthalpy) as a function of the azimuthal angle at several
streamwise locations. The boundary layer thickness peaks at the vortex regions, where
it increases almost linearly along the axial direction. By contrast, the attachment-line
boundary layer thickness is thinnest and changes only slightly with increasing axial
stations.

Since a large-scale vortex is a structure exhibiting distinct transition characteristics
in contrast to the ambient slowly varying boundary layer, rapidly determining the
approximate location of the vortex without performing expensive numerical simulations
is very important to transition predictions. As a vortex generally arises from the fluid
concentration driven by spanwise pressure gradients, it is straightforward to associate the
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5

1

2

34

1 Windward cross-flow instabilities

2 Shoulder attachment-line instabilities

3 Shoulder cross-flow instabilities

4 Shoulder Mack-mode instabilities

5 Shoulder vortex instabilities

1

0

Ū

Figure 4. Azimuthal regions utilized in multi-dimensional stability analyses for various instabilities: φ ∈
[86.7◦, 180◦] for windward cross-flow instabilities; φ ∈ [85.2◦, 94.3◦] for attachment-line instabilities; φ ∈
[62.3◦, 90.9◦] for shoulder cross-flow instabilities; φ ∈ [68.0◦, 82.9◦] for shoulder Mack-mode instabilities;
and φ ∈ [22.9◦, 50.8◦] for shoulder vortex instabilities. The axial velocity slice at X∗ = 1000 mm is also shown.
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20
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δ∗
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Shoulder vortex
Windward vortex

Shoulder attachment line

Figure 5. Variations of boundary layer thickness along the azimuthal direction for several axial stations (X∗ =
600 mm, 800 mm, 1000 mm, 1200 mm). The edge of the boundary layer is defined as the location for which
the local total enthalpy equals 99 % of the freestream total enthalpy.

vortex location with the pressure valley. The boundary layer pressure depends on the
shock wave strength, which can be measured simply by the relative angle, ψ , between
the incoming flow direction and the wall-normal vector of surface. The definition of ψ can
be written as

ψ = π + arccos(a · n), (3.1)

where a and n are the unit vector in the incoming flow direction and the unit vector in
the wall-normal direction, respectively. Here, ψ varies from 0 to π/2. ψ = 0 corresponds
to the stagnation-point shock wave case where the shock wave is strongest, while ψ =
π/2 is associated with the flat-plate shock wave case with weakest shock wave strength.
Therefore, the vortex location is related to the location of the local maximum of the relative
angle, which is a purely geometric quantity. Similarly, the local minimum of the relative
angle helps to determine the locations of the attachment line.

Figure 6 shows the variations of the relative angle along the half-part of the lifting
body for various angles of attack. It can be observed that increasing the angle of attack
implies a downward shift of the attachment line (indicated by the triangles) and a upward
movement of the shoulder vortex (indicated by the circles) until an 8◦ angle of attack
when the shoulder vortices from two sides meet. On the other hand, as the angle of
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Figure 6. Variations of the relative angle (ψ) along the half part of the lifting body for various angles of
attack (AOA) (arrow line denoting the increasing direction). Symbols denote the local extremum points that
are associated with certain flow regions, i.e. squares indicate the locations of the windward vortex, triangles the
locations of the shoulder attachment line, circles the locations of the shoulder vortex and flowers the leeward
attachment line.

400 600 800 1000 1200
40

60

80

100

120

Y∗
 (

m
m

)

X∗ (mm)Z∗ (mm)

Up edge

Down edge

(a) (b)

60 65 70 75 80 85 90
85

90

95

100

105

110

115

120

0

0.5

Up edge

Down edge

ψmax

Figure 7. (a) The shoulder vortex illustrated by the axial velocity contour at X∗ = 900 mm, with the up and
down edges of the vortex being marked. (b) Comparison of the location of the local maximum of the relative
angle (ψmax) and the shoulder vortex location bounded by the up and down edges.

attack is increased, the locations of the windward vortex and leeward attachment line
remain the same, yet the curve of ψ suggests that the windward vortex weakens and the
leeward attachment-line flow pattern with diverging streamlines eventually changes to a
typical streamwise vortex flow pattern with converging streamlines. The above trend of
the flow features with increasing angle of attack is in accord with observations by Chen
et al. (2021). Now we compare the shoulder vortex location predicted by the relative
angle with that from QDNS. If we restrict the vortex to be bounded by the up and down
edges as shown in figure 7(a), then the location of ψmax does correctly capture the vortex
location, as figure 7(b) indicates. Discrepancies may be attributed to twofold effects, one
the immaturity of the vortex in the upstream stage, and the other the self-induction of the
vortex that tends to promote the vortex location.

3.2. Transitional flow pattern
Figure 8 presents an overview of the transitional flow pattern. The transition regions
are shown clearly by the distribution of skin friction coefficient, Cf ≡ |2μ∇Ū|w/R, in
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Figure 8. An overview of boundary layer transition on the HyTRV model. (a) Time-averaged skin friction
coefficient distribution on the windward side. (b) Time-averaged skin friction coefficient distribution on the
leeward side. (c) Instantaneous vortical structures in the shoulder vortex region visualized by the isosurface of
the Q-criterion (Q = 0.001) coloured by the axial velocity, and the isosurface of the axial velocity (U = 0.7),
with some velocity slices also displayed. (d) Instantaneous vortical structures (same settings as panel (c)) in
the shoulder cross-flow region. (e) Instantaneous flow pattern in the windward cross-flow region, depicted by a
wall-normal slice (at the 50th grid point from the wall) coloured by axial velocity, along with the corresponding
vortical structures (Q = 0.001) coloured by Q. The transition locations of different regions are also marked,
which are defined where the time-averaged skin friction coefficient reaches 50 % of its maximum value in the
late-transition stage along a constant azimuthal-angle ray. Note that the coarse-grid part of the model has been
replaced by the mirror region of the fine-grid part.

figure 8(a,b). The windward vortex region is the first to experience the transition, at X∗ =
1100 mm, followed by the shoulder vortex region, the windward cross-flow region, and
finally the shoulder cross-flow region. Figure 8(c) illustrates the transition process of the
shoulder vortex. The vortical structures are illustrated using the Q-criterion (Hunt, Wary &
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Moin 1988). It can be seen that disturbances first set in the head of the vortex, manifesting
as crescent-shaped vortices, and rapidly develop into hairpin packets, contaminating the
whole bulge. Figure 8(d) displays the evolution of vortical structures in the shoulder
cross-flow region. The vortices initially manifest as oblique rolls with angles relative to the
azimuthal direction ranging from 30◦ to 40◦. The spacings of these oblique rolls are nearly
twice the boundary layer thickness, and the phase velocities (based on the disturbances of
the dominant frequency) are around 0.8, indicating that they probably originate in Mack
instability. Moreover, these oblique rolls exhibit prominent azimuthal variations as marked
by the red longitudinal bands. These longitudinal bands form an angle of approximately
80◦ with respect to the azimuthal direction. Since time-averaged Cf distributions do not
show any visible streaks, or footprints of stationary cross-flow vortices, these longitudinal
bands likely arise from travelling cross-flow waves. In the locations of the longitudinal
bands, Λ vortices gradually emerge riding on the oblique rolls, which further develop
into hairpin packets and merge with lateral vortices to form a triangle-shaped transition
region. Figure 8(e) shows the transitional flow pattern in the windward cross-flow region.
A triangle-shaped transition region also appears, surrounded by longitudinal streaks with
angles of around 70–80◦. These longitudinal streaks are again likely associated with
travelling cross-flow waves, which is apparent from the supplementary movie of the
cross-section flow (available at https://doi.org/10.1017/jfm.2021.1125). Small-scale rolls
are observed to ride on the longitudinal streaks, which are believed to develop from
secondary instabilities of the travelling cross-flow waves. These rolls would further evolve
into hairpin vortices. Note that a similar transition pattern has been observed by Tufts et al.
(2020) in numerical simulations of the boundary layer transition on the HIFiRE-5 elliptic
cone where the predominance of the travelling cross-flow waves is also highlighted.

3.3. Shoulder vortex region
Figures 3 and 8(c) illustrate the progression from formation to breakdown of the
vortex. A typical flow profile is displayed in figure 7(a), depicting a ‘flat-top’-shaped
structure. Interestingly, it looks very similar to the boundary layer modulated by
low-azimuthal-wavenumber cross-flow vortices on a yawed cone as studied by Moyes
et al. (2017b), and (one-half of) the centreline mushroom structure in BoLT as studied by
Knutson et al. (2019). To help to determine if the vortex is conducive to inviscid instability,
an inflection point calculation was completed. The φ-direction and wall-normal gradients
at X∗ = 872 mm are shown in figure 9, where figure 9(a) would depict the outer mode
instability, concentrating on the top shear layer, and figure 9(b) would depict the inner
mode instability, residing in the inner shear layer.

Figure 10 shows the BiGlobal instability results at multiple axial locations along
the vortex path from X∗ = 534 mm to X∗ = 1000 mm. At the first station, the Mack
mode peaks at around 65 kHz and is the most unstable. In comparison, a shear-layer
mode, denoted as mode1, emerges in a slightly lower-frequency region. The Mack mode
resides in the flat body part, whereas mode1 concentrates on the head part, in accord
with the observation by Moyes et al. (2017b) for secondary instabilities of cross-flow
vortices with similar shape. An important distinction between the Mack mode and
the shear-layer mode corresponds to the wall-normal distribution of the temperature
fluctuations. Whereas the Mack mode induces significant fluctuations near the wall, the
fluctuations associated with the shear-layer mode are localized within the shear layer in
the vicinity of the boundary layer edge. As the vortex develops, the Mack mode decreases
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Figure 9. Eight isolines (solid black) of axial velocity U (from 0.1 to 0.8) and isocontours at X∗ = 872 mm
of normalized gradients (a) ρ ∂U/∂δ and (b) ρ ∂U/∂φ.

in frequency with the increasing boundary layer thickness, and eventually disappears
before X∗ = 872 mm. In comparison, mode1 shifts towards higher-frequency regions and
is substantially destabilized. Multiple shear-layer modes denoted by mode2 to mode 5 also
emerge in the meantime. Modes 1–3 cover a broader frequency band, f ∗ ∈ (0, 200) kHz,
in the spectra and possess much higher phase velocities, c ∈ (0.7, 0.8), than modes 4 and
5, which have frequencies below 40 kHz and phase velocities from 0.3 to 0.55.

