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Abstract

This paper proposes an aesthetic-driven evolutionary algorithm for user-centered design. The evolutionary algorithm is
based on a genetic algorithm (GA). It is developed to work as an art form generator that enhances user’s productivity
and creativity through reproduction, evaluation, and selection. Users can input their preferences and guide the generating
direction to the system. A two-step fitness function is developed to evaluate morphology and aesthetics of the generated art
forms. Fractals created by an iterated function system are used for representing art forms in our process. Algorithmic
aesthetics are developed based on the aesthetic measure theory, surveys of human preferences, and popular long-lasting
symbols. The algorithmic aesthetics is used for evaluating aesthetics of art forms together with subjective nonquantifiable
aspects, and placed in the fitness function. The GA basically creates two-dimensional art forms. However, any two-
dimensional image can be included through the property of a condensation set of fractals. The proposed GA can increase
design productivity by about 80%. Examples of jewelry designs and physical prototypes created by the proposed system are
included.

Keywords: Computational Aesthetics; Evolutionary Art; Interactive Evolutionary Design; Iterated Function System
Fractal; Jewelry Design

1. INTRODUCTION

In the jewelry industry, design and conventional model-
making stages are major bottlenecks in the jewelry design
and production process, especially for mass production and
consumer markets (Wannarumon & Bohez, 2004). Jewelry
design involves various aspects such as investigation, analysis,
creativity, and development. In the design process, designers
have to deal with all of these aspects to balance beauty and
usability of products. Several computer-aided design (CAD)
packages have been developed to facilitate the designers’ activ-
ities; nevertheless, there are only a small number of CAD tools
that can support designers’ activities since conceptual design.

A method that links designers and CAD systems is based on
artificial intelligence (AI) techniques such as expert systems,
case-based reasoning, and rule-based reasoning (Wannarumon
et al., 2004). During the development of the design tools, the

researchers are able to learn and better understand the cognitive
processes of designers’ judgments and activities (Cross, 2001).
These tools are still limited in the design database and variety of
designs, due to the difficulties in developing a knowledge base
and design database. One of the possible ways to overcome
such limitations is evolutionary design. Wannarumon and Bo-
hez (2006) introduce a new evolutionary design approach to
create art forms for jewelry design.

In this paper, we propose an interactive user-centered design
system that involves an aesthetic-driven evolutionary algorithm,
an iterated function system (IFS) design-lookup library, and a
user–system interaction. The system is aimed at supporting
users during the design of jewelry. Users are human designers
and customers. Art forms used in jewelry design are represented
by IFS fractals. The system works as an “art form generator” for
creating the ornaments of a jewelry ring. Because human de-
signers are good at aesthetic evaluation and process guidance,
we take this into account to develop the system. The system
offers two modes, automatic mode and manual mode, in in-
itialization, selection, and termination.

The art form generator allows users to collaborate with
it during design. The users can input their requirements
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and partial specifications in seeding the initial populations.
The system assists users in discovering good forms and gen-
erating new forms. The algorithmic aesthetics is based on
scientific theory. It supports users in evaluating the gener-
ated designs during the evolutionary design process. Users
can select the existing forms to reproduce a new set of
favorite alternatives in the next generations. Users can
terminate the process or allow it repeat. The ultimate forms
are selected either by the users or the system. The new
evolved designs can be added into the design library.

The design system is integrated with manufacturing. Phys-
ical prototypes are automatically produced from the design
by using Computer Numerical Control (CNC) and Rapid
Prototyping (RP) machines. The integration reduces the de-
sign and manufacturing time. The overview of the design
system is shown in Figure 1.

The paper is structured as follows. In the next section, the
literature review is divided into three areas: evolutionary art
and design, aesthetic measure theory, and fractal geometry.
Section 3 presents the aesthetic-driven evolutionary algorithm.

Fig. 1. Overview of the proposed design system. [A color version of this figure can be viewed online at www.journals.cambridge.org]
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Section 4 describes the formulation of aesthetic measure and
the analysis of aesthetic fitnesses. Section 5 provides the para-
metric study of genetic control parameters. The proposed ge-
netic algorithm (GA) is demonstrated and discussed in Section
6. Finally, conclusions and future research directions are
given in Section 7.

2. LITERATURE REVIEW

2.1. Evolutionary art and design

Evolutionary art and design is rooted in mimicking natural evo-
lution, starting nearly 20 years ago. There has been some re-
search in these areas that are used in design applications (e.g.,
Bentley & Wakefield, 1996; Gero, 1996; Rosenman, 1996;
Eckert et al., 1999; Rowland & Biocca, 2000; Wloch & Bent-
ley, 2004; Bentley et al., 2005; Koile, 2006; Poirson et al.,
2006), including the creations of artistic images and forms
(see literature on evolutionary art system in Table 1). This re-
search proved that evolutionary art is an effective approach
that can be used in design for supporting human design activities
to create new artistic forms from scratch. Evolutionary art con-
sists of the algorithms that create endless alternatives, which
inherit good characteristics from existing ones and maintain
variability of alternatives at the same time. Therefore, users are
able to explore more alternatives based on their preferences.

The evolutionary art and design systems are based on evo-
lutionary strategies (ES), evolutionary programming (EP),
GA, and genetic programming (GP). Comparisons of ES, EP,
GA, and GP are provided in Table 2. More details of evo-
lutionary algorithms are described in Bentley (1999).

