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UPPER BOUNDS FOR NORMS OF PRODUCTS OF BINOMIALS

MIHAI CIPU

Abstract

This paper deals with the problem of finding the least length of a
product of n binomials. A theorem of R. Maltby has shown that the
problem is algorithmically solvable for any fixed n. Here, a different
proof is presented for this result, and yields improved complexity.
The author reports the results of computations of the upper bounds
on the least length or Euclidean norm of a product of binomials.

1. Introduction

The classic Prouhet–Tarry–Escott problem is to find two disjoint multisets of n integers
such that the first k < n fundamental symmetric polynomials take the same values when
evaluated on the chosen multisets. This problem of ‘equal sums of like powers’ has a long
history; a good source on recent work prompted by the Prouhet–Tarry–Escott problem is [7].

It is easy to find equivalent properties, as follows.

Proposition 1.1. Let u1, u2, . . . , un and v1, v2, . . . , vn be integers with ui �= vj for all
1 � i, j � n. For 1 � k < n, the following statements are equivalent.

(i)
∑n

i=1 ut
i = ∑n

i=1 vt
i for all t , 1 � t � k.

(ii) The polynomial
∏n

i=1(X − ui) − ∏n
i=1(X − vi) has degree at most n − k − 1.

(iii) (X − 1)k+1 divides
∑n

i=1(X
ui − Xvi ) .

An obvious way to fulfil condition (iii) is to have

n∑
i=1

(
Xui − Xvi

) = Xa
k+1∏
i=1

(1 − Xai )

for suitable integers a and ai .
As early as 1851, Prouhet found that for any k there is a solution with sufficiently large n.

The most difficult situation, and thus the most interesting one, appears for k = n − 1.
In order to describe a procedure that is instrumental in solving the Prouhet–Tarry–Escott

problem for certain values of k and n, we recall that the length or l1-norm L(P ) of a
polynomial P is the sum of the absolute values of its coefficients. One can easily show that
any polynomial P that is the product of binomials Xu − Xv gives rise to a solution to the
Prouhet–Tarry–Escott problem, with k one less than the number of binomials and n equal
to half of the length of the product.
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Upper bounds for norms of products of binomials

Therefore, in connection with the Prouhet–Tarry–Escott problem, it is of some impor-
tance to find

A1(n) := min

{
L

( n∏
i=1

(1 − Xai )

)
: a1, a2, . . . , an are positive integers

}
. (1)

Similar questions can be asked for any other norm on the space of polynomials. In [13],
Erdős and Szekeres prove that for the sequence

A∞(n) := min

{∥∥∥∥
n∏

i=1

(1 − Xai )

∥∥∥∥∞
: a1, a2, . . . , an are positive integers

}
,

where ∥∥∥∥
d∑

i=0

ciX
i

∥∥∥∥∞
:= sup

{∣∣∣∣
d∑

i=0

aiz
i

∣∣∣∣ : z ∈ C, |z| = 1

}
,

one has limn→∞ A∞(n)1/n = 1. Maltby [18] considers the analogous quantity defined for
the Euclidean norm:

A2(n) := min

{∥∥∥∥
n∏

i=1

(1 − Xai )

∥∥∥∥
2

: a1, a2, . . . , an are positive integers

}
, (2)

with ∥∥∥∥
d∑

i=0

ciX
i

∥∥∥∥
2

:=
( d∑

i=0

|ci |2
)1/2

.

The values A1(n), A2(n) and A∞(n) are constrained by the well-known inequalities

L(P )√
deg(P ) + 1

� ‖P ‖2 � ‖P ‖∞ � L(P ) � ‖P ‖2
2, (3)

which are valid for all polynomials P . So knowledge of one of these quantities produces
a restriction on all the others. However, the Erdős–Szekeres problem is outside the scope
of this paper. The ideas pointed out in the course of our approach to finding the value
defined by relation (1) are completely different from those already used in dealing with the
Erdős–Szekeres problem.