The typical mode structure for each shear-layer instability is displayed in figure 11. As
expected, all these modes are localized in regions of high shear. In particular, modes 1–3
locate at the outer shear layer and can be referred to as outer modes, whereas the other
two modes concentrate on the inner shear layer and can be classified as inner modes.
Coexistence of the inner and outer shear-layer modes has also been identified in stability
analyses for leeward streamwise vortices of a yawed cone (Chen et al. 2020; Li et al.
2020b) and for centreline streamwise vortices of an elliptic cone (Li et al. 2018) and the
BoLT model (Li et al. 2020a).

Next, we adopt PSE3D to trace the evolution of single-frequency disturbances. The
N-factors (i.e. the logarithmic amplification ratios relative to the neutral station) of outer
modes for a range of frequencies (40,130) kHz are shown in figure 12(a). The inner
modes are found to be substantially less unstable than the outer modes, thus the results
are not displayed here. It can be seen that the component of 70 kHz is dominant until
X∗ = 1000 mm, beyond which the component of 90 kHz achieves slightly larger N-factors.
The maximal N-factor is around 12 near the transition point, slightly smaller than the
transition N-factor (about 15) for the centreline streamwise vortices of the HIFiRE-5
vehicle at a flight condition (Choudhari et al. 2020). The temperature isosurface of this
frequency is shown in figure 12(b), which highlights how the regular modal structure
stretches to form the crescent-shaped structure in the late stage. The structure pattern
closely resembles that of QDNS results preceding transition in figure 8(c), indicating that
the outer-mode instability is indeed dominant in the transition process. The Mack-mode
perturbation (not shown here) undergoes only a short-distance moderate amplification,
hence it is unlikely to trigger the breakdown of the vortex.

Figure 13 further displays root mean square (r.m.s.) distributions of disturbances
and the corresponding spectra at the peak r.m.s. locations for several axial stations.
At the first station, fluctuations concentrate on the inner high-shear layer. The peak
frequency is around 3 kHz, which is far below the peak inner-mode instability
frequency (around 10 kHz) from BiGlobal analysis. One possible explanation for the
appearance of such low-frequency disturbances is the non-normal instability mechanism
(Schmid 2007) by which very-low-frequency disturbances may attain a rapid growth.
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Figure 10. Variations of growth rates and phase velocities of unstable modes for the shoulder vortex at four
axial locations: (a,b) X∗ = 534 mm, (c,d) X∗ = 630 mm, (e, f ) X∗ = 872 mm, and (g,h) X∗ = 1000 mm. The
real parts of the temperature eigenfunctions for the most unstable Mack mode (66 kHz) and mode1 (50 kHz)
are shown at the first station, along with the base flow depicted by the axial velocity (isolines).
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Figure 11. Temperature disturbance structures associated with the locally most unstable disturbance frequency
of each mode: (a) mode 1, f ∗ = 90 kHz; (b) mode 2, f ∗ = 70 kHz; (c) mode 3, f ∗ = 60 kHz; (d) mode 4,
f ∗ = 10 kHz; (e) mode 5, f ∗ = 18 kHz. Axial velocity isosurfaces (U) are displayed with values of 0.7 for
(a–c) and 0.4 for (d) and (e). The normalized temperature eigenfunction is also shown with the velocity base
flow contour in the start slice in (d) and (e).
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Figure 12. Downstream evolution of disturbances predicted by PSE3D: (a) N-factors for a range of frequencies
of (50,130) kHz with step 10 kHz, the thick redline representing 70 kHz; (b) spatial structure of frequency
70 kHz, illustrated by the isosurface of the real parts of temperature disturbances. The isosurface value is
prescribed to be 200 times the initial value (i.e. N = 5.3). The base flow is also visualized by isosurface U = 0.7
and contours (U) at several axial stations.

Although these low-frequency disturbances can amplify and reach a large amplitude
downstream, the low-frequency spectrum seems not to expand and the inner shear
layer is not as remarkably distorted as the outer shear layer, indicating that they are
unlikely to be the essential factors inducing transition. On the other hand, high-frequency
disturbances centred at approximately 70 kHz manifest themselves in the outer shear layer
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Figure 13. Normalized disturbance root-mean-square (r.m.s.) distribution from QDNS at four presentative
stations: (a) X∗ = 800 mm, (c) X∗ = 900 mm, (e) X∗ = 1000 mm, and (g) X∗ = 1100 mm, along with isolines
of the time-averaged axial velocity U (from 0.1 to 0.8). The sampling points are marked by filled symbols, and
the corresponding spectra are displayed in the right-hand column (b,d, f,h).

since X∗ = 900 mm, and quickly become dominant components in the r.m.s. distribution
before X∗ = 1000 mm. At the last station, the spectrum in the outer shear layer has
been broadened rapidly, indicating the onset of turbulence there. In comparison, a weak
peak at around 20 kHz, likely originating in inner-mode instabilities, appears in the
spectrum of the sampling point in the inner shear layer. The amplitude evolution of the
70 kHz component is shown in figure 14, clearly depicting the exponential growth and the
subsequent saturation stages. Unless otherwise stated, the amplitude of the QDNS results
is defined as the maximal value of the temperature fluctuations in the cross-sections. Good
agreement between QDNS and PSE3D results initiated by mode 1 can be observed, which
is a verification of both approaches. The QDNS values depart from the PSE3D results
for X∗ > 900 mm, most likely due to nonlinear modulations, which are known to tend to
stabilize the shear-layer instabilities as well as decrease the peak mode frequency (Chen
et al. 2019b, 2020; Li et al. 2020b). Indeed, PSE3D results based on the time-averaged
basic states of the transitional flow, which take the nonlinear modulations into account,
show a better agreement with QDNS results, as shown in figure 14. The BiGlobal result
from integration of growth rates of mode 1 is also displayed. The growth rate predicted by
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Figure 14. Comparison of amplitude evolutions of disturbances with frequency 70 kHz from QDNS and
theoretical predictions. The initial amplitudes of PSE3D and BiGlobal are prescribed to be equal to that of
PSE3D at X∗ = 700 mm.

BiGlobal is notably larger than those of PSE3D and QDNS. Such a discrepancy is likely
because of non-parallel effects.

3.4. Shoulder cross-flow region
Low-frequency cross-flow instabilities and high-frequency Mack instabilities can coexist
in the shoulder cross-flow region. Figure 15(a,b) displays the eigenvalue spectra of Mack
modes at X∗ = 1000 mm from BiGlobal. Multiple Mack modes are present, of which the
six most unstable ones are shown. For the sake of clarity, we denote these modes as modes
1–6, with an ordering of ascending phase velocities at frequency 125 kHz. Interestingly,
the spacings in the phase velocity between adjacent modes are almost the same for all the
modes and remain nearly unchanged with varying frequency. Moreover, phase velocities
decrease almost linearly with increasing frequency. From mode 1 to mode 6, the peak
growth rate decreases; the left-hand part of the spectrum along with the peak frequency
moves towards the high-frequency region, while the right-hand part changes only slightly.
Figures 15(c–f ) show the real part of the temperature eigenfunction of the first four modes
at their peak frequencies. For the purpose of highlighting the spatial scale of the mode,
the arc length, S∗, starting from the left azimuthal boundary of the BiGlobal computation
region, is introduced. A dual-peak structure across the boundary layer can be seen clearly
for all the modes, as a prominent feature of Mack-mode instabilities. From mode 1 to
mode 4, the azimuthal oscillation appears to be more compact. It is convenient to further
divide the boundary layer into three subregions, i.e. the expanding region in the left side
connecting to the shoulder vortex region, the contracted region in the right side adjacent
to the side attachment-line region, and in between the plateau region where the boundary
layer changes slowly. Then one immediately finds that all the modes concentrate mainly
in the plateau region, which is probably due to the sensitivity of Mack-mode instability to
the azimuthal variations of the boundary layer thickness (Mack 1984). This feature also
holds for other frequencies. In the research of the HIFiRE-5 elliptic cone by Paredes et al.
(2016), Mack modes are found to be the extension of attachment-line instabilities, and
their frequencies and growth rates decrease as the location of the mode shape peak moves
from the vicinity of the attachment line towards the centreline. In our study, however,
Mack modes in the shoulder cross-flow region appear to have no connection with the
attachment-line instabilities, since their mode shapes reside only in the plateau region.
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Figure 15. Spectra of Mack mode instabilities from BiGlobal calculations at X∗ = 1000 mm for the shoulder
cross-flow region: (a) spatial growth rates and (b) phase velocities as a function of frequency, and normalized
temperature disturbance (real part) distribution in the wall-normal distance (δ∗)–arc length (S∗) plane for the
most unstable component of mode 1 (c), mode 2 (d), mode 3 (e) and mode 4 (f ), at X∗ = 1000 mm. The position
of S∗ = 0 corresponds to the left azimuthal boundary of the computation region in BiGlobal. The temperature
base flow (black lines) is also plotted with contour level increments in intervals of 0.5.