Artificial evolution is based on the basic concepts of geno-
type and phenotype. It applies natural evolution mechanisms,
such as genetic operator, mapping from genotype to pheno-
type, survival of the fittest, and selection to solve problems.

Genotype is a genetic representation that codes a chromo-
some as a basic unit of evolution to create individuals that are
called phenotypes. Phenotypes have been represented in
various ways such as forms, shapes, and images, depending
on the systems’ purposes (see Table 1).

Two classical genetic operators are crossover and mutation.
They are used to reproduce new genotypes from existing
ones. Crossover takes two or more selected parents, and
randomly recombines their parts of chromosomes to create
a new offspring. The power of crossover is the way in which
the desirable genetic characteristics of parents can be com-
bined and inherited in subsequent generations. The mutation
operator involves generating a random variable for each allele
in a sequence (an allele is an alternative form of genes that
occupy a specific position on a specific chromosome). The
variable points to whether or not a particular allele will be
modified. Mutation is used to maintain population diversity
during evolution. Several types of crossover and mutation
are described in Michalewicz (1996).

Fitness is a measure of phenotypes’ abilities or properties.
It is used to select and keep a set of fittest individuals for the

successive generations. Selection gives force to the direction
of evolutionary process. The selection processes are categor-
ized into several types; see more details in Bäck and Hoff-
meister (1991).

Most evolutionary art systems generate new forms from
random initial populations. New offspring is reproduced by
using crossover and mutation. These offspring then inherit
characteristics from their parents. Each individual in a popu-
lation is evaluated for its fitness, which is typically based on
aesthetic appeal, by human artists. User interfaces are devel-
oped to facilitate users to evaluate individuals’ fitnesses, rank,
or select favorite individuals for the next generation.

The interaction between humans and evolutionary systems
is known as interactive evolutionary computation (IEC),
which is a general term of EC. It optimizes systems and gen-
erates results, fitting the subjective human evaluation. It is
popularly used in visual appeal such as attractiveness or aes-
thetic selection, which depends on a particular user prefer-
ence. Various applications in IEC were surveyed and ana-
lyzed in Takagi (2001). Several evolutionary art systems
have been developed as interactive evolutionary design sys-
tems to support human designers (e.g., Eckert et al., 1999;
Cho, 2002; Wiens & Ross, 2002; Grundler & Rolich, 2003;
Greenfield, 2005; Machado et al., 2005).

2.2. Aesthetic measure theory

Aesthetics and aesthetic measure have been researched in
various ways. Birkhoff (1933) introduces the well-known
aesthetic measure theory based on the analyses of aesthetic
experience. He claims that “aesthetic feelings arise primarily
because of an unusual harmonious interaction within the
object.” He defines aesthetic measure as the ratio of complex-
ity of the object and degree of order. Moles (1966) presents
a remarkable possibility to apply information theory to the
study of aesthetic perception. He examines and analyzes the
formal distinction between semantic and aesthetic informa-
tion. Semantic information is the message contained in se-
quence. Aesthetic information is sensory, and restricted to
the preferential choices of individuals.

Arnheim (1969) describes artistic activity as a form of
reasoning, perceiving, and thinking. He explains visual
thinking via three functions: pictures, symbols, and signs.
Berlyne (1974) establishes the relation of complexity to
visual preference as an inverted U-curve, with the preference
peaks at some moderate amount of complexity. Machado and
Cardoso (1998) found that visual aesthetic value is directly
related to visual image perception, image complexity, and
interpretation.

Remko and Rens (1993) review several aesthetic measure
theories. They suggest that building formal models of human
perceptual processes are the basis of any empirical aesthetic
measure.

Fechner’s investigations prove that the measurements that
reflect golden ratios are the most satisfying to men’s eyes
(Huntley, 1970). From his surveys, the golden rectangles
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Table 1. Summary of literature review on evolutionary art systems

Authors Form Representation Applications Proc. Timea EA Type
Pop.
Size

Genetic
Operators

Fitness
Function

User
Interact.

Dawkins (1986) 2-D stick figures Images/computer graphics NP GA 9 Mutation User 3
Sims (1991) Expression-based images, 3-D plant

structure
Computer plant structure/images/solid

textures/product design/fashion
industry/animations

Several
minutes

GP 20–40 Mutation,
crossover

User 3

Todd & Latham
(1992, 1999)

2-D/3-D sphere and ellipsoid to form ribs,
horns, mathematical shapes, etc.

Images/textures/sculptures/movies/
animation/computer game/
computer screen saver/clothing
pattern

NP GA 9 Mutation User 1, 3

Eckert et al. (1999) Cartesian coordinates joined with straight
lines and Bezier curves, and color
scheme for modeling 2-D garment parts

Garment shape design/knitwear
industry

NP GA NP Mutation,
crossover

User 3

Rowbottom (1999) 3-D polygon-based forms and spheres Images/computer graphics/animations NP EP NP Mutation User þ system 1, 3
Witbrock & Neil-

Reilly (1999)
Expression-based images and color

functions
Images/movies/image processing NP GP 9 Mutation,

crossover
User þ system 3

Rowland & Biocca
(2000)

Recursive tree sculpture graph for
modeling 3-D human heads and abstract
forms

Graphic sculptures/images/
animations/movies

NP GA 8 Crossover User 3

Cho (2002) 3-D arm and sleeve part, neck and body
part, and skirt and waistline part forms

