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Abstract. This paper reviews three recent1 works on the numerical methods to integrate ordinary 
differential equations (ODE), which are specially designed for parallel, vector, and/or multi-processor-
unit (PU) computers. The first is the Picard-Chebyshev method (Fukushima, 1997a). It obtains a global 
solution of ODE in the form of Chebyshev polynomial of large (> 1000) degree by applying the 
Picard iteration repeatedly. The iteration converges for smooth problems and/or perturbed dynamics. 
The method runs around 100-1000 times faster in the vector mode than in the scalar mode of a certain 
computer with vector processors (Fukushima, 1997b). The second is a parallelization of a symplectic 
integrator (Saha et al., 1997). It regards the implicit midpoint rules covering thousands of timesteps as 
large-scale nonlinear equations and solves them by the fixed-point iteration. The method is applicable 
to Hamiltonian systems and is expected to lead an acceleration factor of around 50 in parallel 
computers with more than 1000 PUs. The last is a parallelization of the extrapolation method (Ito 
and Fukushima, 1997). It performs trial integrations in parallel. Also the trial integrations are further 
accelerated by balancing computational load among PUs by the technique of folding. The method is 
all-purpose and achieves an acceleration factor of around 3.5 by using several PUs. Finally, we give 
a perspective on the parallelization of some implicit integrators which require multiple corrections in 
solving implicit formulas like the implicit Hermitian integrators (Makino and Aarseth, 1992), (Hut 
et al., 1995) or the implicit symmetric multistep methods (Fukushima, 1998), (Fukushima, 1999). 
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1. Introduction 

It has been claimed that vector/parallel computation is not effective for the nu­
merical integration of dynamics with small number of freedom such as the orbital 
and rotational motions of planets and satellites. This is due to the step-by-step 
nature of existing numerical integrators such as the Runge-Kutta methods, the 
linear multistep methods, and the extrapolation methods((Hairer et al, 1993). For 
example, the construction of Runge-Kutta methods takes the advantage of serial 
processing by assuming, in each phase, the availability of the result of all previous 
test integrations. The situation is unchanged in the symplectic methods (Kinoshita 
et al, 1991), (Wisdom and Holman, 1991), which has been widely spread in the 
field of dynamical astronomy. 

Recently, however, some papers appeared to destroy this barrier. They are 
1. Picard-Chebyshev method (Fukushima, 1997a), (Fukushima, 1997b), 
2. Parallel symplectic integrator (Saha et al, 1997), and 
3. Parallelized extrapolation method (Ito and Fukushima, 1997). 

The first two seem2 to be based on an idea to regard the ordinary differential 
equation as a one-dimensional partial differential equation. Parallel/vector com-

1 All of the papers appeared in the Astronomical Journal in 1997. 
2 We are not sure whether Saha et al. had it in their minds when they wrote the paper. 
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puters are widely used in solving some partial differential equations. The key of 
parallelization is to rewrite the differential equations into a large set of nonlinear 
equations and to solve them by iterative procedures. 

There are two ways to rewrite the differential equations into nonlinear equations. 
The one is to introduce the orthogonal function expansions in the expression of 
solutions. In this case, not the value of variables but the expansion coefficients are 
solved iteratively. The Picard-Chebyshev method is one of this family. It expands 
the solution in the form of Chebyshev polynomial. The other is the discretization. 
Saha et al. (1997) tactfully applies this idea to Hamiltonian systems and lead suc­
cessfully a parallelization of a symplectic integration scheme, the implicit midpoint 
rule. On the other hand, the extrapolation method itself is easy to be adapted to 
parallel computation, since the method is based on the compilation of results of 
several (4-10) test integrations, which can be done in parallel. However, it was not 
experimented until the work of Ito and Fukushima (1997). The essence of their 
parallelization is the idea of folding, which makes the load balance among multiple 
processors almost equal. 