Another interesting observation is that all the modes are essentially 3-D or oblique. The
obliqueness can be illustrated clearly by the spatial structures of these modes at frequency
128 kHz (which is close to the peak frequency of each mode), as shown in figure 16. The
mode structures manifest as two-layer oblique rolls with certain phase lags. Because the
upper-layer roll is dominant, the wave angle is estimated from the upper-layer roll. From
mode 1 to mode 4, the wave angle decreases from 35◦ for mode 1 to 24◦ for mode 3 and
then increases to 28◦ for mode 4. Moreover, the mode with the lower phase velocity tends
to reside in locations slightly closer to the shoulder attachment line. Figure 17 further
compares spatial structures of mode 1 for three frequencies. The wave angle increases
from 20◦ at frequency 115 kHz to 37◦ at frequency 135 kHz. Since the phase velocity also
decreases with increasing frequency, the wave angle of the single mode is also negatively
correlated with the mode phase velocity. The azimuthal locations of mode shapes appear
to be directly associated with the phase velocity too, as they gradually shift towards the
attachment line with decreasing phase velocity. This observation holds qualitatively for
other modes.

Figure 18 displays downstream evolutions of the first three modes with frequency
125 kHz. It can be observed that the growth rates are close between modes and exhibit
a parabolic shape peaking at X∗ ≈ 1030 mm. Moreover, the phase velocities all decrease
monotonically along the axial direction. The PSE3D results initiated by mode 1 are also
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Figure 17. Spatial structures of mode 1 at three frequencies: (a) 115 kHz, (b) 125 kHz and (c) 135 kHz.

shown for comparison. The growth rate from PSE3D shows a shape similar to that for the
BiGlobal results, but it is notably larger than the latter especially for the right-hand half of
the parabolic shape. As a result, the amplification region from PSE3D extends almost
50 mm downstream of the neutral location predicted by BiGlobal. The phase velocity
from PSE3D decreases more slowly, and its trace crosses the phase velocities of all three
modes. This suggests that the disturbances in PSE3D would excite multiple modes due to
non-parallel effects when they travel downstream, and behave as a combination of multiple
modes rather than as a single mode.

The spatial structures of mode 1 from BiGlobal are depicted in figure 19 for three
representative axial locations. Obviously, in the axial direction, the wave angle increases
and the mode structures move towards the shoulder attachment line, again implying a
strong correlation with phase velocity (recall that the phase velocity also decreases along
the axial direction).

Downstream evolution of the Mack-mode instability for various frequencies by PSE3D
are further illustrated in figure 20. Note that various inlet modes will lead to various
evolution routes, and the most amplified one of each frequency is shown in figure 20(a).
The dominant frequency decreases with increasing axial locations, in accord with the
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Figure 19. Spatial structures of mode 1 with frequency 125 kHz at three axial locations: (a) X∗ = 952 mm,
(b) X∗ = 1048 mm and (c) X∗ = 1144 mm.

growth of boundary layer thickness. The largest N-factor is approximately 4.5 at X∗ =
1250 mm by frequency 125 kHz. The corresponding mode shapes at four axial stations,
along with the base flow, are displayed in figures 20(b–e). The azimuthal wavelength (λφ
defined as the width between adjacent peaks of the mode shape) remarkably decreases
from around 20 mm at the first slice to nearly 10 mm at the last slice, resulting in increases
of the wave angle. This is consistent with the decrease of the phase velocity as shown
in figure 18(b). As the Mack-mode wave travels downstream, the main part of the mode
structure remains in nearly the same range of the azimuthal angles (i.e. φ ∈ (74, 83)◦),
rather than moving towards the shoulder attachment line as implied by BiGlobal.

The cross-flow instabilities are caused by the inflectional three-dimensional boundary
layer profile formed over the surface of the leeward zone between the shoulder attachment
line and the shoulder vortex. Therefore, their shape functions are expected to occupy
a much wider region in the azimuthal direction than the Mack-mode instabilities do.
As a result, large resolutions are required to solve these modes using the BiGlobal
analysis. Numerical tests show that cross-flow instabilities are relatively insensitive to
the wall-normal resolution. Hence we fixed the wall-normal grids number Nδ to 101 and
vary the azimuthal grids number Nφ from 160 to 2000. It turns out that the eigenvalues
undergo an overall decrease in growth rate with increasing azimuthal resolution, but they
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(c) X∗ = 1017 mm, (d) X∗ = 1100 mm and (e) X∗ = 1185 mm, illustrated by contours of the real part of the
normalized temperature fluctuations, along with the temperature base flow.

do not converge, as shown in Appendix C. This implies that the eigenvalue problem for
the cross-flow instabilities are extremely sensitive to the numerical fluctuations that likely
arise from truncation and interpolation errors (Trefethen & Embree 2005). Paredes et al.
(2016) seemed to have also noted the bad convergence of this eigenvalue problem, but they
did not show the spectra so we cannot make a comparison.

Now we consider the mode shape of a typical cross-flow mode with frequency 20 kHz as
shown in figure 21. It can be seen clearly that the cross-flow mode exhibits a wave packet
distribution with the oscillation amplitude vanishing towards the azimuthal boundaries.
The negligibly small values in the vicinity of the azimuthal boundaries indicate that
the cross-flow instability is insensitive to the azimuthal boundary conditions. The rapid
oscillation of the mode shape translates into a small azimuthal wavelength and a large
wave angle. In contrast, the envelope of the mode shape is much smoother. Furthermore,
the azimuthal wavelength changes little along the azimuthal direction. Therefore, we can
seek a Wentzel–Kramers–Brillouin–Jeffrey-like expansion (Bender & Orszag 1978) of the
mode shape as

q̂(δ, φ) = q̃(δ, φ) exp(i4πβS̃), (3.2)

where S̃ ∈ [0, 1] is the normalized form of the arc length S∗, so that the rapid variations
are absorbed into the exponential term (much akin to the PSE methodology). As a result,
the equation (2.9) reduces to(

0 I
−Ã0 −Ã1

)(
q̃
αq̃

)
= α

(
I 0
0 Ã2

)(
q̃
αq̃

)
, (3.3)

where the azimuthal wave number β has been included in the modulated linear operators
with a tilde (˜) over it. It should be noted that the reduced eigenvalue equation (3.3) is
completely equivalent to the original one (2.9) since no additional assumptions have been
introduced. Similarly, this methodology can be applied straightforwardly to PSE3D with a
fixed β along the axial direction.

In calculation, we can choose an appropriate wavenumber β, which can be a constant
or can vary slowly with φ, in order to make the amplitude term, q̃(δ, φ), a slowly varying
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Figure 22. Convergence test for the cross-flow instability (20 kHz) with varying azimuthal resolutions:
(a) spectra at X∗ = 1000 mm; (b) contours of the amplitude term magnitudes, |q̂| for the modes enclosed
by the ellipse curve in (a), along with the temperature base flow. The chosen wavenumber β is prescribed to be
an integer and decreases linearly from 26 to 8 as the phase velocity increases.

function of φ. As a benefit, the azimuthal grid points required to obtain a smooth solution
can be largely reduced.

Figure 22 shows the convergence test of the reduced eigenvalue problem for 20 kHz.
For Nφ ≥ 240, the eigenvalues concentrate in a parabolic-like band but exhibit small
shifts with increasing azimuthal grid points. The magnitudes of such shifts do not show
a decreasing trend with increasing resolution, indicating that the reduced eigenvalue
problem can hardly converge too. Nevertheless, the eigenvalue fluctuations with increasing
resolution are much smaller than those obtained from the conventional equation (2.9) with
the same grid points, as shown in figure 46. It is noteworthy that varying β in a certain
range, which acts as perturbations to the eigenvalue equation, would lead to shifts of the
eigenvalues in a manner similar to changing grid resolution, as shown in Appendix D.
Figure 22(b) compares the fluctuation amplitude distribution of the mode calculated from
three resolutions as marked by the ellipse in figure 22(a). As expected, the small eigenvalue
shift between two resolutions corresponds to a small shift of the mode shape distribution.
Unless otherwise stated, the azimuthal grid points used in multi-dimensional stability
calculations for the cross-flow instability are 240 hereafter.

938 A8-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1125


Hypersonic transition

0.2 0.3 0.4 0.5 0.6
2

4

6

8

10

12

14

16(a)

c
10 20 30 40 50 60

0.2

0.3

0.4

0.5

0.6

c

(b)

f ∗ (kHz)

15 kHz

20 kHz

25 kHz

30 kHz

10 kHz

35 kHz
40 kHz45 kHz

50 kHz

55 kHz

60 kHz

–
α

i∗  (
m

–
1
)

Figure 23. Spectra for the cross-flow instability with various frequencies at X∗ = 1000 mm: (a) spectra in the
−α∗

i –c plane, (b) spectra in the c–f ∗ plane.

Should
er

 at
ta

ch
m

en
t

lin
e 

Should
er

 v
orte

x

x

y

z

λ
φ  = 2.3 mm

λ
φ  = 3.3 mm

λ
φ  = 4.8 mm

Phase velocity

ψ = 82° ψ = 81°

ψ = 79°

(b) (c)(a)

Figure 24. Isosurfaces of the normalized real part of the temperature eigenfunction (T̂r = 0.5) for three modes
with the same frequency 20 kHz: (a) c = 0.27, β = 23,(b) c = 0.35, β = 16 and (c) c = 0.43, β = 10. Twice
the axial wavelength of each mode is shown.

Spectra variations with frequency at X∗ = 1000 mm are displayed in figure 23. It can
be observed that the travelling cross-flow instability is more unstable than the stationary
counterpart, and the maximum growth rate occurs at approximately 35 kHz; the phase
velocity, ranging from 0.2 to 0.6, increases with frequency, which agrees with the
experimental results obtained by Borg et al. (2015) for the HIFiRE-5 elliptic cone.