Fashion design/clothes and apparel
design

NP GA 8 Mutation,
crossover

User 3

2-D expression-based images Abstract images NP 12
Machado &

Cardoso (2002)
Expression-based images Abstract images NP GP 7–30 Mutation,

crossover
User 3

Rooke (2002) Expression-based images by using fractal
primitives

Algorithmic images/textures/
animations

2–3 days GP 100–200 Mutation
crossover

User (algorithmic
fitness-proportional
selection) 3

Wiens & Ross
(2002)

2-D procedural textures Image textures 52 h GP 5600 Mutation,
crossover

System (tournament
selection) 1, 2

Grundler & Rolich
(2003)

2-D fabric patterns made from yarn color
matrix and weave matrix

Fabric patterns for textile design NP ES 9 Mutation Userþ algorithmic elitist
strategy 1

Thomas (2003) 3-D wire-frame mesh with curved surface Education system/entertainment NP GA & AL 16 Mutation and AL
growth process

User 3

Unemi (2003) Expression-based images and short
musical pieces

Abstract images/computer graphics/
music

NP GP 9–30 Mutation,
crossover

User 3

Greenfield (2005) Expression-based images Graphic paintings NP GP NP Mutation,
crossover

System (fitness-
proportional selection) No

Machado et al.
(2005)

Expression-based images Abstract images NP GP 7–30 Mutation,
crossover

User þ algorithmic
fitness assignment 3

Our system (2007) 2-D IFS fractals Art forms for jewelry design 15–30 min GA þ multiple
parent system

7–10 Mutation,
crossover

User þ system (fitness-
proportional selection
þ elitist strategy) 1, 2, 3

NP, Not provided in the article. User interaction: 1, system allows user to input requirements to seed evolved shapes; 2, system allows user to define or adjust genetic parameters; 3, system allows user to assign
fitness scores to individuals or select favorite individuals.

aThe processing time that the system needs to compute and generate the results.
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were chosen preferentially by over 75% of participants.
Several researchers have attempted to explain the golden ratio
and identify its psychological significance and human per-
ception (e.g., Mahon & Battin-Mahon, 1984; Green, 1995;
Mainzer, 2005). The golden ratio is associated with aesthetic
appeal in art and architecture (Green, 1995; Sudweeks &
Simoff, 1999; Mainzer, 2005), sculptures (Rowland &
Biocca, 2000), furniture designs and graphic designs (Elam,
2001), human proportion (Mainzer, 2005), and the human
face (Fett, 2006).

Weyl (1952) and Rosen (1998) describe symmetry theory
and the beauty of symmetry. Field (2001) illustrates symmetri-
cal patterns that play a major role in the aesthetics of wallpaper.
There exist several types of symmetry such as rotational
symmetry, mirror symmetry, and so forth. One more type of
symmetry found in nature and chaos is logarithmic spiral sym-
metry (Tacha, 2002).

Staudek (2003) studies visual patterns and perceptions.
He presents a system with algorithmic aesthetics, which
integrates a computer into artistic creation and aesthetic
evaluation. His work involves mathematics, geometry, per-
ceptual psychology, theory of communication, and computer
graphics to classify and assess aesthetics. His system can gen-
erate algorithmic arts from a set of abstract images, textures,
and patterns. Aesthetic functions evaluate aesthetics in terms
of order, complexity, harmony, variety, entropy, and redun-
dancy.

Aks and Sprott (1996), Spehar et al. (2003), Minita and
Abraham (2003), and Sprott (2004) prove that aesthetic appeal
of fractals depends on fractal dimensions and the Lyapunov
exponent. Complex forms and structures reflect aesthetic ex-
pression via emergent organizing properties, self-organizing
behavior, and chaotic dynamic (Galanter & Levy, 2003).

The literature reviews on aesthetic measure theory are
summarized in Table 3.

2.3. Fractal geometry and the IFS

An IFS is a set of affine transformations, which are defined by
any combination of scaling, rotation, shearing, and translation
of point sets. IFS is an effective method for modeling and
generating self-similar fractals (Barnsley, 1993, pp. 80–81).
The advantage of IFS is image compression into a compact
set of numbers.

An IFS fractal is made up of the union of several copies of
itself, each copy being transformed recursively by an affine
transformation. Fractals produced by IFS functions are often
found in aesthetic image generation. IFS is an easy way to
generate self-similar aesthetic patterns with minimal time
and space complexity.

Table 3. Literature review on aesthetic measures

Authors
Aesthetic

Considerations Examples

Birkhoff (1933) 1, 2, 3 Polygons/vases
Weyl (1952) 3 Natural objects: e.g., flowers,

shells
Moles (1966) 4 —
Arnheim (1969) 5 Children drawings
Huntley (1970) 5 Paintings/architectural

buildings/natural objects:
e.g., seashells, sunflowers

Berlyne (1974) 2 —
Remko & Rens

(1993)
2 Vases

Aks & Sprott
(1996), Sprott
(2004)

4 Computer-generated images:
fractals, strange attractors,
chaotic maps

Machado &
Cardoso (1998)

2 Expression-based images

Sudweeks &
Simoff (1999)

5 Logos/human faces

Galanter & Levy
(2003)

2, 4 Art works and art installations:
e.g., sculptures, statues,
computers, and other media,
formed by fractal patterns and
strange attractors, chaotic
behavior

Mitina & Abraham
(2003)

4 Computer-generated fractal
images

Spehar et al. (2003) 3, 4 Fractal images: nature
photographs, computer-
generated fractals, and
Jackson Pollock’s paintings

Staudek (2003) 1, 2, 6 Computer-generated patterns for
designing abstract images,
textures, and patterns

Hoenig (2005) 2 Paintings/photos/sculptures
Minzer (2005) 2, 3, 5 Human bodies/paintings/

architectural buildings
McCormack (2006) 1 Music/images
Our works (2007) 2, 3, 4, 5, 6 Computer-generated fractals for

designing jewelry

Aesthetic considerations: 1, proportion; 2, complexity; 3, symmetry;
4, unpredictability; 5, golden ratio; 6, computational aesthetics.