In this short article, we will review these works. Before doing so, however, we 
make some remarks on the characteristics of these three new methods. First, apart 
from its parallel nature, the Picard-Chebyshev method is based on an approach 
being quite different from the existing integrators like Runge-Kutta methods, and 
other step-by-step integrators. Thus, we will discuss it in details. While, the last 
two methods are the parallelization of the existing methods; symplectic and ex­
trapolation methods. The solution produced by these are just the same as those by 
the corresponding serial methods. Thus the readers can refer the literature of serial 
versions, say the textbook of Hairer et al. (1993), for the integration error and other 
properties except one thing; the speed-up by parallelization. Thus, we discuss only 
this factor. 

Apart from the three parallel methods discussed, there remains a possibility to 
parallelize the multistep methods (Miranker and Liniger, 1967). The key idea is 
the concept of pipeline, which means the shift of timing between the predictor and 
the corrector(s). We will add a perspective on this approach. 

2. Picard-Chebyshev Method 

Consider solving a general first-order ordinary differential equation 

^ = /(y,«), y(to) = yo (i) 

One way is to start from an approximate solution y(°\t) and to improve it itera­
tively. The series of the refined solutions, y(n\t) for n = 1,2, • • •, are obtained 
successively by computing 

y(n)(*) = W) + / t / ( f f ( n - 1 ) W , « ) ^ (2) 
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This is the Picard iteration method ((Hairer et al., 1993), Section 1.8). 
We expand the solution y(t) in a linear form of Chebyshev polynomials whose 

support is a certain long interval of period, say thousands of nominal orbital periods, 
for example. Then, each Picard iteration ((Fukushima, 1997a), Eq.(18)) is rewritten 
in a vector form mapping ((Fukushima, 1997b), Eq.(2)) as 

YC"-1) -> Y(") = Qi {cTY^~l\i) (3) 

where Y ^ is a column vector of the Chebyshev coefficients of the n-th approx­
imate solution, Q and C are certain matrices, t is a column vector of the zeros of 
the Chebyshev polynomial of the largest degree, and f means a vector notation of 
function evaluations. Of course, the Picard iteration method is not all-purpose. It 
works only if the iteration converges. When the perturbation is sufficiently small, 
(1) the zero polynomial is enough as a predictor, (2) the iteration converges rapidly, 
and (3) the integration interval for a single polynomial can be extended as long 
as hundreds of characteristic periods. As an example, Figure 1, which is taken 
from Figure 2 of (Fukushima, 1997a), shows the error distribution of intermediate 
solutions for a test problem integrated over 64 orbital periods; 

^ = cos(* + ey) (4) 

where the perturbation parameter e was set as 10-3. 
In this figure, note that the final error is quite small, of the order of 10~13 

or so. Next, remark that the final error distribution is quite different from those 
obtained by other type of integrators, namely being roughly uniform through the 
integration period. This comes from the almost mini-max nature of Chebyshev 
approximation. Further, if we inspect them in details, we will learn that the errors 
in the middle of the integration period are somewhat larger than those at the final 
epoch of the integration period. This owes to the fact that the distribution of the 
evaluation points, i.e. the zeros of a certain high-degree Chebyshev polynomial, 
is more sparse around the center than near the ends. Also this figure supports the 
expectation that the iteration converges linearly, although the speed of convergence 
is somewhat slower than the expected rate, e. 

As for the computing speed, we remark that the function evaluation in the above 
mapping expression can be done in parallel, or more precisely speaking, can be 
vectorized easily. Figure 2, which is taken from Figure 1 of (Fukushima, 1997b), 
shows the comparison of the wall-clock time3 for the Adams method in the scalar 
mode, the Picard-Chebyshev method in the scalar mode, and in the vector mode of 
the same computer, Fujitsu VX-1R. The curves in the figure are drawn as functions 
of the computational amount of function evaluations. Since the overhead of Picard-
Chebyshev methods is larger than that of Adams method, the former outperforms 
the latter especially when the load of function evaluation is heavy. 