Now we consider the spatial structures of the cross-flow instability. Figure 24 shows the
real part of the shape function, q̂(δ, φ), for three modes with the same frequency (20 kHz)
but different phase velocities, highlighting the streaky structures arising from the crossflow
modes. The shape function (and all such terms hereafter) is recovered by first interpolating
the amplitude term onto a finer grid and then multiplying by the phase term, e4 iπβS̃.
With increasing phase velocity, the shape function moves towards the shoulder vortex
region with larger azimuthal wavelengths. The wave angles of the streaks are estimated to
be around 80◦. With increasing frequency the opposite trend is seen on the modal structure,
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for the cross-flow instability of 20 kHz. The real part of the temperature shape function of the most unstable
mode at each station (marked by the circle) is displayed in (b–d).

as shown in figure 25, although the phase velocity also increases. This indicates that the
frequency is a more important factor than the phase velocity in determining the behaviour
of the modal structure.

Next we examine how the cross-flow instability changes with axial locations. Without
loss of generality, take the modes of 20 kHz, for example. The spectra at three stations,
i.e. X∗ = 800 mm, 1000 mm and 1200 mm, are shown in figure 26 along with the shape
function of the most unstable mode at each station. The cross-flow instability is seen to be
enhanced from X∗ = 800 mm to 1200 mm, whereas the phase velocity of the dominant
mode changes little. It is evident from figure 26(b–d) that the dominant mode moves
towards the shoulder attachment line.
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However, because the eigenvalue spacing is very small, disturbances will always be
composed of multiple modes rather than being dominated inevitably by any single mode
as they travel downstream. As a result, accurately tracking a single mode in the axial
direction is nearly impossible and also of insignificance in practice. In comparison, PSE3D
is able to capture adequately evolution of instabilities in the context of multiple modes
(Chen et al. 2019a; Choudhari et al. 2020), and turns out to be less sensitive to the grid
resolution, as shown in Appendix E. Therefore, we utilize PSE3D to follow evolutions
of cross-flow instabilities in this paper. Figure 27(a,b) show the evolution of N-factors
and phase velocities obtained by PSE3D with frequency 30 kHz but different initial
conditions, say different inlet modes or different inlet locations. It is obvious that various
initial conditions lead to different routes. Hence it is necessary to seek the optimal initial
condition that produces the largest N-factor at the outlet in order to estimate the transition
criterion. Principally, the optimal disturbances can be determined by solving iteratively the
PSE3D and its adjoint counterpart just as in the one-dimensional case (see, for example,
Paredes et al. 2016), which is, however, beyond the scope of this work. Another important
observation is that the phase velocities of all the routes substantially increase in the axial
direction, whereas the BiGlobal analysis shows that the most unstable mode remains at
nearly the same phase velocity along the axial direction. Figure 27(c,d) further compare
the most amplified route of four frequencies. One can observe that the dominant frequency
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Figure 28. Comparison of evolution for the real parts of the normalized temperature disturbances from PSE3D
results (left column) initiated by modes with phase velocity c = 0.37 and QDNS results (right column) at five
successive stations: X∗ = 800 mm, 900 mm, 1000 mm, 1100 mm and 1200 mm. The disturbance frequency is
fixed at 20 kHz.

is 30 kHz for X∗ < 1200 mm and changes to 40 kHz before the outlet. The largest N-factor
near the transition location (1297 mm) is slightly above 5.

Figure 28 illustrates the real parts of the temperature shape functions at five successive
axial stations for the most amplified route of frequency 20 kHz. For routes with higher
(lower) initial phase velocity, the shape functions would exhibit a larger (smaller)
azimuthal wavelength and lie closer to (farther away from) the shoulder vortex region.
In this case, the main part of the shape functions from PSE3D remains in the plateau
region, rather than moving towards the attachment line as indicated by the BiGlobal
results above. The distribution of fluctuations of 20 kHz from QDNS are also shown
for comparison. Clearly, regular cross-flow wave profiles also appear and reside almost
exclusively in the plateau region. After the fourth station, X∗ = 1100 mm, the cross-flow
wave profile is obviously distorted in a manner such that its left-hand part is notably
enhanced and substantially stretched in the wall-normal direction. Such distortion is
likely caused by nonlinear interactions with the Mack-mode instability. Furthermore, the
azimuthal wavelength (≈ 6 mm) is slightly larger than the PSE3D results (≈ 5 mm) and
also does not exhibit any prominent variations along the axial direction.

A more realistic disturbance pattern can be obtained by taking the amplitude growth
into account. Figure 29 shows the spatial evolution for the travelling cross-flow wave with
frequency 20 kHz and for the Mack-mode wave with frequency 125 kHz, using isosurfaces
at a value of 10 times the initial amplitude. Whereas the cross-flow wave first enters
the exponential growth phase, the Mack-mode wave undergoes a faster growth so that
both types of instability start to manifest themselves at nearly the same axial location.
The cross-flow waves form longitudinal streaks with wave angles of around 84◦, while
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Figure 29. The structure evolution, illustrated by the real part of the temperature disturbance, for the cross-flow
instability with frequency 20 kHz (the black isosurface) and the Mack-mode instability with frequency 125 kHz
(the red isosurface). The isosurface value is prescribed to be 10 times the initial value (i.e. N = 2.3). The edge
streamlines are also shown (blue lines) for reference.

the Mack-mode wave appears as oblique rolls with a wave angle of 30–40◦. Because
PSE3D marching stops at the neutral point where the growth rate of disturbance becomes
negative, Mack-mode structures are invisible far downstream. Downstream increase of the
magnitude leads to a triangle-shaped pattern for both kinds of instability. The overlap of
the distribution regions indicates possible interactions between two kinds of instabilities,
as has been observed in inclined hypersonic cone boundary layers (Munoz, Heitmann &
Radespiel 2014; Dong et al. 2020). Inviscid streamlines are also displayed in figure 29. The
relative angles of the travelling cross-flow wavefronts and the Mack-mode wavefronts with
respect to the edge streamlines are estimated to be approximately 11◦ and 58◦, respectively.

Figure 30 shows the fluctuation distributions from QDNS for three axial stations.
The disturbance spectra are evaluated at locations where the r.m.s. amplitude is at its
peak. The spectrum at the first station exhibits a prominent low-frequency peak at
approximately 23 kHz and a much weaker high-frequency peak at approximately 190 kHz.
The low-frequency peak corresponds to the travelling cross-flow instability, while the
high-frequency peak emerges from the Mack-mode instability, as shown by the above
analyses. Further downstream, at X∗ = 1000 mm, a dual-peak r.m.s. amplitude structure
is manifest in the plateau region. The fluctuation amplitude in the upper layer is larger
and displays two isolated peaks. The spectra indicate that the Mack-mode wave amplitude
appears to be larger in the left peak, while the travelling cross-flow instability dominates
in the right peak. This is consistent with the distribution feature of these two kinds of
instabilities. The Mack-mode fluctuations prevail at the last station. The appearance of
its first harmonic implies that self-interactions are present. Owing to the increase of the
boundary layer thickness, the Mack-mode instability decreases in frequency as it travels
downstream.

Figure 31 compares the amplitude evolutions of Mack-mode waves with frequency
125 kHz and cross-flow waves with frequency 20 kHz from QDNS and PSE3D results.
The QDNS results indicate that the Mack-mode wave starts to amplify after X∗ = 900 mm
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Figure 30. Normalized disturbance r.m.s. amplitude distribution from QDNS at three representative stations:
(a) X∗ = 800 mm, (c) X∗ = 1000 mm and (e) X∗ = 1200 mm, along with the temperature base flow. The
sampling points are marked by filled circles, and the corresponding spectra are displayed in (b), (d) and ( f ).
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Figure 31. Comparison of axial evolution of amplitudes of the low-frequency cross-flow waves with frequency
20 kHz and the high-frequency Mack-mode waves with frequency 125 kHz from QDNS and PSE3D. The
PSE3D results based on the time-averaged profiles of the transitional state are not shown because they are
almost indistinguishable from those based on the laminar state in this case.

and reaches saturation before X∗ = 1200 mm. The cross-flow wave is observed to grow at
least before X∗ = 700 mm, and becomes saturated after X∗ = 1300 mm. The Mack-mode
wave amplitude grows more rapidly and soon reaches the same amplitude level as the
cross-flow wave at X∗ = 1100 mm. The PSE3D results based on the most amplified case
can capture adequately the exponential stage of both instabilities, but underestimate the
initial growth rates of disturbances. This discrepancy is likely owing to the transient growth
of the disturbances in QDNS. Moreover, a notable deviation between QDNS and PSE3D
results is observed for the cross-flow wave amplitude for X∗ > 1000 mm, which is likely
attributed to the nonlinear effects from the Mack-mode waves, in accord with the distortion
of shape functions as shown in figure 28.
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Figure 32. Spectra for the cross-flow instability with various frequencies at X∗ = 1000 mm in the windward
cross-flow region: (a) spectra in the −α∗

i –c plane and (b) spectra in the c–f ∗ plane.

3.5. Windward cross-flow region
In this subsection, we will consider boundary layer stability in the windward crossflow
region. The stability calculations are performed with the same methodology as in the
shoulder cross-flow region. The Mack-mode instability is found to be only marginally
unstable, i.e. its growth rate is one order of magnitude smaller than the maximal growth
rate of the cross-flow instability, hence its stability characteristics will not be discussed
further. The cross-flow instability in this region closely resembles that in the shoulder
cross-flow region but also exhibits some distinct features. Figure 32 shows the cross-flow
instability spectra at X∗ = 1000 mm. It is seen clearly that multiple unstable modes are
present for each frequency; modes of each frequency occupy a certain band of phase
velocity, and the band increases in value but shrinks in width with frequency. The most
unstable frequency lies between 15 kHz and 25 kHz, with the maximal growth rate being
approximately 15 m−1, compared to the case of the shoulder cross-flow region, the peak
frequency being lower and the peak growth rate being larger.