It has been known for a long time that A1(n) � 2n for every natural number n. Erdős and
Szekeres proved that A∞(n) �

√
2n, and the same lower bound is valid for A2(n). As far

as we know, there have been no improvements on these old results. Furthermore, there still
seems to be a lack of conjectures regarding the right order of magnitude of A1(n), A2(n)

or A∞(n). Maltby [18] has devised an interesting construction to obtain upper bounds for
A1(n) and A2(n). He considers a Weyl group W associated to a root system of rank t , and
expresses the positive roots ri in terms of the simple roots πj :

ri =
t∑

j=1

pijπj for suitable positive integers pij .

Substituting arbitrary natural numbers d1, d2, . . . , dt for the simple roots, one gets the pure
product P = ∏n

i=1(1 − Xai ), corresponding to the exponents ai = ∑t
j=1 pij dj . Maltby

proves that the length of the polynomial obtained in this way is bounded from above by the
cardinality card(W) of the group W , and that for suitable dj one also has ‖P ‖2

2 = card(W).
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Upper bounds for norms of products of binomials

This approach is appealing because of the flexibility in the choice of the values of dj . It
provides asymptotic upper bounds for the values A1(n) and A2(n) of the form

A1(n) <
√

n

√
n
, A2(n) <

√
n

√
n/2

,

along with constructions of polynomials for which these bounds hold. However, it also has
a very serious drawback: the order of the Weyl group can be very large in comparison with t .
For instance, one has n = t2 and card(W) = 2t · t ! for the group W of type Bt . Therefore,
the bound for A1(n) thus obtained is no better than that inferred by (3) from an example
previously given by Atkinson [2] and Dobrowolski [12], who used pure products generated
by Vandermonde determinants to show that

A∞(n) <
(√

2n
)√

n/2
.

Erdős and Szekeres put forward the conjecture that A∞(n) � exp(nc) for some positive
constant c. The best result in this direction is due to Belov and Konyagin [3]: A∞(n) <

exp(c(ln n)4) for a certain constant c, improving on earlier work of Odlyzko [20] and
Kolountzakis [15].

Besides lower and upper bounds on A1(n), one may find in the literature the exact values
for several small positive integers n. The only values known before 1994 were A1(n) = 2n

for n � 6 and n = 8. In that year, P. Borwein and C. Ingalls [7] reported the results of various
computations for n at most 100. Using various greedy algorithms to find the exponents ai ,
they produced upper bounds B(n) for A1(n). On the basis of extensive computations,
they conjectured that A1(7) = 16. This was later confirmed by Maltby [17]. Combining
extensive computer searches with theoretical results, Maltby also obtained A1(9) = 20
and A1(10) = 24. However, his main contribution was to show that a finite amount of
computation is sufficient to find the value A1(n) for any given n.

The first purpose of this paper is to give a proof of the following result.

Theorem 1.2. For a given n, a minimum-length polynomial of the form
∏n

i=1(1 − Xbi )

occurs with all bi having values of at most (n − 1)(n−1)/2.

Maltby [16, 17] proved Theorem 1.2 with the weaker bound n(n−1)/2(n − 1)(n−1)/4.
In [11] it is shown that, having a length K polynomial of the form

∏n
i=1(1 − Xai ), one can

get a minimum-length polynomial of the form
∏n

i=1(1 − Xbi ) by checking the length for
all values of bi up to a certain value M that depends on n and also on K , for a1, . . . , an.
Moreover, M is adjusted dynamically during the execution of the algorithm.

As a consequence of the theorem above, we find that the most unsophisticated idea of
trying all values of the exponents up to a certain bound M and writing down the smallest
length of the corresponding polynomials eventually gives the value of A1(n). In his Ph.D.
thesis [16] (see also [17]), Maltby presents three algorithms for checking whether A1(n) �
K for any fixed K . The most sophisticated algorithm has been successful in establishing the
complete list of exponents, yielding A1(n) for n � 9. Another purpose of this present paper
is to present in Sections 3–5 several heuristic approaches that allow one to bound A1(n)

from above for many values of n. Besides improving on previously published results, these
bounds are interesting because, by using them, one can prove that the entries of the record
exponent vectors must satisfy a number of divisibility conditions (see Section 6). Finally,
we discuss the output of our searches.
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Upper bounds for norms of products of binomials

2. Proof of Theorem 1.2

All the approaches mentioned in [17] and [11] are based on the idea that finding the
products of binomials with small lengths amounts to studying equalities among sums of
subsets of a finite set of natural numbers. The idea is easily formalized, but requires some
notation.