3 The usual CPU time is not appropriate in evaluating the performance of parallel/vector computers. 
Instead, used is the clock time in the real world, which is named wall-clock time. 
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Fig. 1. Convergence of Picard-Chebyshev Method 

Remark that the wall-clock time of Picard-Chebyshev method depends on the 
magnitude of perturbation parameter. In fact, if e of Eq.(4) is zero, the problem 
reduces to the numerical quadrature of a known function of time, and therefore 
there is no need to repeat the Picard iteration. Then the total wall-clock time reduces 
by the factor of number of Picard iterations, 8 for e = 10~~3. Practically, there is a 
limitation of such reduction. At least two computation (i.e. one Picard iteration) is 
required to confirm the convergence. Thus the speed-up of factor 4 or 5 is expected 
for sufficiently small e. Figure 4 of Fukushima (1997a) supports this expectation. 

As for the applicability to long integrations, the readers may refer Section 4.6 
and Figure 5 of Fukushima (1997a). The error of the Picard-Chebyshev method 
increases in proportion to the 3/2 power of the integration period. Also the compu­
tational time does the same. This means that integrations over a very long period 
are not suitable. Rather, the method works best when integrating problems over a 
middle-size period, say the period of hundreds to thousands nominal revolutions. 
A typical problem would be the orbital improvement of Moon's orbit and rotation 
over 25 years of LLR observation, which includes some 300 revolutions. 

In conclusion, the Picard-Chebyshev method directly provides the nearly mini-
max-approximated polynomials interpolating the solution almost uniformly within 
the whole integration interval. Therefore, the method is especially suitable for the 
orbit improvement where the previous ephemeris serves as a good approximation. 
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Fig. 2. Acceleration Factor of Picard-Chebyshev Method 

Also the method is appropriate to solve perturbed dynamics where an approximate 
solution is known analytically. Typical examples would be the planetary motions, 
the satellite motions, the motions of comets and minor planets in Encke's method, 
and the rotational motions of the Earth and Moon. 

3. Parallel Symplectic Integrator 

The typical way to solve the initial value problem of ordinary differential equations 
for a long time span is to discretize the integration period into thousands of small 
time intervals and to go step by step from the initial epoch. To do this in parallel, 
let us rewrite the integral expression 

y(t) = y0+ / f(y(s),s)ds 
J to 

into a following discretized form by using the implicit midpoint rule; 

ym = yo + h2_; f I — j — ) 

(5) 

(6) 
k=0 
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Fig. 3. Convergence of Parallel Symplectic Integrator 

These can be regarded as a large set of nonlinear equations. Consider to solve them 
by a certain iterative procedure like 

m— 1 

yt'1)^yt) = yo + h'Zf 
( n - l ) , ( n - 1 ) ' 

y\_ + vl+i (7) 
k=Q 

Here it is easy to see that the function evaluation can be done in parallel. 
Saha et al. (1997) applied this parallelization to integrate a perturbed Hamilto-

nian system; 

H = H0(p) + eH1(p,q) 

The result is a following iterative scheme; 

<t] ^qo + Vm (pW) + vm (p(»-D,Q(»-i)) 

where 

P = (PO,PI,---), Q = (qo,qu •••), 

(8) 

(9) 

m—1 

y-w - * E ( f ) ( ^ ) • 
k=Q 
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um(P, Q) = -eh g {—J ( ^ _ , — r _ j , 

MP, 0) - ** £ {-%-) {-^> ~^—J (10) 

Remark that this formulation is symplectic since the argument of Vm is not p("_1) 
but P("), namely the momenta not before but after the kick. The local truncation 
error is of the order of eh2, since the implicit midpoint rule is of the second order. The 
global truncation error is expected to grow linearly since the method is symplectic. 
The iteration converges linearly. Figure 3, which is taken from Figure 3 of Saha et 
al. (1997), shows the average number of iterations required for convergence as the 
number of simulated processors. Although they did not measure the performance 
by actual numerical experiments in parallel computers, based on this figure, Saha 
et al. (1997) gave an estimation of acceleration factor, i.e. the ratio of wall-clock 
time in parallel and serial computations, as much as around 50 for 1000 processors. 