Table 2. Comparisons among ES, EP, GA, GP, and the proposed GA

Issues GA ES EP GP
Proposed

GA

Genetic representation
Genetic encoding Yes No No Yes Yes

Variable length string No No No Yes Yes
Genetic operators

Mutation Yes Yes Yes Yes Yes
Crossover Yes Yes No Yes Yes

Evolvable strategy parameter to
guide mutation No Yes Yes No Yes

Mapping process from genotypes
to phenotypes Yes No No Yes Yes

Fitness function (evaluation)
Require mapping process Yes No No Yes Yes
Selection process Yes No Yes Yes Yes

ES, evolutionary stategies; EP, evolutionary programming; GA, genetic
algorithm; GP, genetic programming.
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IFS consists of a complete metric space (X, d) together with a
set of contraction mappings with contractivity factors sn, jsnj � 1
for n ¼ 1, 2, . . . , N, where n is the index for each affine map.
Affine transformation of a point set in the Euclidean plane is
defined as a map w: R2!E2 and w(x, y)¼ (axþ byþ e, cxþ
dy þ f ), where real numbers a, b, c, d [ [21, 1] and e,
f [ (21, 1).

An IFS consists of a finite number of contraction maps; IFS
is rewritten in matrix form as

w(x, y) ¼ a c
b d

� �
x
y

� �
þ e

f

� �
: (1)

IFS can be written in the form of a polar coordination such as

a c
b d

� �
¼ r1 cos u1 r1 sin u1

�r2 sin u2 r2 cos u2

� �
, (2)

where (r1, u1) is the polar coordinate of point (a, c) and (r2, (u2

þ p/2)) is the polar coordinate of point (b, d) . IFS rewritten in
Eq. 2 is to measure IFS’s similitude, which relates to rotational
and logarithmic spiral symmetry. The real numbers a, b, c, and
d control scaling, rotation, and shearing. The real numbers e and
f control translation.

IFS consists of at least two affine transformations. Each
transformation has its own selection probability, pi. This
probability determines the frequency with which the affine
transformation is selected from the IFS to be applied to the
point set in the random iteration algorithm (RIA; Barnsley,
1993, pp. 87–88).

To render the resulting fractal from IFS codes, Barnsley
(1993, p. 85) introduced the approximation of selection prob-
ability pi of each affine transformation Ai by

pi �
jdet AijXN

i¼1 jAij
¼ jaidi � bicijXN

i¼1 jaidi � bicij
, (3)

and
PN

i¼1 pi ¼ 1 and pi . 0. This equation is based on fast
convergence to render corresponding fractal.

There is some research that uses fractals in artistic design
applications. Neves et al. (1994) introduced fractal geometry
in textile design applications. Sprott (1994) uses IFS to repre-
sent nonfunctional forms in his system. Goldman et al. (2003)
applied IFS in turtle geometry and turtle programming in
computer graphics and CAD. Browne and Wamelen (2006)
describe a simple method for creating artistic-connected
spiral sets as fractals. Nikiel (2006) uses IFS combined
with vector graphics to create new artistic forms. Soo et al.
(2006) applied IFS fractals to model jewelry and hand-carved
furniture.

IFS is still not widely used in evolutionary art and design.
IFS genotypes appear in a few evolutionary art systems
(e.g., Rowley, 1999; Joye, 2005). IFS is applied to generate
the shape of antenna elements in GA optimization (Pantoja
et al., 2003). Other types of fractal are also used in evolutionary
art systems, for example, Julia sets and Mandebrot sets.

The researches of IFS applications in evolutionary art are
included in Table 1.

As can be observed from the literature review, IFS is
noticeably successful in art and design, due to its important
geometric and mathematical properties including image com-
pression. In this paper, IFS is further explored to represent art
forms in the design of jewelry.

3. AESTHETIC-DRIVEN EVOLUTIONARY
ALGORITHM

The major characteristics of GA are close to our system
architecture. We develop a core of the system based on GA
and apply the special characteristics of other evolutionary
algorithms (see Table 2) to break through some limitations
of GA. This aims to easily encode chromosomes and make
them flexible, to simplify develop and handle genetic opera-
tors, and to decrease processing time.

We propose the GA for increasing diversity of solutions,
achieving maximum aesthetic values in a short time, but at
the same time preventing too fast a convergence. The pro-
posed GA is based on a multiple parent system. Therefore,
an individual is reproduced by two or more parents. Our
assumption is that offspring inherit at least one affine transfor-
mation from their parents. The multiple parent system offers
more diversity of art forms. The proposed GA is illustrated in
Figure 2.