For n a positive integer, denote [n] := {1, 2, . . . , n}. The cardinality of a set J is denoted
by |J |. The following statement has an obvious proof.

Lemma 2.1. Let a1, a2, . . . , an be positive integers with sum d. For t = 0, 1, 2, . . . , d, let

Et :=
{
I ⊆ [n] : |I | even,

∑
i∈I

ai = t

}
;

Ot :=
{
J ⊆ [n] : |J | odd,

∑
j∈J

aj = t

}
;

n∏
i=1

(
1 − Xai

) =
d∑

j=0

cjX
j .

Then ct = |Et | − |Ot | for t = 0, 1, 2, . . . , d.

For all t , 0 � t � d, I ∈ Et and J ∈ Ot , define A1(I, J ) to be the 1 × n matrix
(x1 x2 . . . xn), whose entries are given by xi = 1 for i ∈ I \ J , xj = −1 for j ∈ J \ I ,
and zero otherwise. Build a matrix A by putting together all the lines A1(I, J ). The column
vector v whose entries are the given natural numbers a1, a2, . . . , an satisfies Av = 0. It is
easily seen that the rank r of the matrix A is less than n.

The next step in the proof consists of replacing the exponents ai . To this end, Maltby
uses the Bombieri–Vaaler [4] improvement of Siegel’s lemma. We find an older result of
Borosh more convenient. By [6], the homogeneous linear system of equations AY = 0 has
a nontrivial solution u whose entries are natural numbers b1, b2, . . . , bn at most

B := max{| det(C)| : C an r × r submatrix of A}.
One can show that bi > 0 for all i ∈ [n]; see [17, (3.2) and (3.3)].

Finally, we have to bound from above B. To this end, we apply the Nowosad–Tovar
inequality [19]

∑
i

|λi |2 �
∑

i

(∑
j

|cij |2
)1/2(∑

j

|cji |2
)1/2

, (4)

where the λi are the eigenvalues of an r × r matrix C = (cij ). In the case at hand, we have
rank C = r and all cij ∈ {−1, 0, 1}, so the right-hand side of the relation (4) is at most
r · r . For the left-hand side, we use the arithmetic mean–geometric mean inequality, which
results in

∑ |λi |2 � r| det(C)|2/r . Hence,

B � rr/2 � (n − 1)(n−1)/2,

which concludes the proof of Theorem 1.2.
The significance of this result is mainly theoretical: it shows that to find all possi-

ble lengths of the product of n binomials, it suffices to check all the exponents below
(n − 1)(n−1)/2. This manner of finding A1(n) is clearly impractical for n � 10. Perhaps
more useful than the result itself, is its proof. Presumably, by combining Borosh’s theorem,
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the Nowosad–Tovar inequality and Maltby’s second algorithm, one could find a practical
way to obtain A1(n). This method seems unlikely to run out of cases to check for any n for
which A1(n) is not already known – at least in the computational environment to which we
have access. We therefore examined several other ideas, whose outcomes are discussed in
the next few sections.

Table 1: Published results.

n B1(n) B2(n) (a1, . . . , an)

7 16 16 (1, 3–5, 7, 11, 17), (1–5, 7, 11), (1–3, 5, 7, 8, 13), (1, 3–5, 7, 8, 11),

(1, 1–5, 7), (1, 3, 4, 7, 10, 11, 13), (1, 5–8, 11, 13), (2, 3, 5, 7, 8, 11, 13)

8 16 16 (1–3, 5, 7, 8, 11, 13), (2, 3, 5, 7, 8, 11, 13, 18), (2, 3, 5, 7, 8, 11, 13, 19)

9 20 20 (1–5, 7 : : : 13), (1–3, 5, 7–9, 11, 13), (1–3, 5, 7, 8, 11, 13, 19),

(1, 4–7, 9 : : : 13, 17), (2, 3, 5, 7, 8, 11, 13, 17, 19)

10 24 24 (1–5, 7 : : : 13, 17)