Next we examine the mode shapes of the cross-flow instability. Figure 33 compares
the spatial structures of modes at a fixed frequency with increasing phase velocity. It
can be seen that the travelling cross-flow wave lies far away from both the shoulder
attachment line and the windward centreline, implying insensitivity to the azimuthal
boundary conditions, as is also noted by Lakebrink et al. (2017). The isosurface of
the temperature eigenfunction exhibits streaky structures that are inclined towards the
windward vortex region. From the attachment line to the windward centreline, the local
azimuthal wavelength slightly increases in accord with the growth of the boundary
layer thickness, accompanied by a moderate decrease of wave angle. In comparison, the
crossflow modal structure in the shoulder crossflow region does not show prominent
azimuthal variations because the boundary layer thickness of the shoulder crossflow
region possesses a plateau region. Moreover, compared to the crossflow mode of the same
frequency in the shoulder crossflow region, the azimuthal wavelength is notably larger and
the wave angle is smaller in the case of the windward crossflow region. With increasing
phase velocity, the azimuthal wavelength increases and the wave angle decreases, but the
spatial location does not change. This trend is somewhat different from the case of the
shoulder crossflow region.
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Figure 33. Isosurfaces of the normalized real part of the temperature eigenfunction (T̂ = 0.5) for three modes
with the same frequency 20 kHz in the windward cross-flow region: (a) c = 0.4, β = −18, (b) c = 0.44,
β = −14, (c) c = 0.49, β = −8. Twice streamwise wavelengths of each mode are shown. The averaged
azimuthal wavelength and the wave angles at two sides are also displayed.

W
indward centreline

Shoulder attachment line

λ φ
 =

 8
.5

 m
m

λ φ
 =

 9
.5

 m
m

Frequency

x

y
z

(a) (b) (c)

ψ = 76°

ψ = 77°

ψ = 73°

ψ = 65°

ψ = 67°

ψ = 65°

λ φ
 =

 7
.0

 m
m

Figure 34. Isosurfaces of the normalized real part of the temperature eigenfunction (T̂ = 0.5) for the most
unstable modes of three frequencies in the windward crossflow region: (a) f ∗ = 5 kHz, c = 0.20, β = −12,
(b) f ∗ = 20 kHz, c = 0.44, β = −14, (c) f ∗ = 40 kHz, c = 0.56, β = −17. Twice streamwise wavelengths of
each mode are shown. The averaged azimuthal wavelengths and the wave angles at two sides are also displayed.

The frequency effects on the mode shape are highlighted in figure 34, showing spatial
structures of most unstable modes of three frequencies. With increasing frequency, the
azimuthal wavelength decreases and the spatial distribution shifts towards the shoulder
attachment line, similar to the case of the shoulder crossflow region. The wave angle also
decreases as frequency increases.

The downstream evolution of cross-flow instability is studied with PSE3D. Like the case
of the shoulder cross-flow region, the N-factor curve (not shown here) is very sensitive to
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Figure 35. The structure evolution from PSE3D for the cross-flow instability with frequency 15 kHz,
illustrated by the real part of the temperature disturbance. The isosurface value is prescribed to be 10 times
the initial value. The edge streamlines are also shown (blue lines) for reference.

the initial conditions. The maximal N-factor value is around 7 preceding the transition
point for the frequency range 15–25 kHz. The spatial structure is relatively more robust
to the initial conditions and is thus more helpful to characterize the cross-flow mode.
Figure 35 shows the spatial evolution of the travelling cross-flow wave with frequency
15 kHz using isosurfaces. As the wave amplitude increases downstream, the number
of streaks increases substantially, forming a triangle-shaped spatial distribution. In the
direction away from the attachment line, the azimuthal wavelength increases while the
wave angle decreases. Take the outlet location, for example: the azimuthal wavelength
increases from around 7 mm to 16 mm, while the wave angle decreases from around 82◦
to 65◦.

Figure 36 shows the distributions of normalized r.m.s. amplitude of the temperature
fluctuations from QDNS for several axial locations. The spectra calculated at the
locations where the r.m.s. value is maximum are also displayed. The results indicate
that low-frequency components arising from travelling cross-flow waves (peaking at
approximately 17 kHz before the last location) dominate the transition process, which
is consistent with the stability analyses results. High-frequency disturbances, likely
originating in the Mack-mode instabilities, emerge after X∗ = 1000 mm and amplify
downstream due to the modulation of the cross-flow waves. The onset of turbulence is
manifest at the last station, X∗ = 1300 mm, where the base flow is significantly distorted,
and the spectrum is filled up with a scaling law, |T ′| ∼ f −4, describing the behaviour of
the temperature fluctuation amplitude in the high-frequency region.

Figure 37 further compares the amplitude evolutions of the travelling cross-flow waves
with frequency 15 kHz from QDNS and PSE3D results. Good agreement can be observed
except for the initial transient stage and the late nonlinear saturation stage, where the linear
amplification seems to be weakened by the mean flow distortion.
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Figure 36. Normalized temperature fluctuation distributions from QDNS at four representative stations: (a)
X∗ = 900 mm, (c) X∗ = 1000 mm, (e) X∗ = 1200 mm and (g) X∗ = 1300 mm, along with the temperature base
flow. The sampling points are marked by • with the corresponding spectra being displayed in the right-hand
column. Note that the r.m.s. in the vicinity of the windward centreline has been omitted. A zoom-in plot is
displayed in (d) to highlight the high-frequency peak. A log-log plot is added in (h) to indicate the scaling law
of the spectrum. The green and black triangles denote the locations of the attachment line and the windward
centreline, respectively.

3.6. shoulder attachment line
The spatial eigenvalue spectrum for the shoulder attachment-line instability from
BiGlobal calculations at X∗ = 1000 mm is displayed in figure 38. In contrast to previous
studies on the attachment-line instability where alternatively arranged symmetrical and
antisymmetrical instabilities exist, only one branch of instability is identified in the present
case and it no longer possesses perfect spanwise symmetry due to the symmetry breaking
of base flow. The peak growth rate is slightly larger than that of the boundary layer
instabilities in cross-flow regions, but smaller than that of the shear-layer instabilities
in the vortex regions. Because of the small boundary layer thickness (∼0.5 mm here),
this instability lies in an extremely high frequency range (600 kHz < f ∗ < 700 kHz),
which corresponds to a very small axial wavelength. Such high temporal and spatial
oscillations are beyond the present numerical resolution. Therefore, the attachment-line
boundary layer remains laminar throughout the whole model in the simulation. The real
parts of the normalized temperature eigenfunctions of three representative modes, along
with their spatial structures, are shown in figure 39. These eigenfunctions all exhibit
dual-peak structures across the boundary layer, which is strong evidence of the Mack-mode
instability. The smallest frequency mode resides almost exclusively in the windward side,
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frequency 15 kHz from QDNS and PSE3D based on either the laminar state or the transitional state.
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Figure 38. Spatial spectrum of the shoulder attachment-line instability from BiGlobal calculations at
X∗ = 1000 mm. (a) Spatial growth rate as a function of frequency; (b) phase velocity as a function of
frequency.

and behaves like an oblique Mack mode with wave angle approximately 21◦. The middle
one, which is also the most amplified one of the branch, is distributed nearly equally in
both the windward and leeward sides. Its windward-side part has wave angle approximately
14◦, while its leeward-side part is less oblique, with the opposite wave direction. The
largest frequency mode, mainly concentrating in the leeward side, is essentially planar.
The attachment-line instability does not extend towards the leeward side as far as it does
towards the windward side. This is likely due to the asymmetry of the boundary layer as
shown in figure 39(g). The boundary layer changes slowly in the vicinity of the Y∗ = 0
plane, but grows fast in both sides. Fast variations of boundary layer in the azimuthal
direction likely inhibit the Mack-mode instability, as observed in the shoulder region.
Moving away from the Y∗ = 0 plane, the boundary layer thickness in the leeward side
increases faster than that does in the windward side, hence the Mack-mode instability is
expected to decay faster in the leeward side than in the windward side.

The spatial evolutions of fixed frequency disturbances are evaluated with the help of
PSE3D. Figure 40 displays the axial evolutions of N-factors for disturbance frequencies
from 610 to 690 kHz. As the streamwise coordinate increases, the boundary layer thickens
and the frequency of the Mack mode decreases. The mode with frequency 610 kHz
achieves an N-factor of 15 near the rear part of the model, which could potentially
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Figure 39. Real part of the normalized temperature eigenfunction from BiGlobal for three representative
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Figure 40. Streamwise evolution of N-factors of attachment-line instabilities from PSE3D for various
frequencies from 610 kHz to 690 kHz.

lead to laminar–turbulent transition (Tu et al. 2019). Without loss of generality, we
consider in detail the spatial structure evolution for the mode f ∗ = 650 kHz, whose
N-factor first reaches 10. Figure 41(a) depicts the whole disturbance structure illustrated
by the isosurface of the real part of the temperature component. It can be observed that
the attachment-line disturbances first manifest themselves in the windward side. This
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Figure 41. Spatial evolution of the attachment-line wave with frequency 650 kHz from PSE3D. (a) The
overall structure depicted by the isosurface of the real part of temperature perturbation; the isosurface value
is prescribed to be 10 times the initial value. (b) Zoomed-in image of the spatial structure corresponding to
the middle squared region in (a). (c) The normalized real part of the temperature disturbance in the X∗–Z∗
plane marked by the yellow line (Y∗ = 0). (d) Zoomed-in image of the spatial structure corresponding to the
rear squared region in (a), with the isosurface value of 5000 times the initial value to highlight the feature of
disturbance distribution.

coincides with the above BiGlobal results since fixed-frequency disturbances tend to be
located in the low-frequency part of the unstable branch in the upstream boundary layer,
thereby being expected to appear in the windward side. Immediately downstream of their
emergence, the attachment-line disturbances quickly form a nearly symmetrical crescent
structure, as shown clearly in figure 41(b), similar to the structure of the locally dominant
mode. The slice in the X∗–Z∗ plane depicted in figure 41(c) also exhibits a dual-peak
disturbance structure, as expected. Further downstream, the disturbances gradually move
towards the leeward side, as shown in figure 41(d). This is again consistent with the
BiGlobal results. Another important observation is that the disturbances virtually do not
expand in the azimuthal direction as they travel downstream, likely because there is a
fast increase of the boundary layer thickness away from the attachment line. This also
suggests that the attachment-line instability may not interact with or excite boundary layer
instabilities in the outboard region.