4. Parallelized Extrapolation Method 

The extrapolation method is the direct application of Richardson's deferred ex­
trapolation to the limit h —> 0 to the modified midpoint rule which assures the 
symmetric property and thus the /i2-expansion of the solution (Hairer et al., 1993). 
Remark that all of the trial integrations, i.e. the integration by the modified mid­
point rule with different h, can be done in parallel. Actually we prepare multiple 
processors sharing the memory and assign each processor unit (PU) to the test 
integration of different stepsizes like PU-1 for h = H, PU-2 for h = H/2, PU-3 
for h — H/3, and so on4. Since the computational load of each test integration is 
inversely proportional to h, the above naive assignment allows an idling for the 
processors with larger h. In fact, in the above example, the PU-1 becomes idle just 
after one step integration, the PU-2 does after the second step, and so on. In order 
to avoid such an inefficiency, we introduce the concept of folding. 

Imagine the case of 8-stage extrapolation method with the test stepsizes h = 
H, H/2, • • •, H/S. Assume to prepare 4 PUs. If we assign processors with little 
care, like assigning PU-n to the test integration of h = H/(2n - 1) and h = 
H/(2n), then the task of the PU-4, i.e. the test integrations of h = if/7 and 
h = H/8, becomes the bottle neck of the total procedures. In this case, the 
acceleration factor will be not so large as (1 + 2 H 1- 8)/(7 + 8) = 2.4. On the 
otherhand,ifwecouplethetestintegrationof/i = H/ n with that of h — H/(9-n), 
like h = H and h — iT/8, then the loads of 4 PUs become the same, and as a 

4 Here H is the basic stepsize of the extrapolation method, namely the amount of time advanced 
after the extrapolation, and h is the test stepsize, i.e. the stepsize of test integrations whose result are 
to be extrapolated. 
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Fig. 4. Acceleration Factor of Parallelized Extrapolation Method 

result, the acceleration factor becomes the same as the number of used processors 
as (1 + 2 + • • • + 8)/(l + 8) = 4. This is the technique of folding. In their Table 
2, Ito and Fukushima (1997) provides the optimal foldings for the cases of up 
to 10 PUs. By using these, they developed a parallelization of the extrapolation 
method. Figure 4, which is taken from Figure 3 of Ito and Fukushima (1997), 
shows the acceleration factor as a function of number of processors. Even for a 
system of small freedom as 9-bodies problem, the acceleration factor of around 3.5 
is achieved by using 4 or 5 PUs. It is remarkable that this situation is unchanged 
even when allowing the stepsize and/or the order variable. 

In summary, the parallelized extrapolation method is all-purpose and leads to a 
speedup factor of 3-4 by using 4 PUs or so. 

5. Pipelined Predictor-Corrector Method 

More than three decades ago, Miranker and Liniger (1967) proposed a parallel 
method to accelerate the predictor-corrector methods. Their main idea is, in each 
process of prediction and correction, to advance not only a single step but also 
multiple steps together. Take an example of predictor phase. The ordinary predictor 
has a following general form (Hairer et al., 1993); 

J J 

3=0 j=0 
(ID 
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Miranker and Liniger (1967) predict not only this value at the (n + l)-th step but 
also the values in future steps as 

j J 

yn+k = - £ afyn-j + h £ /?jfc)/»-i, (* = 2, • • •) (12) 
j-o j=o 

Since these predictions can be done in parallel, one can advance multiple integration 
steps at a single wall-clock step by using multiple processors. Unfortunately, this 
seems not practical. Usually the stepsize in multistep methods are taken as large 
as possible while the methods are numerically stable. This means that, in such 
extreme cases, the prediction/correction for doubly- and further advanced steps 
would cause instability. 

In the author's viewpoint, rather the second idea of Miranker and Liniger 
(1967), which we call pipeline, seems effective especially when handling predictor-
corrector methods requiring multiple correction stages5. Of course, it might be 
effective. However, are there such complicate methods worth to be applied? Yes, 
certainly. Good examples are the implicit time-symmetric methods such as the 
implicit Hermitian integrator (Makino and Aarseth, 1992), (Hut et al, 1995) and 
the implicit symmetric multistep methods (Fukushima, 1998), (Fukushima, 1999). 
Now, the idea of pipeline is as follows. Imagine to perform a predictor-corrector 
method requiring m-correction stages such as PE(CE)TO method6. Prepare m + 1 
PUs and assign the PU-0 to the PE process of the (n + l)-th step, the PU-1 to 
the first CE process of the n-th step, the PU-2 to the second CE process of the 
(n - l)-th step, and so on; 

- E ^ r e ^ E / f ^ a3) 
/(l£Jl,*n+l) (14) 

3=1 3=0 

/Sl-fc = / {Vnll-k > tn+l-k) (16) 

where yh ' denotes the value at the n-th step after k corrections and the superscripts 
of coefficients, (P) or (C), specifies the preditor or corrector, Remark that all these 
processes are independent with each other, and as a result, can be done in parallel. 