11 28 28 (1–3, 5, 7–9, 11, 13, 17, 19)

12 36 40 (1–9, 11, 13, 17), (1–3, 5, 7–9, 11, 13, 17, 19, 31)

13 48 52 (1–9, 11, 13, 17, 19)

14 56 56 (1–7, 9–11, 13, 15–17), (1, 3–7, 10, 11, 13, 16, 17, 19, 23, 29)

15 52 52 (1, 3–7, 9–11, 13, 16, 17, 19, 23, 29)

16 60 68 (1–11, 13 : : : 19, 23)

17 68 68 (1–7, 9–11, 13, 14, 16, 17, 19, 23, 29)

18 84 94 (1–11, 13, 14, 16, 17, 19, 22, 23)

19 100 108 (1–11, 13 : : : 25, 29)

20 116 132 (1–11, 13 : : : 27, 31)

21 130 142 (1–11, 13 : : : 31)

22 140 152 (1–9, 11 : : : 33, 37)

23 156 168 (1–11, 13 : : : 33, 37)

24 192 208 (1–11, 13–15, 17 : : : 31, 35, 37)

25 188 204 (1–11, 13 : : : 37, 41)

26 228 256 (1–11, 13 : : : 41)

27 276 324 (1–13, 15 : : : 41)

28 292 350 (1–13, 15 : : : 41, 47)

29 392 696 (1, 1, 2, 2–27)

30 396 760 (1, 1, 2, 2, 3, 3–27)

31 414 714 (1, 1, 2, 2–29)

32 456 852 (1, 1, 2, 2, 3, 3–29)

33 482 930 (1, 1, 2, 2, 3, 3–29, 31)

34 516 974 (1, 1, 2, 2, 3, 3–31)

35 604 1248 (1, 1, 2, 2, 3, 3–31, 33)
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3. A heuristic search

The starting point of the work reported in this section is the information conveyed by
results published in [7], [17] and [18]. Most of the computations have been performed by
P. Borwein. For the reader’s convenience, we reproduce some of the data in Table 1. The
second and third columns show the tightest upper bounds forA1(n) and A2(n)2, respectively.
The fourth column lists all the vectors for which it is known that the value appearing in the
second column of the same line is attained. We use the notation ‘a–b’ as a shorthand for the
numerical range a, a + 1, . . . , b − 1, b. The double ellipsis ‘a : : : b’ means that every odd
number between the bounds appears exactly once.

It is apparent that a solution must have considerable additional structure. It is not so
obvious how to put this observation in quantitative terms. From the available data, one
notices some features of the record vectors giving A1(n) or the best upper bound currently
known for it. Perhaps the most obvious ones are the following.

(1) 1 � a1 � 2.
(2) a3 = a1 + a2.
(3) There exists k > 3 such that ak = a2 + a3.
(4) There exists one entry equal to 4 or 8.

The entries of the vectors yielding A1(n) are strikingly small, and it is not difficult to
come up with a heuristic explanation of this observation. One way to make this vague remark
specific is as follows.

(5) an is at most the nth prime number.
Admittedly, stated in this way, property (5) is the most intriguing.

A further look at the results published by Borwein and Ingalls or by Maltby suggests
that, at least for n � 8, one has the following properties.

(6) A1(n) strictly increases with n.
(7) A1(n) is a multiple of 4.

There are easily spotted entries for the upper bounds B1(n) in Table 1 that cast doubt
on each of these properties. For instance, B1(14) > B1(15) and B1(24) > B1(25), while
B1(21) = 130 is not a multiple of 4, nor is B1(31) = 414, but we interpret this data as a
hint that the values in the second column are far from being the desired A1(n). Moreover,
Maltby [17] has shown that the length of a polynomial P = ∏n

i=1(1 − Xai ) is a multiple
of 4, provided that n is even or P has odd degree. However, no proof for property (7) is
presently known.

Taking for granted the properties (1)–(5), one can incorporate them in a first procedure:
simply keep substituting values for a1, a2, . . . , an, and see what lengths result. The output of
the computer program implementing this heuristic contains better upper bounds for A1(13),
as well as new record vectors of length 12; see Table 2. We mention that not all pure products
corresponding to the vectors from the line n = 12 have Euclidean norm 6 = √

36.