4. Summary and conclusions

Large-scale numerical simulations using up to 3.1 billion grid points are carried out on
boundary layer transitions over the HyTRV geometry lifting body at 2◦ angle of attack
under a typical Mach 6 wind tunnel condition. The boundary layer is perturbed by random
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Region Transition location Dominant instability Peak frequency Nt

Shoulder vortex 1151 mm Outer shear-layer mode 70 kHz 12
Shoulder cross-flow 1297 mm Mack mode 125 kHz 4.5

Travelling cross-flow mode 20–40 kHz ∼5
Shoulder attachment line Unresolved Mack mode 610 kHz Unknown
Windward cross-flow 1208 mm Travelling cross-flow mode 15–25 kHz ∼7

Table 1. Summary of the transition simulation and stability analysis results for interested regions. The
transition N-factor, Nt, is defined as the maximum value of the N-factor based on PSE3D results at the transition
point estimated from the numerical simulation.

blowing and suction right downstream of the tip to model the transition process. The
complex flow configuration leads to a complex pressure distribution over the mode surface,
which in turn induces the formation of windward and shoulder vortex regions, shoulder
and leeward attachment-line regions, and cross-flow regions in between. A systematic
parametric study is then presented on the modal multi-dimensional linear instabilities
of the boundary layer over four regions, i.e. the shoulder vortex region, the shoulder
cross-flow region, the windward cross-flow region, and the shoulder attachment-line
region. The analyses are performed by utilizing spatial BiGlobal, which fully resolves
the base flow and its perturbations at selected axial locations on planes normal to the
model axis, and by utilizing PSE3D, which tracks the axial evolution of fixed-frequency
disturbances. Conclusions are made below for each region considered, and some important
data are summarized in table 1.

In the shoulder vortex region, a ‘flat-top’ asymmetry vortex develops, and is conducive
to low-frequency inner shear-layer modes and high-frequency outer shear-layer modes.
The outer mode 70 kHz is found to be the most dangerous one leading to the transition.
It manifests as crescent-shaped vortices riding on the outer shear layer of the vortex
in the linear stage, and evolves into hairpin vortices when nonlinear effects come into
play. A Mack mode also exists in the upstream region, but ultimately disappears without
transferring to a shear-layer mode as it travels downstream.

In the shoulder cross-flow region coexist high-frequency Mack-mode instabilities
and low-frequency cross-flow-mode instabilities. For the Mack-mode instabilities, some
important findings are as follows. Multiple Mack modes are present and occupy the
same unstable frequency range; these modes are essentially oblique, with wave angles
ranging from 20◦ to 40◦; the Mack-mode waves moving downstream are confined in the
plateau region where the azimuthal variations of the boundary layer are mild, and exhibit a
decreasing trend in both phase velocities and azimuthal wavelengths. As for the cross-flow
modes, their mode shapes oscillate very rapidly and extend over almost the entire surface
of the shoulder cross-flow region. By separating the rapidly varying phase term from
the slowly varying amplitude term, the required azimuthal grid points are substantially
reduced from O(1000) to O(100). However, we note that mode growth rates and phase
velocities can hardly converge, suggesting that the eigenvalue problem for the cross-flow
instability is highly sensitive to numerical perturbations. Alternatively, the pseudospectra
(see, for example, Trefethen & Embree 2005) are probably more appropriate to describe the
eigenvalue behaviours. Nevertheless, other crucial characteristics, such as eigenfunctions
and the spectrum pattern, are robust, so the BiGlobal results can still shed light on the
features of cross-flow instabilities. Some important features of cross-flow eigenmodes are
uncovered by BiGlobal, as follows.

938 A8-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1125


Hypersonic transition

(1) Travelling cross-flow modes are more unstable than stationary ones.
(2) A great number of modes are present for a single frequency at one axial location.
(3) The phase velocity of the dominant mode increases with increasing frequency, in

accord with experimental observations (e.g. Borg et al. 2015).
(4) Increasing the phase velocity tends to increase the azimuthal wavelength and to shift

the spatial structure away from the attachment line, whereas an opposite trend is
observed by increasing the frequency.

The PSE3D results are also computed to trace the evolution of cross-flow instability
disturbances initiated by the BiGlobal solution. With marching downstream along the axial
direction, the phase velocity is increased substantially while the azimuthal wavelength
changes little, contradicting the trend predicted by BiGlobal. Moreover, PSE3D solutions
are sensitive to the initial profiles, but are robust to the grid points. Therefore, one
need to perform optimal analyses in order to estimate accurately the transition N-factor.
Furthermore, the cross-flow mode and the Mack mode, with comparable integrated
amplifications, are found to share an overlap region in spatial distribution, and thereby
likely interact with each other. Work is underway to address this issue.

While cross-flow instabilities in the windward cross-flow region are essentially the same
as those in the shoulder cross-flow region, some differences lie in specific aspects. For
example, the former possess a slightly lower peak frequency, a larger peak growth rate
and larger azimuthal wavelengths, as well as smaller wave angles. The crucial difference
in stability characteristics between the windward and shoulder cross-flow regions comes
from the Mack-mode instability. The Mack mode in the windward cross-flow region is
marginally unstable, thereby unlikely to become the dominant primary instability.

Comparisons between theoretical results and numerical results are made when possible.
The PSE3D results prove generally to agree well with the QDNS results, especially for
the exponential growth stage of instabilities. While the BiGlobal analysis successfully
captures the basic features of the instabilities in terms of the peak frequency and the spatial
structure, it might fail to predict the axial evolution of disturbances, particularly of the
instabilities in cross-flow regions, and exhibits notable discrepancies with QDNS results
in terms of growth rates.

Finally, multi-dimensional stability analyses performing on the shoulder attachment
line identify only one asymmetry Mack mode, contrary to the common knowledge that
multiple unstable modes with alternating symmetry and antisymmetry are present. This
suggests that symmetry breaking of the boundary layer will lead to degeneracy of the mode
hierarchy in otherwise symmetrical attachment-line flows. The most amplified frequency
is around 610 kHz, with the largest N-factor of 15 in the end of the model. To resolve
such high-frequency instability in numerical simulations necessitates an extremely large
number of grid points, at least O(10 000), in the axial direction, which is, however, beyond
the present computation ability.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2021.1125.
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Figure 42. Sizing of the mesh in a local wall unit for (a) the windward side and (b) the leeward side.
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Appendix A. The QDNS grid convergence

Figure 42 displays the grid resolution in a local wall unit over almost the entire surface
of the model. It can be observed that Δx+ and Δz+ are smaller than 10 except for the
turbulent regions and the regions near the attachment line. The grid resolution is close to
or even better than some other numerical simulations of boundary layer transition on 3-D
configurations (Li et al. 2008, 2010; Lugrin et al. 2021). Table 2 presents the number of
grid points per wavelength of the most amplified waves in various regions, showing that
the spatial discretization is able to resolve all but the attachment-line instability.

To further assess the validity of the QDNS, two new simulations with a finer grid
resolution in the streamwise direction and the wall-normal direction, respectively, were
performed, as detailed in table 3. Figure 43 illustrates the instantaneous transitional
flow pattern on the HyTRV model for the X-case. Comparison with figure 8 indicates
that increasing the axial resolution tends to delay the appearance of the high-frequency
disturbances, and thereby slightly delays the transition, especially in the windward
cross-flow region. Nevertheless, the transitional flow pattern remains the same as that with
the coarse grid, notably the key flow features preceding transition such as crescent-shaped
vortices in the shoulder vortex region, oblique rolls with longitudinal modulations in the
shoulder cross-flow region, and oblique streaks with small-scale rolls in the windward
cross-flow region. Figure 44 further displays the instantaneous transitional flow pattern
for the Y-case. It is easy to find that quite similar transition processes occur in this case.
Therefore, we can conclude that the previous grid is sufficient for the use of revealing the
transition mechanism.
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Hypersonic transition

Instability f ∗ (kHz) Nx Nφ

Dominant shear-layer mode of shoulder vortex 70 28 41
Mack mode in shoulder cross-flow region 125 18 37
Cross-flow mode in shoulder cross-flow region 25 85 19
Cross-flow mode in windward cross-flow region 15 113 15
Mack mode/secondary instabilities in windward cross-flow region 260 12 15
Mack mode in shoulder attachment-line region 610 5 50

Table 2. Number of points per wavelength upstream of boundary layer transition in the worst condition for
the most amplified boundary layer instabilities for the QDNS grid.