The proposed GA acts as a human–machine interaction
system that allows users to work together with the system
through an IEC interface (Takagi, 1998) in three stages: pro-
cess initialization, aesthetic selection, and process termina-
tion. The system is to speed up EC convergence with a small
population size and a few generations.

3.1. IFS genotype

The IFS described in Section 2.3 is encoded in a GA
genotype as a one-dimensional (1-D) chromosome with a
variable length. We apply this structure, because it is easy
to handle, to extend the length of chromosome, and to
develop genetic operator.

An IFS consists of at least two affine transformations. Each
affine transformation is encoded in six alleles fa, b, c, d, e, f g,
where the real numbers a, b, c, d [ [21, 1] and e, f [ [0, 1],
represent one gene. The length of the chromosome string then
depends on the number of affine transformations (or genes).

FDESIGN, Fractal Designer software developed by
Nelson (2004), is used to produce IFS fractals and to generate
the resulting IFS codes. IFS chromosomes are stored in an
IFS design-lookup library. The library will be used for
seeding the initial population.

Another method for generating a new design based on the
existing IFS is the use of the “condensation set theorem”
(Barnsley, 1993, pp. 91–94). By selecting the point to which
IFS affine transformations are applied from a predefined
condensation set, we can embed any figure into the result.
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Accordingly, users can integrate any two-dimensional (2-D)
shapes in the existing designs. A set of IFS codes and the result-
ing starlike fractal are shown in Figure 3a. An example of apply-
ing a condensation set to the fractal illustrated in Figure 3b.

3.2. Mapping the IFS genotype to the fractal
phenotype

In our evolutionary art, each individual must be evaluated
based on eight fitness characteristics (aesthetic variables).
Three characteristics (mirror, rotational, and logarithmic
spiral symmetry) are measured directly from genotypes (IFS
codes) before the mapping process. The rest of the character-
istics (capacity and correlation dimension, largest Lyapunov
exponent, golden ratio, and fractal complexity) are measured
from phenotypes, after mapping from genotypes. This
method reduces the processing time spent in the evaluation
process. As a result, the system has a good response time.

Before measuring the individuals’ fitnesses, the genotypes
are explicitly mapped to the phenotypes. Mapping is done by

using an RIA to decode an IFS to its resulting fractal. RIA
requires selection probabilities of affine transformations to
render a fractal. In this paper, we studied two ways to compute
selection probabilities.

3.2.1. Probability computed using Barnsley’s equation

Barnsley (1993) presents a computation of selection prob-
ability as shown in Eq. (3). These probabilities give fast con-
vergence in rendering a fractal. The disadvantage of this prob-
ability is that we may lose opportunities to explore other
fractal shapes due to fast convergence.

3.2.2. Uniform random probability

We propose the use of uniform random numbers to gener-
ate selection probability for rendering fractals,

pi ¼ ri(0, 1), (4)

where ri is a uniform random number in the range of [0, 1]
and

PN
i¼1 pi ¼ 1.

Fig. 2. The proposed genetic algorithm for the interactive user-centered design system.
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The reason we apply a uniform random number for rendering
fractal is that it can create unique and more diverse forms. This
approach includes “emergent property” (Gero, 1996; Cross, 1997),
which can include creativity into our system.

An example of the use of uniform random probability is
described. A leaflike IFS code consists of two affine maps.
Using Barnsley’s probabilities computed by using Eq. (3),
we obtain the resulting probabilities p1 and p2. Running
RIA by using the IFS with such probabilities, the resulting
fractal is rendered as shown in Figure 4a.

Using three different sets of the uniform random probabil-
ities computed by Eq. (4), three resulting fractals are gener-
ated as shown in Figure 4b–d.

From the above example, it is clear that using only one set
of IFS with various sets of probabilities can create more
diverse fractals. We apply this idea to increase variety and
creativity of art forms during the evolutionary design process.
In other words, this concept offers a source of diversity.

3.3. Fractal phenotype

We found that jewelry designers mostly initialize their
designs by 2-D sketches and later transform them to three-
dimensional (3-D) shapes. During the evolutionary process,
fractal phenotypes are represented as 2-D point clouds, which
are later transformed into 3-D solid models using CAD
software.

3.4. Genetic control parameters

The efficiency of the GA is affected by the number of initial
parents (nip), mutation probability ( pm), and crossover
probability ( pc). These genetic control parameters influence
population size, productivity, and diversity of the solutions
during evolutionary process. We optimize the genetic control
parameters by parametric study, further explained in Section 5.

Population size is varied by nip, pm, and pc:

pop size ¼ nip þ round(nip � pm)

þ 2� round
nip þ round(nip � pm)

2
� pc

� �
, (5)

where round means integer value of. The size of the sampling
space depends on population size. The sampling space is en-
larged by retaining all parents and all offspring in the popula-
tion rather than replacing parents by new offspring. This action
can provide more alternatives for the next generation.

3.5. Genetic operator

The genetic operator is aimed to reproduce a new set of
individuals, to maintain diversity, and to offer creativity
based on existing ones. A new generation is composed of
the individuals that are reproduced by mutation and cross-
over, as shown in Figure 2.

Fig. 4. A leaf with a set of probabilities: (a) probabilities computed from Eq. (3), and (b–d) three different sets of uniform random
probabilities generated from Eq. (4).