Table 2: Output of the first heuristic search.

n B1(n) B2(n) (a1, . . . , an)

12 36 36 (1–5, 7 : : : 19), (1–3, 5–9, 11, 13, 17, 19),

(1–3, 5, 7–9, 11, 13, 17, 19, 37), (1–3, 5, 7–9, 11, 13, 17, 19, 47)

13 44 44 (1–5, 7 : : : 13, 16, 17, 19, 23)
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The last vector on the line n = 12 is particularly interesting: it contains an entry greater
than 37, the twelfth prime number. Consequently, if property (5) turns out to be true, then
A1(12) � 32. Conversely, in order to reject heuristic (5), it would be sufficient to show that
A1(12) = 36.

We conducted searches in a broader range than that allowed by condition (5) above.
Even when an was as large as the (n + 4)th prime number, there were no improvements.
From the available data (see the tables above) one may conclude that the record vectors for
n � 8 have distinct entries. By taking account of this observation, one may obtain a slight
speed-up of the heuristic search.

Table 3: Output of the ascending search.

n B1(n) B2(n) (a1, . . . , an)

11 28 28 (1, 2, 5–9, 11, 13, 17, 19)

14 52 52 (1, 2, 5–9, 11 : : : 19, 20, 25)

16 64 (1, 3–7, 9–11, 13, 14, 16, 17, 19, 23, 29)

21 130 130 (1–7, 9–11, 13, 15–17, 19 : : : 31)

27 262 314 (1–11, 13 : : : 19, 23 : : : 43, 47)

28 280 336 (1–11, 13 : : : 43, 47)

29 316 348 (1–13, 15 : : : 43, 47)

30 368 430 (1–7, 9–13, 15–17, 19 : : : 47)

31 360 412 (1–7, 9–17, 19 : : : 43, 47, 53)

34 460 546 (1–11, 13–17, 19, 21, 23–25, 27 : : : 49, 53)

34 460 (1–11, 13–15, 17–19, 21, 23–25, 27, 29, 31–33, 35 : : : 49)

35 456 560 (1–11, 13–17, 19, 21, 23–25, 27 : : : 53)

36 492 584 (1–17, 19 : : : 53, 59)

41 734 954 (1–17, 19, 21–23, 25 : : : 61, 67)

42 872 (1–17, 19–23, 25 : : : 61, 67)

42 1240 (1–17, 19, 21–23, 25 : : : 61, 67, 71)

43 902 1234 (1–19, 21 : : : 63, 67, 73)

47 1232 1804 (1–21, 23 : : : 69, 73, 79)

51 1632 2660 (1–21, 23, 25, 27–29, 31 : : : 75, 79, 85)

53 1596 2436 (1, 2, 2–23, 25 : : : 79, 85)

54 1712 2616 (1, 2, 2–21, 23 : : : 85)

55 1728 2628 (1, 2, 2–23, 25 : : : 83, 89)

57 1896 3144 (1, 2, 2–27, 29 : : : 83, 89)

62 2456 4372 (1, 2, 2–27, 29 : : : 65, 65, 67 : : : 91, 101)

63 2796 5136 (1, 2, 2–25, 27 : : : 97, 103)
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4. Ascending search

The search described in the previous section was based on properties seemingly shared
by the entries in all the lines of Table 1. Besides this horizontally driven search, a different
approach can be taken. A closer look at the entries of the record vectors reveals strong
similarities between neighbours in the last column. We concentrate on only one remark, as
follows.

(8) The exponents yielding B1(n) are obtained by deleting one entry and inserting two
entries in a record vector for n − 1.

For instance, A1(10) is attained by a vector closely related to the last-but-one vector
yielding A1(9): we delete 6 and insert 2 and 3. The ‘ancestor’ is by no means unique: the
same vector on the line n = 10 can be generated by removing 8 and inserting 4 and 17 in
the second vector on the line n = 9.

The output of the search guided by properties (8) and (5) is given in Table 3. One notices
that now we have B1(14) = B1(15) = 52. If these values are actually A1(14) and A1(15),
then assumption (6) must be rejected. The new record vectors for n = 11 and n = 14 are
particularly interesting: they are the only examples in disagreement with hypothesis (2). In
view of Maltby’s extensive computations, we conjecture that A1(11) = 28, and therefore
that hypothesis (2) must be rejected.