5 Miranker and Liniger (1967) applied the pipeline to the PECE method only, and therefore, did 
not stress so much about its applicability and effectiveness. 

6 Here P and C stand for the predictor and the corrector, respectively, while E does for the evaluator, 
i.e. the evaluation process of / . 

PU-0: 2/it 

f(°) _ 
Jn+l — 
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TABLE I 
Characteristics of Parallel/Vector Integration Methods 

Method Suitable Problems Acceleration Factor 
Picard-Chebyshev Perturbed Dynamics 100-1000 
Parallel Symplectic Hamiltonian Systems ~ 507 

Parallel Extrapolation General 3-4 
Pipelined Multistep Smooth 3-48 

' Expected 8 Not yet experimented 

In other words, the pipelined predictor-corrector method can be done in the same 
wall-clock time as that of predictor-only formulas. 

In general, the implicit methods have better properties than the explicit methods 
such as at the points of small error constants or of better numerical stability. 
Therefore, the technique of pipeline will enlighten the implicit symmetric methods. 

6. Conclusion 

We reviewed three numerical integrators designed for parallel/vector computers; 
the Picard-Chebyshev method (Fukushima, 1997a), (Fukushima, 1997b), the par­
allel symplectic integrator (Saha et al., 1997), and the parallelized extrapolation 
method (Ito and Fukushima, 1997). We also proposed the fourth scheme; the 
pipelined predictor-corrector method based on the idea of Miranker and Liniger 
(1967). Their characteristics are summarized in Table I although the acceleration 
factor for the last method was based on a rough estimation of the reduction of 
the number of function evaluations by means of parallelization. Also in listing the 
factor of Picard-Chebyshev method, we took the effect of magnitude of pertur­
bation into account. In the case of parallel symplectic method, one may have an 
impression that the acceleration factor of 50 is a small gain at the cost of using 1000 
processors. Further, the acceleration factor of 3 or 4 of the parallel extrapolation 
method and/or the pipelined multistep methods proposed here may be thought as a 
minor improvement. However, we stress that it is quite difficult to achieve a factor 
2 in the parallelization of ordinary Runge-Kutta methods. Thus, we regard that 
even the factors 3 or 4 show good performance of the parallelizations. 

Since the applicability of these methods are different one by one, it is difficult 
to recommend one of them. This comes from the fact that the comparison of 
serial integrators also depends on the problem to be solved. For example, in the 
case of orbital improvement, only one Picard iteration is enough. Thus the Picard-
Chebyshev method would be the most appropriate. While, in doing long-time 
integration of Hamiltonian systems, symplectic methods are of the highest cost-
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performance. Thus, it would be worth to apply its parallelization to such problems. 
On the other hand, the extrapolation method is known to be tough, namely to be 
able to handle violent situations as close encounters. Thus the parallel extrapolation 
method would be recommended to integrate non-smooth problems like pure three 
body problems. 

Finally let us make a comment about the way of comparisons presented here. 
As for the speed of these parallel methods, we have only considered the factor of 
acceleration, which was defined as the inverse ratio of total wall-clock time of the 
same processor used in serial and parallel/vector modes, respectively. Of course, 
the fastest serial processor would be faster than the serial usage of the fastest par­
allel/vector processor. Thus, the acceleration factors we presented do not mean the 
ratio of the fastest serial computation and the fastest parallel/vector computation. To 
evaluate the ratio, one needs a number of state-of-the-art serial and parallel/vector 
computers. It is beyond our ability. Rather, we think it is more appropriate to sep­
arate such machine-dependent effects with the machine-independent part like the 
acceleration factor. 
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