Fig. 3. An example of applying the condensation set: (a) an integrated function system fractal and (b) a condensation set applied to the
fractal.
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3.5.1. Multi-Gaussian mutation

Multi-Gaussian mutation generates a Gaussian random
number r (0, s) for each allele in a genotype. All alleles are
simultaneously modified by their Gaussian random numbers
within the defined rate d (e.g., 5, 10%, etc.). For example, if
an IFS genotype G(i) consists of three affine maps, the muta-
tion operator will generate 18 Gaussian random numbers
(r1, r2, r3, . . . , r18) and apply these numbers in sequence to
each allele with the defined rate d, as shown in Figure 5.

3.5.2. Modified arithmetic crossover

Modified arithmetic crossover covers both single-point
crossover and multiple-point crossover. It reproduces new
offspring using the componentwise linear combinations of
parents. The crossover points are randomly selected by the
system, and not be allowed locating inside the intervals of
genes. The crossover points are located only where the
individuals can exchange the genes (or affine transformations).

For example, the system reproduces a new set of indi-
viduals using three parents: parent 1, parent 2, and parent 3,
which consist of two, three, and four affine transformations,
respectively. A new set of offspring are reproduced; some

of them are shown in Figure 6. Some offspring are reproduced
from more than two parents, for example, offspring 3 and
offspring 5 are reproduced from three parents.

3.6. Two-step fitness function

We develop a two-step fitness function that consists of a
morphological fitness function and an aesthetic fitness func-
tion. The first step is to measure the morphology of the art
form. In this step, the morphological fitness function helps
us to discard unfit art forms from the process. This can
reduce computation in the fitness function and then speed
up the GA. Only good individuals in the morphological fit-
ness test will be selected to go to the second step to measure
aesthetics of the art form by the aesthetic fitness function (see
the workflow of the fitness function in Fig. 2). The details of
two-step fitness function are further described in Section 4.

3.7. Selection to the next generation

Survival into the next generation is done either by automatic
selection or user selection. Automatic selection is based on

Fig. 5. An example of multi-Gaussian mutation.

Fig. 6. An example of modified arithmetic crossover.
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individual’s computed fitness. In addition, we include elitist
strategy (Bäck & Hoffmeister, 1991) in our selection scheme.
All parents are allowed to join in the selection process
together with their offspring. Elitist strategy preserves some
good individuals to the next generations. This avoids the
lack of good individuals disappearing after some generations.
In the manual selection, users rank and select the favorite
individuals for the next generation.

3.8. Termination criteria

There are several ways to terminate the GA:

† A predefined maximum number of generations such as
10, 15, and 20 generations can be used.

† Convergence of the population’s fitness to the maxi-
mum aesthetics value of 1 is another method. The aes-
thetics value is a combination of several aesthetic vari-
ables computed with the aesthetic fitness function in
Eq. (21), further explained in Section 4.

† Stopping the process when the users are satisfied (i.e.,
“in the eye of beholder”), or

† starting a new run of the evolutionary design by users
can also be utilized to terminate the GA.

4. TWO-STEP FITNESS FUNCTION:
ALGORITHMIC AESTHETICS AND
AESTHETIC VARIABLES

In jewelry design, one of the most important aspects is
aesthetic appeal. Even though aesthetic appeal is subjective,
several researches prove that aesthetics can be linked with
universal human aesthetic perception such as symmetry,
balance, complexity, and proportion (e.g., Birkhoff, 1933;
Weyl, 1952; Moles, 1966; Arnheim, 1969; Huntley, 1970;
Berlyne, 1974; Machado & Cardoso, 1998; Rosen, 1998;
Sudweeks & Simoff, 1999; Staudek, 2003; Hoenig, 2005).

In this section, we classify these universal subjective
aspects to formulate a computational aesthetics. We describe
a methodology to develop a morphological algorithm and an
aesthetic algorithm to be used in the two-step fitness function
in the proposed GA. We also introduce the use of the aesthetic
measure for fractal-based jewelry design.

4.1. Aesthetic measure

Several measures that reflect aesthetics of forms and fractals
are applied in our computational aesthetics. These measures
include golden ratio, complexity, mirror symmetry, rotational
symmetry, logarithmic spiral symmetry, compactness and
connectivity, unpredictability, and fractal dimensions. Fractal
dimension can be quantified in terms of capacity dimension
and correlation dimension. This measure is based on mathe-
matical foundations of fractal geometry, chaotic behavior,
and image processing. The aesthetic measures used in the
fitness computation and the corresponding data formats to
compute the fitness are summarized in Table 4.

4.1.1. Capacity dimension

The capacity dimension (F1) provides an objective mean
for comparing fractals. We can measure it by the box-
counting theorem (Barnsley, 1993, pp. 171–195). This
method starts by subdividing a bounding box of fractal with
the boxes of side length (1/2s), where s is the number of steps,
and then counting the number of boxes that intersect the frac-
tal. A higher capacity dimension means that the fractal fills
more space. Our process generates both 1-D and 2-D fractals,
then capacity dimension ranges over 0 � F1 � 2. Here, F1 is
normalized into the interval [0, 1] by dividing F1 by 2.