The entry in the line n = 21 was discovered by Borwein and Mossinghoff in their study
of polynomials with height 1 and prescribed vanishing at 1; see [8]. It is also possible that
other entries in Tables 2–4 were known to people working on related problems, but we
could not locate any other results overlapping with ours, in the literature.

5. Descending search

There is an alternative possible way of making use of the observation formalized in
condition (8). That is, we go in the opposite direction: we start with a vector of length n,
remove two of its entries and insert only one value that is subject to restriction (5). This
idea is worth pursuing, as witnessed by Table 4.

Table 4: Output of the descending search.

n B1(n) B2(n) (a1, . . . , an)

18 92 (1–7, 9–11, 13–17, 19, 23, 29)

19 96 100 (1–3, 5, 7–13, 17, 19, 23, 29, 31, 41, 43, 53)

20 128 (1–7, 9–11, 13, 15–17, 19 : : : 29), (1–9, 11 : : : 31)

22 152 (1–11, 13 : : : 31, 37)

27 298 (1–4, 6–11, 13 : : : 43, 47)

28 280 (1–7, 9–11, 13–17, 19, 21, 23–25, 27 : : : 41)

28 320 (1–7, 9–17, 19 : : : 37, 41, 47)

29 284 340 (1–7, 9–11, 13–17, 19, 21, 23–25, 27 : : : 43)

30 328 (1–11, 13–17, 19, 21, 23–25, 27 : : : 43)

30 392 (1–15, 17 : : : 43, 49)

Continued on the next page
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Table 4: Output of the descending search, continued from the previous page.

n B1(n) B2(n) (a1, . . . , an)

31 344 (1–17, 19 : : : 43, 49)

32 416 500 (1–17, 19 : : : 43, 47, 49)

32 500 (1–7, 9–17, 19 : : : 43, 47, 49, 53)

33 440 520 (1–11, 13–17, 19, 21, 23–25, 27 : : : 49)

37 584 728 (1–17, 19 : : : 55, 61)

38 652 852 (1–19, 21 : : : 53, 57, 61)

39 688 856 (1–17, 19 : : : 57, 61, 67)

40 684 840 (1–4, 4–9, 11 − 13, 15–17, 19–21, 23, 25, 27–29, 31 : : : 61)

40 684 (1–17, 19 : : : 61, 67)

43 1218 (1–19, 21 : : : 63, 67, 71)

44 976 1384 (1, 2, 2–17, 19 : : : 69)

45 988 1400 (1, 2, 2–17, 19 : : : 71)

46 1136 1666 (1, 2, 2–19, 21 : : : 71)

47 1176 1804 (1, 2, 2–19, 21 : : : 73)

48 1224 1800 (1–13, 15–21, 23, 25, 27–29, 31 : : : 73, 79)

49 1328 (1, 2, 2–21, 23 : : : 75)

49 2088 (1–21, 23 : : : 73, 79, 81)

50 1448 2276 (1–21, 23 : : : 75, 79, 85)

52 1544 2352 (1, 2, 2–23, 25 : : : 77, 83)

56 1840 3048 (1, 2, 2–25, 27 : : : 83, 89)

58 2236 4154 (1, 2, 2–23, 25 : : : 89, 95)

59 2142 3614 (1, 2, 2–25, 27 : : : 89, 95)

60 2336 4056 (1, 2, 2–25, 27 : : : 89, 93, 99)

60 2336 (1, 2, 2–27, 29 : : : 89, 97)

61 2570 4594 (1, 2, 2–25, 27 : : : 89, 93 : : : 97)

64 2836 5160 (1, 2, 2–25, 27 : : : 99, 107)

65 3078 5798 (1, 2, 2–25, 27 : : : 101, 107)

66 2964 5428 (1, 2, 2–25, 27 : : : 103, 109)

67 3172 5708 (1, 2, 2–13, 15–29, 31 : : : 103, 109)

68 3632 7340 (1, 2, 2–25, 27 : : : 103, 107, 109, 111)