Cases Streamwise points Wall-normal points Azimuthal points Total points

X-case 6000 161 3200 3.1 billion
Y-case 3000 241 3200 2.3 billion

Table 3. Resolution of two finer grids.
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Figure 43. An overview of boundary layer transition on the HyTRV model with a finer grid (3.1 billion grid
points). (a) Instantaneous vortical structures in the shoulder vortex region, visualized by the isosurface of
Q-criterion (Q = 0.001) and coloured by the axial velocity, along with the isosurface of axial velocity (U =
0.7) and some velocity slices. (b) Instantaneous vortical structures in the shoulder cross-flow region (with same
settings as a). (c) Instantaneous flow pattern in the windward cross-flow region, depicted by a wall-normal
slice (at the 50th grid point from the wall) coloured by the axial velocity, along with the corresponding vortical
structures (Q = 0.001). The vortical structures are coloured by Q in (c).
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Figure 44. Instantaneous transitional flow pattern on the HyTRV model illustrated by the skin friction
coefficient for the Y-case: (a) shoulder vortex and cross-flow regions; (b) windward cross-flow region.
Footprints of the prominent instabilities are marked by arrows: a, the outer-mode instability of the shoulder
vortex; b, Mack-mode instability and the travelling cross-flow instability; and c, the travelling cross-flow
instability and secondary-instability-like disturbances.
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Figure 45. Test of grid convergence for Mack-mode instability of 125 kHz at X∗ = 1000 mm in the shoulder
cross-flow region.
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Figure 46. Eigenvalue spectra of cross-flow instability of 20 kHz in the shoulder (a) and windward (b)
cross-flow regions at X∗ = 1000 mm computed by the conventional BiGlobal approach with different azimuthal
resolutions. No significantly unstable cross-flow modes are found in the shoulder cross-flow region for
Nφ ≥ 800.
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Figure 47. Variations of the normalized temperature amplitude term, T̃ , and the eigenvalue with β for
cross-flow instabilities in the shoulder cross-flow region (a,c,e) and in the windward cross-flow region (b,d, f )
at X∗ = 1000 mm. The base flow is also displayed.

Appendix B. Convergence test of BiGlobal for Mack-mode instability

Without loss of generality, the grid convergence for Mack-mode instability in the shoulder
region is examined by comparing growth rates and phase velocities from various grid
resolutions for frequency 125 kHz at X∗ = 1000 mm. It can be seen clearly from figure 45
that the results for each mode, except for the case of 100 azimuthal points, nearly coincide.
In the present study, 250 azimuthal points and 100 wall-normal points are used in the
multi-dimensional stability analyses.

Appendix C. Convergence test of cross-flow instability for using the conventional
BiGlobal approach (β = 0)

Figure 46 displays the eigenvalue spectra obtained by the conventional BiGlobal approach
for cross-flow instability of 20 kHz in the shoulder and windward cross-flow regions at
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Figure 48. Test of grid convergence for PSE3D for (a) cross-flow instability 20 kHz initiated by a mode with
c = 0.37 and β = 12 in the shoulder cross-flow region, and (b) cross-flow instability 15 kHz initiated by a
mode with c = 0.32 and β = −10 in the windward cross-flow region. The solid and dashed lines represent
results for Nφ = 240 and of Nφ = 320, respectively. Results from the conventional PSE3D approach (β = 0)
using 800 azimuthal grid points are also displayed (dashed-dotted lines).

X∗ = 1000 mm. As the resolution is increased, the growth rates show an overall decrease,
but do not appear to converge. The convergence of the cross-flow modes in the shoulder
cross-flow region seems to be worse than that of the cross-flow modes in the windward
cross-flow region. This is likely because the boundary layer thickness in the windward
cross-flow region is monotonically increasing away from the attachment line, whereas
the shoulder counterpart exhibits non-monotonic behaviour. For Nφ > 800, no physical
eigenmodes with significant amplification rates in the shoulder cross-flow region were
found, which obviously contradicts the PSE3D results shown later as well as the QDNS
results. It is speculated that the numerical errors are notably magnified during solution
of the very-large-scale eigenvalue matrix, eventually contaminating the true values. The
variations of eigenvalues appear to increase with decreasing phase velocity because the
modes with lower phase velocities have smaller local azimuthal wavelengths and thereby
need more grid points to resolve than those with higher phase velocities.

Appendix D. Choice of β for cross-flow instability

Wavenumber β is introduced in multi-dimensional stability analyses of cross-flow
instability for the purpose of dividing the eigenfunction, q̂, into an amplitude term, q̃,
varying as slowly as possible, and the residual wave part, exp(i4πβS̃). In this paper, the
value of β is chosen manually by trial and error. This process is depicted in figure 47
for a typical cross-flow mode in the shoulder and windward cross-flow regions at X∗ =
1000 mm. Note that the wavenumbers of these two regions have opposite signs because
the cross-flow direction with respect to the azimuthal angle, φ, has changed. In either
case, the amplitude term exhibits prominent wave behaviours if β is too small or large. It
can also be observed that varying β shifts the eigenvalues, just like varying the azimuthal
grid points. Numerical tests (not shown here) indicate that the appropriate wavenumber
decreases almost linearly with increasing phase velocity at a rate of Δβ/Δc ≈ −10.
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Appendix E. Convergence test of PSE3D for cross-flow instability

For the purpose of examining the grid convergence of the PSE3D results for cross-flow
instabilities in both shoulder and windward cross-flow regions, calculations of N-factors
were performed with three grid resolutions and the results are compared in figure 48. The
initial profiles of the fine-grid cases are obtained by interpolating the initial profiles of the
coarsest-grid case in order to eliminate dependency on the initial profiles. The results of the
three grids nearly coincide, thereby verifying the grid convergence of PSE3D. Moreover,
it also shows that the grid convergence of PSE3D is much better than that of the BiGlobal
approach.

Appendix F. Entries of linear operators in BiGlobal

The non-zero elements of coefficient matrices A2,A1,A0 in (2.9) are

A2(1, 1) = −l2, A2(2, 2) = −1, A2(4, 4) = −1, A2(5, 5) = −1; (F1)

A1(1, 1) = −iURμTP0 + il2μmTx + 2il2Dx, (F2)

A1(1, 2) = iμmTy + il1Dy, A1(1, 3) = −iR/μ, (F3)

A1(1, 4) = iμm(l0Wz + l0Vy + l2Ux), A1(1, 5) = iμmTz + il1Dz, (F4)

A1(2, 1) = il0μmTy + il1Dy, A1(2, 2) = −iURμTP0 + iμmTx + 2iDx, (F5)

A1(2, 4) = iμm(Uy + Vx), (F6)

A1(3, 1) = iP0, A1(3, 3) = iγM2U, A1(3, 4) = −iU/TP0, (F7)

A1(4, 1) = 2iGl0(l2Ux + Vy + Wz), A1(4, 2) = 2iG(Uy + Vx), (F8)

A1(4, 3) = iGUR/μ, (F9)

A1(4, 4) = −iUR Pr P0μT + 2iμmTx + 2iDx, A1(4, 5) = 2iG(Uz + Wx), (F10)

A1(5, 1) = il0μmTz + il1Dz, A1(5, 4) = iμm(Uz + Wx), (F11)

A1(5, 5) = −iURμTP0 + iμmTx + 2iDx; (F12)

A0(1, 1) = (iω − Ux)μTP0R + l2Dxx + Dyy + Dzz − i(A1(1, 1)− 2il2Dx)Dx

+ (μmTy − RVμTP0)Dy + (μmTz − RWμTP0)Dz, (F13)

A0(1, 2) = −μTRUyP0 + l0μmTxDy − i A1(1, 2)Dx, (F14)

A0(1, 3) = −γM2μTR(UUx + VUy + WUz)− iA1(1, 3)Dx, (F15)
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A0(1, 4) = μm(Uy + Vx)Dy + μmUzDz − i A1(1, 4)Dx + μm(l2Uxx + Uyy + Uzz)

+ μmm(TzUz + Ty(Uy + Vx)+ Tx(l2Ux + l0Vy + l0Wz))

+ (UUx + VUy + WUz)μTR/TP0, (F16)

A0(1, 5) = −UzμTRP0 + l0μmTxDz − i A1(1, 5)Dx, (F17)

A0(2, 1) = −VxμTRP0 + μmTxDy − i A1(2, 1)Dx, (F18)

A0(2, 2) = (iω − Vy)μTRP0 + (l2μmTy − VRμTP0)Dy + (μmTz − WRμTP0)Dz

+ Dxx + l2Dyy + Dzz − i(A1(2, 2)− 2iDx)Dx, (F19)

A0(2, 3) = −γM2RμT(UVx + VVy + WVz)− R/μDy, (F20)

A0(2, 4) = μm(l1Uxy + l1Wzy + l2Vyy + Vzz)+ RμTP0/T(WVz + VVy)

+ RμTP0/TUVx + μmm(l0WzTy + l0UxTy + l0UyTx

+ l2VyTy + WyTz + VzTz + VxTx)+ μm(l0Ux + l2Vy + l0Wz)Dy

+ μm(Vz + Wy)Dz − i A1(2, 4)Dx, (F21)

A0(2, 5) = −VzRμTP0 + μmTzDy + l0μmTyDz + l1Dyz, (F22)

A0(3, 1) = −Tx/TP0 + Px − i A1(3, 1)Dx, (F23)

A0(3, 2) = −Ty/TP0 + Py + P0Dy, (F24)

A0(3, 3) = (Ux + Wz + Vy − UTx/T − VTy/T − WTz/T − iω)γM2

+ γM2(VDy + WDz)− i A1(3, 3)Dx, (F25)

A0(3, 4) = P0/T(−Ux + 2TxU/T − Wz + 2WTz/T − Vy + 2VTy/T + iω)

− (VPy + WPz + UPx)/T − (WDz + VDy)P0/T − i A1(3, 4)Dx, (F26)

A0(3, 5) = −TzP0/T + Pz + P0Dz, (F27)

A0(4, 1) = −Pr RTxμTP0 + (1 − 1/γ )Pr RPx/μ

+ 2G(Uy + Vx)Dy + 2G(Uz + Wx)Dz − i A1(4, 1)Dx, (F28)