4.1.2. Correlation dimension

The correlation dimension (F2) is a measure of space occu-
pied by a set of random points. It is similar to the capacity
dimension, but it also measures the contraction rate of the

Table 4. Summary of aesthetic measures and corresponding formats used for fitness computation

Measurements

Data Format

Formulation
Aesthetic
VariableIFS Code

XY Point
Set B&W Image

Capacity dimension � Box counting (Barnsley, 1993) F1

Correlation dimension � Correlation integral (Grassberger & Procaccia,
1983), ATRIA algorithm (Merkwirth et al., 2000),
and OpenTSTOOL (Merkwirth et al., 2002) F2

Largest Lyapunov exponent � Sato et al. (1987), Parlitz (1998), and OpenTSTOOL
(Merkwirth et al., 2002) F3

Image complexity � Niimi et al. (1997) F4

Golden ratio � Our formula: Eqs. (7) and (8) F5

Mirror symmetry � Our formula: Eq. (9) F6

Rotational symmetry � Our formula: Eq. (10) F7

Logarithmic spiral symmetry � Our formula: Eq. (11) F8
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points that land on a fractal. Euclidean distance between two
neighboring points, computed by using the ATRIA algorithm
(Merkwirth et al., 2002). Grassberger and Procaccia (1983)
introduce a method to measure F2 by using correlation inte-
gral. We use the correlation integral function in Open-
TSTOOL (Merkwirth et al., 2002) and least-square linear
regression to compute F2. Correlation dimension of 2-D frac-
tals are in the range of [0, 2]. Therefore, we normalize F2 into
the interval [0, 1] by dividing by 2. Correlation dimension can
express appearances and characteristics of fractal. With a
higher F2, points are globally spread to cover a wider area.
With a lower F2, points are condensed in a smaller (or local)
area.

4.1.3. Largest Lyapunov exponent

We apply the largest Lyapunov exponent (F3) for com-
puting the divergence of two neighboring points; one point
represents one trajectory or one orbit. It determines how
quickly trajectories that begin in nearby points diverge
over time. The largest Lyapunov exponent can characterize
the trajectories’ divergences as an average exponential rate
over time. The positive largest Lyapunov exponent is quan-
tified based on Sato et al. (1987) and Parlitz (1998).
We use OpenTSTOOL (Merkwirth et al., 2002) and least-
squares linear regression for computing F3. We normalize
F3 into the interval [0, 1] by 1/(1 þ e2l1). A higher
F3 means less separation between two nearby orbits; there-
fore, the point set is more connected and compact. A lower
F3 indicates a larger separation between two nearby points;
the art form becomes disconnected and less compact.

4.1.4. Image complexity

We extend the method introduced by Niimi et al. (1997) for
measuring the complexity embedded in black-and-white frac-
tal images. Image-processing techniques (Gonzalez &
Woods, 2001) are applied on a 0/1 bit map of the fractal.
The bounding box is represented by width WB and length
LB. The total length of the black-and-white border of the frac-
tal is calculated by the summation of a number of color
changes along rows and columns in the bounding box. The
maximum border length is computed from (WB� (LB 2 1))
þ ((WB 2 1)�LB). We then compute the image complexity
(F4) of the IFS fractal by

F4 ¼
kR þ kC

ðWB � (LB � 1))þ ((WB � 1)� LBÞ
, (6)

where kR is the summation of the number of color changes
along rows in the bounding box of the IFS fractal, and kC is
the summation of the number of color changes along columns
in the bounding box of the IFS fractal. Computed image com-
plexity is in the ranges of [0, 1]. A more complex fractal F4 is
closer to 1. A less complex fractal F4 is closer to 0.

4.1.5. Golden ratio

The quantifying golden ratio (F5) starts by defining two
perpendicular directions. The reference axis A is perpendicu-
lar to a finger, whereas the reference axis B is along the finger.

Find the centroid of the fractal, and then place the refer-
ence axes on it. Compute the width (W ) and length (L)
of the bounding box of the fractal. Find the ratio of W/L.
Calculate the difference between the bounding box ratio
W/L and the golden ratio f as

D ¼ j(W=L)� fj, (7)

where the reference f is about 1.6180339 (Huntley, 1970).
We derive

F5 ¼ e�D (8)

to normalize the difference of the fractal’s bounding box ratio
and the golden ratio in the range of [0, 1].

The reference axes are rotated until the maximum value of
F5 is obtained. The value of F5 shows how much the fractal’s
bounding box ratio is from the golden ratio.

4.1.6. Mirror symmetry

Like the golden ratio, the mirror symmetry (F6) depends on
the same reference axes. Find the centroid of the fractal, and
then place the reference axes on it. Based on image process-
ing techniques (Gonzalez & Woods, 2001), the fractal is
divided into two parts along the B axis, then compute the
difference between the left part Lpart and the right part Rpart as

F6 ¼ jL part � Rpartj: (9)

Rotating the reference axes until the minimum value of F6 is
obtained. Mirror symmetry F6 ranges in the interval [0, 1].