69 3888 7888 (1, 2, 2–13, 15–29, 31 : : : 109)

70 3904 7832 (1, 2, 2–13, 15–29, 31 : : : 39, 41–43, 45 : : : 109)
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To employ this strategy for determining upper bounds for A1(n) for a fixed value of n, one
needs starting vectors of length n+1. We generated initial vectors by three methods. Firstly,
we borrowed Maltby’s construction, which is inspired by the theory of root systems. In the
notation fixed in Section 1, the exponents ai are obtained from arbitrary natural numbers
dj by means of linear relations existing between the positive roots and the simple roots of
Weyl groups. Specifically, we looked at the groups of type At (5 � t � 8), Bt and Ct

(4 � t � 6), and F4. For example, in the case W = F4 and (d1, d2, d3, d4) = (4, 1, 8, 2)

one obtains the exponents

a = (1, 2, 4, 5, 8–11, 13 : : : 21, 21–26, 32, 34, 39, 43, 47).

We found that the exponents generated by this method tend to have ‘too many even values’
in comparison with the record vectors already available. Indeed, from the last columns of
Tables 1–4 one notices that about three-quarters of the entries of the record vectors are odd.
Moreover, the even entries are small, and are located in the first half of the vector when
this is written in increasing order. In order to comply with this experimental observation,
we modified the values produced by Maltby’s construction, by replacing some of the even
entries by the closest odd integers. The new vectors have repeated entries, while from the
available data one may conclude that the record vectors have distinct values (at least for
8 � n � 43). So we either ignored multiple values (technically, converting the multisets
to sets, which results in shorter vectors) or replaced the even entries by larger odd integers
(keeping the length of the vector). Continuing the example given for the Weyl group of type
F4, we replaced the 24-vector of exponents a by either

(1, 2, 4, 5, 8–11, 13 : : : 21, 22–25, 27, 31, 33, 39, 43, 47),

or
(1, 2, 4, 5, 8–11, 13 : : : 21, 22–25, 27 : : : 33, 39, 43, 47).

We found considerable success with initial vectors obtained by concatenating two previ-
ously generated record vectors and removing multiple entries. As a variant of this method,
the entries of one of the vectors have been increased by 2, 4, 6, or 8 before concatenation.
In this way we obtained longer initial vectors, and consequently upper bounds B1(n) for
larger n. Occasionally we used random initial vectors, but this idea turned out to be much
less successful than the others.

6. Divisibility conditions

In this section, we derive some divisibility conditions on the exponents of pure products
of minimal l1-norm. The idea is to show that the record polynomials must be divisible
by certain cyclotomic polynomials �m(X). This has been used by Bombieri and Vaaler
[5], Amoroso [1], Boyd [9, 10], and Borwein and Mossinghoff [8] in determining lower
bounds on the degree of a polynomial having low height and prescribed vanishing at 1. The
ingredients of the proofs are an explicit formula for the norm of the element 1− ζ t of Q(ζ ),
where ζ is a primitive mth root of unity, and the upper bounds for A1(n) are as found in the
previous sections.

We need the following fact about cyclotomic integers, which appears, for instance, in
the proof of [14, Lemma 5].

Lemma 6.1. Let m and t be positive integers, d = m/ gcd(m, t), and ζ a primitive mth root
of unity. Denote by N(α) the norm of α ∈ Q(ζ ), by �m the mth cyclotomic polynomial,
and by ϕ, Euler’s function. Then N(1 − ζ t ) = �d(1)φ(m)/φ(d).
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Lemma 6.2. For each p in the following table, one has A1(n) < pne(p) for any n � n0(p).

p 2 2 3 3 7 11

e(p) 1/2 1/4 1/4 1/6 1/6 1/6

n0(p) 9 36 15 34 10 20

Proof. Let us show that A1(n) < 2n/2 for any n greater than or equal to 9. For n � 17, the
inequality is checked using the upper bounds for A1(n) given in Tables 2–4. For n � 18,
one has �n/2	 � 9, so by induction and the submultiplicativity of the l1-norm one has

A1(n) � A1
(�n/2	)A1

(�(n + 1)/2	) < 2(�n/2	+�(n+1)/2	)/2 = 2n/2.