A0(4, 2) = −Pr RTyμTP0 + (1 − 1/γ )Pr RPy/μ

+ 2G(l0Ux + l0Wz + l2Vy)Dy + 2G(Wy + Vz)Dz − i A1(4, 2)Dx, (F29)

A0(4, 3) = −(γM2R Pr (TxU + TzW + TyV)μT + iωGR/μ)

+ GR/μ(VDy + WDz)− i A1(4, 3)Dx, (F30)
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A0(4, 4) = Gμm(U2
y + l2V2

y + W2
y + U2

z + V2
z + l2W2

z + l2U2
x )+ 2l0Gμm(WzVy

+ UxWz + UxVy)+ μm(Tzz + Tyy + Txx)+ μmm(T2
z + T2

y + T2
x )

+ Pr RμTP0((UTx + VTy + WTz)/T + iω)+ Dxx + Dyy + Dzz

+ (2μmTy − Pr RμTVP0)Dy + (2μmTz − Pr RμTWP0)Dz

− i(A1(4, 4)− 2iDx)Dx, (F31)

A0(4, 5) = −Pr RμTTzP0 + (γ − 1)/γR Pr/μPz + 2G(Wy + Vz)Dy

+ 2G(l0Ux + l0Vy + l2Wz)Dz − i A1(4, 5)Dx, (F32)

A0(5, 1) = −RμTWxP0 + μmTxDz − i A1(5, 1)Dx, (F33)

A0(5, 2) = −RμTWyP0 + l0μmTzDy + μmTyDz + l1DzDy, (F34)

A0(5, 3) = −RγM2μT(WWz + VWy + UWx)− R/μDz, (F35)

A0(5, 4) = μm(l1Vyz + l2Wzz + Wyy)+ RμT/T(UWx + WWz + VWy)P0

+ μmm(l2WzTz + VzTy + UzTx + WyTy + l0UxTz + l0VyTz)

+ (Wy + Vz)μmDy + (l2Wz + l0Vy + l0Ux)μmDz − i A1(5, 4)Dx, (F36)

A0(5, 5) = (−Wz + iω)RμTP0 + Dxx + Dyy + l2Dzz + (μmTy − RVμTP0)Dy

+ (l2μmTz − RWμTP0)Dz − i(A1(5, 5)− 2iDx)Dx. (F37)

Note that the bars over the primitive variables have been omitted for simplicity. Here,
μT = 1/(μT), μm = (dμ/dT)/μ, μmm = (d2μ/dT2)/μ, G = Pr (γ − 1)M2, l0 = −2/3,
l1 = 1/3, l2 = 4/3, P0 = ρT and

Dx = ∂δ

∂x
∂

∂δ
+ ∂φ

∂x
∂

∂φ
, Dy = ∂δ

∂y
∂

∂δ
+ ∂φ

∂y
∂

∂φ
, Dz = ∂δ

∂z
∂

∂δ
+ ∂φ

∂z
∂

∂φ
.

(F34a–c)
A subscript on a primitive variable denotes the gradient with respect to the corresponding
direction. For example, Ux = DxU.

Appendix G. Entries of linear operators in PSE3D

The non-zero elements of coefficient matrices L,M in (2.12) are

L(1, 1) = (−Ux + iω)RμTP0 − l2α2 + l2Dxx + Dyy + Dzz + 2il2αDx

+ (μmTy − RVμTP0)Dy + (μmTz − RWμTP0)Dz

+ (−RUμTP0 + l2μmTx)(iα + Dx), (G1)

L(1, 2) = −RμTUyP0 + (l1Dy + μmTy)(iα + Dx)+ l0μmTxDy, (G2)

L(1, 3) = −RγM2μT(UUx + WUz + VUy)− R/μ(iα + Dx), (G3)
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L(1, 4) = R(UUx + WUz + VUy)μTP0/T + μm(l2Uxx + Uyy + Uzz)+ μmm

(TzUz + Ty(Uy + Vx)+ l2TxUx + l0TxWz + l0TxVy)

+ μm(Vx + Uy)Dy + μmUzDz + μm(l0Wz + l0Vy + l2Ux)(iα + Dx), (G4)

L(1, 5) = −RμTUzP0 + (μmTz + l1Dz)(iα + Dx)+ l0μmTxDz, (G5)

L(2, 1) = −RμTVxP0 + (l0μmTy + l1Dy)(iα + Dx)+ μmTxDy, (G6)

L(2, 2) = (−Vy + iω)μTRP0 + Dxx + l2Dyy + Dzz − α2 + 2iαDx

+ (l2μmTy − RVμTP0)Dy + (μmTz − RWμTP0)Dz

+ (−RUμTP0 + μmTx)(iα + Dx), (G7)

L(2, 3) = −μTRγM2(VVy + WVz + UVx)− Re/μDy, (G8)

L(2, 4) = RμT/TP0(UVx + WVz + VVy)+ μm(l1Wzy + l2Vyy + Vzz + l1Uxy)

+ μmm(l0TyWz + l2VyTy + TzWy + VzTz + VxTx + l0TyUx + l0TxUy)

+ μm(l2Vy + l0Wz)Dy + μm(Wy + Vz)Dz + μm(Uy + Vx)(iα + Dx), (G9)

L(2, 5) = −RVzμTP0 + μmTzDy + l0μmTyDz + l1DzDy, (G10)

L(3, 1) = −Tx/TP0 + P0(iα + Dx), (G11)

L(3, 2) = −Ty/TP0 + Py + P0Dy, (G12)

L(3, 3) = (−iω + Ux + Wz + Vy − UTx/T − VTy/T − WTz/T)γM2

+ γM2(VDy + WDz)+ γM2U(iα + Dx), (G13)

L(3, 4) = (−Ux + 2TxU/T − Wz + 2WTz/T − Vy + 2VTy/T + iω)P0/T,

− (VPy + WPz)/T − (VDy + WDz)P0/T − UP0/T(iα + Dx), (G14)

L(3, 5) = −Tz/TP0 + Pz + P0Dz, (G15)

L(4, 1) = −Pr RμTTxP0 + 2G(Uy + Vx)Dy + 2G(Uz + Wx)Dz

+ 2Gl0(Wz + Vy + l2Ux)(iα + Dx), (G16)

L(4, 2) = −Pr RTyμTP0 + (γ − 1)/γPy/μR Pr

+ 2G(l0Wz + l2Vy)Dy + 2G(Wy + Vz)Dz + 2G(Uy + Vx)(iα + Dx), (G17)

L(4, 3) = −iωGR/μ− γM2 Pr RμT(TxU + TzW + TyV)

+ GR/μ(VDy + WDz)+ GR/μU(iα + Dx), (G18)

L(4, 4) = iωR PrμTP0 + Pr RμTP0/T(UTx + WTz + VTy)+ Gμm(l2U2
x + l2V2

y

+ U2
y + W2

y + 2UyVx + V2
z + U2

z + l2W2
z + 2VzWy + 2l0WzVy)

+ μm(Tzz + Tyy + Txx)+ μmm(T2
z + T2

y + T2
x )+ Dxx + Dyy

+ Dzz − α2 + 2iαDx + (2μmTy − Pr RμTVP0)Dy

+ (2μmTz − Pr RμTWP0)Dz + (2μmTx − Pr RμTUP0)(iα + Dx), (G19)
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L(4, 5) = −Pr RμTTzP0 + (γ − 1)/γ Pr R/μPz + 2G(Wy + Vz)Dy

+ 2G(l2Wz + l0Vy + l2Ux)Dz + 2G(Uz + Wx)(iα + Dx), (G20)

L(5, 1) = −RP0WxμT + (L0μmTz + l1Dz)(iα + Dx)+ μmTxDz, (G21)

L(5, 2) = −RμTWyP0 + l0μmTzDy + μmTyDz + l1Dyz, (G22)

L(5, 3) = −RγM2μT(WWz + VWy + UWx)− R/μDz, (G23)

L(5, 4) = RμTP0/T(UWx + WWz + VWy)+ μmm(l2WzTz + VzTy + WyTy

+ l0VyTz)+ μm(l1Vyz + l2Wzz + Wyy)+ μm(Wy + Vz)Dy

+ μm(l2Wz + l0Vy + l0Ux)Dz + μm(Uz + Wx)(iα + Dx), (G24)

L(5, 5) = (−Wz + iω)RμTP0 + Dxx + Dyy + l2Dzz − α2 + 2iαDx

+ (μmTy − RVμTP0)Dy + (l2μmTz − RWμTP0)Dz

+ (μmTx − RUμTP0)(iα + Dx); (G25)

M(1, 1) = −(RUμTP0 + l2μmTx), (G26)

M(1, 2) = μmTy + l1Dy, (G27)

M(1, 3) = −R/μ, (G28)

M(1, 4) = μm(l0Wz + l0Vy + l2Ux), M(1, 5) = μmTz + l1Dz, (G29)

M(2, 1) = l0μmTy + l1Dy, M(2, 2) = −(RUμTP0 − μmTx), (G30)

M(2, 4) = Uy + Vx, M(3, 1) = P0, (G31)

M(3, 3) = γM2U, M(3, 4) = −UP0/T, (G32)

M(4, 1) = 2Gl0(Wz + Vy + l2Ux), M(4, 2) = 2G(Uy + Vx), (G33)

M(4, 3) = (γ − 1)Pr M2R/μU, (G34)

M(4, 4) = (−Pr RUμTP0 + 2μmTx), (G35)

M(4, 5) = 2G(Uz + Wx), (G36)

M(5, 1) = l0μmTz + l1Dz, (G37)

M(5, 4) = μm(Uz + Wx), (G38)

M(5, 5) = −RUμTP0 + μmTx. (G39)
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