Proposition 6.3. For each m in the following table there exists a multiple of m among the
exponents giving a product of n binomials whose length is A1(n) for n � n0(m).

m 3 4 5 7 8 9

n0(m) 7 7 7 7 36 34

Proof. Let us prove the claim for m = 9, for instance. Denote by P a pure product of
length A1(n). Let ζ be a primitive mth root of unity. Since �pk(1) = p for any prime p and
any positive integer k, 3n divides N

(
P(ζ )

)
, by Lemma 6.1. If m does not divide any of the

exponents from the binomials giving P , then N(P (ζ )) �= 0, so we have 3n � |N(P (ζ ))| �
L(P )ϕ(9) = A1(n)6. For n � n0(m), this relation contradicts the inequality for p = 3,
ep = 1/6 given by the previous lemma.

7. Conclusions

Theorem 1.2 improves upon Maltby’s result, lowering the bound M for the exponents
of pure products of length A1(n) from O(n0.75n) to O(n0.5n). Even this result seems to
be over-pessimistic. Based on the data obtained up to now, we conjecture that A1(n) is
attained for all n by a product of binomials, all of whose exponents are less than 3(n−1)/2.
We venture to state a less conservative conjecture: for n � 32, there exist positive integers
a1 < a2 < . . . < an of sum d such that an is smaller than the

⌈√
d/3

⌉
th prime number,

and the length of the polynomial
∏n

i=1(1 − Xai ) is A1(n).
The paper describes a way of using several of the many properties apparently shared

by the exponents giving A1(n). The precise relationship between the record vectors for
consecutive values of n is still undiscovered. We mention a few natural problems suggested
by this research.

The large number of odd entries in the record vectors begs an explanation, which would
be interesting from a theoretical point of view, and helpful in practice. Explicit computations
would benefit by proving that it suffices to search vectors with distinct entries, the smallest
of which is 1 or 2. (Similar observations have been made by Borwein and Mossinghoff in
[8], prompted by experiments made during their study on polynomials with height 1 and
prescribed vanishing at 1.)

The heuristics described in Sections 3–5 work only for small values of n. For n � 19,
the program implementing conditions (1)–(5) is too time-consuming. The ascending search
described in Section 4 is feasible for n up to 60. The method outlined in Section 5 is fast
for much higher values of n, even in a very poor computational environment.
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Despite its simplicity, the present approach provides better bounds for A1(n) and A2(n)

for many values of n. We add two more values to those listed in Table 4: the product of
binomials with exponents

(1–17, 19–39, 41 : : : 51, 53–55, 57 : : : 103, 107 : : : 117, 123, 127, 137)

yields A1(80) � 7420 and A2(80)2 � 21, 696 (improving on the published bound
A1(80) � 58, 488), and the pure product corresponding to the vector

(1–21, 23–39, 41–47, 49, 51–53, 55 : : : 77, 79–81,

83 : : : 131, 135 : : : 141, 147, 151 : : : 157, 167, 171)

gives A1(100) � 25, 048 and A2(100)2 � 156, 164 (compare this with A1(100) �
385, 620).

The largest n for which bounds for A1(n) and A2(n) can be found in the literature is
n = 120. From [18] we learn that A1(120) � 1, 440, 480 and A2(120)2 � 1, 025, 261, 796.
The descending search described in Section 5 produces the example with exponents

(1–39, 41–47, 49–63, 65 : : : 69, 70, 71 : : : 77, 79–81,

83 : : : 147, 151 : : : 161, 165, 167, 171, 177, 181, 183, 189, 197, 211),

implying that A1(120) � 54, 244 and A2(120)2 � 534, 832. Thus, we have improved
on 106 of the 124 values for A1(n) and A2(n) for n in the range 12 � n � 70 and
n = 80, 100, 120. However, our approach cannot cover the whole search space by itself. It
is conceivable that, by providing the values given in Tables 2–4 as the input for Maltby’s
third algorithm, one could exhaust the search space for small n. Then we would have the
exact value A1(n), and not just an upper bound B1(n).

Acknowledgements. The author thanks the anonymous referee for several helpful com-
ments.
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