4.1.7. Rotational symmetry

The rotational symmetry (F7) of the IFS fractal can be
measured from the concept of similitude (Barnsley, 1993,
pp. 54–64). To measure rotational symmetry, IFS is rewritten
in the polar form, as shown in Eq. (2), for each affine transfor-
mation. From our experiments, we found that any IFS fractal
that has rotational symmetry contains at least one rotational
affine map. The conditions for checking the rotation of affine
map are

1. D(u1, u2), u1 2 u2 ! 0, and D(r1, r2),
2. u1, u2 � 458 and r1, r2 ! 1.

Next, we divide D(u1, u2) by 908 to normalize it in the range of
[0, 1]. The rotation factor is defined as uR ¼ 1 2 (D(u1, u2)/
908), where uR is a rotation factor, then 0 � uR � 1, and 0 �
D(r1, r2) � 1, rR ¼ 1 2 D(r1, r2), where rR is a scaling factor.
Thus, rotational symmetry is formulated as

F7 ¼ (uR þ u1R þ u2R þ rR þ jr1j þ jr2j)=6, (10)
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where

F7 ¼ rotational symmetry, 0 � F7 � 1,

uR ¼ rotation factor, 0 � uR � 1,

u1R ¼
1, ifu1 � 458

458� u1, ifu1 , 458,

(
0 � u1R � 1,

u2R ¼
1, ifu2 � 458

458� u2, ifu2 , 458,

(
0 � u2R � 1,

rR ¼ scaling factor, 0 � rR � 1:

4.1.8. Logarithmic spiral symmetry

Like rotational symmetry, the logarithmic spiral symmetry
(F8) can be quantified from the similitude of affine transfor-
mation with the following conditions:

1. D(u1, u2), u1 2 u2 ! 0 and D (r1, r2), r1 2 r2 ! 0,
2. u1, u2 , 458 and r1, r2 ! 1.

We found that logarithmic spiral symmetry appears when the
rotation angles of the affine map are more than 458. Logarith-
mic spiral symmetry is formulated in the same manner as
rotational symmetry. Thus,

F8 ¼ (uR þ u1R þ u2R þ rR þ jr1j þ jr2j)=6, (11)

where

F8 ¼ logarithmic spiral symmetry, 0 � F8 � 1,

uR ¼ rotation factor, 0 � uR � 1,

u1R ¼
1, ifu1 , 458

u1 � 458, ifu1 � 458,

�
0 � u1R � 1,

u2R ¼
1, ifu2 , 458

u2 � 458, ifu2 � 458,

�
0 � u2R � 1,

rR ¼ scaling factor, 0 � rR � 1:

Examples of the variation of all above aesthetic variables are
illustrated in Table 5.

4.2. Morphological fitness function

Morphological fitness function is developed for evaluating
compactness and connectivity of art forms in advance. Refer-
ring to mathematical theory of metric spaces and set theory
(Barnsley, 1993, pp. 19–24), let (X, d ) be a complete metric
space. Let S , X be a subset of a metric space (X, d ). Then S is
compact if and only if it is closed and totally bounded.
Conversely, S is incompact if and only if it is unclosed and
unbounded.

Intuitively, this means that incompact subsets produce
fractals in which the embedded points are disconnected and
discrete from each other. An example of incompact and
compact forms is shown in Figure 7.

We compute three variables: capacity dimension F1, corre-
lation dimension F2, and largest Lyapunov exponent F3 of
200 various fractals characterizing compactness and connec-
tivity. The F1 value ranges from 0.2245 to 0.9525, F2 ranges
from 0.2344 to 0.9663, and F3 ranges from 0.0 to 0.8457.

First, compactness and connectivity of art forms are com-
puted using image processing. Compactness is computed
from the perimeter power 2 and then divided by the area of
the art form (Gonzalez & Woods, 2001). Connectivity is
computed by counting the fraction of connected pixels
(Gonzalez & Woods, 2001).

Second, experiments and statistical analysis are used to
investigate the relations of compactness and connectivity to
the aesthetic variables. We found that capacity dimension F1,
correlation dimension F2, and largest Lyapunov exponent F3

have influences on compactness and connectivity of the fractals.
Third, using factor analysis, a linear model of compactness

and connectivity is formulated:

faccc ¼ 0:494F1 þ 0:494F2 þ 0:214F3: (12)

Table 5. Examples of the variation of all aesthetic variables

Aesthetic Factors Low High

1. Capacity dimensions

2. Correlation dimensions

3. Largest Lyapunov exponent

4. Complexity

5. Golden ratio

6. Mirror symmetry

7. Rotational symmetry

8. Logarithmic spiral symmetry
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Using regression analysis, we obtain the morphological
fitness:

cCC ¼ 4:2184 exp (0:3561faccc)� 4:9605, (13)

where cCC is the estimated compactness and connectivity, andcCC [ [0,1].
The higher the cCC value, the higher the compactness and

connectivity in the art form. We use cCC in Eq. (13) as the
morphological fitness function to evaluate individuals’ mor-
phology during evolutionary process, as stated in Section 3.6.
In our experiments, the individuals that have cCC lower than
0.38 are incompact and disconnected. Any individual that
is incompact and disconnected always yields low aesthetics.
In this step, the individuals that have a cCC higher than 0.38
will be selected to go to next step. This can reduce processing
time and speed up the GA.

4.3. Aesthetic fitness function

4.3.1. Methodology to develop the initial aesthetic
mathematical model

We generate 200 various art forms with aesthetic variables
(F1, F2, . . . , F8) provided in Table 6. All art forms are mea-
sured for their eight aesthetic variables Fi. Coefficient ai is a
weight assigned to each aesthetic variable Fi (see Table 4).
All aesthetic variables (F1, F2, . . . , F8) are normalized in
the range of [0, 1], as discussed before. To formulate an initial
model, our assumption is that all aesthetic variables have
equal influence on aesthetics. In other words, all coefficients
ai ¼ 1,

Alinear ¼
Xn

i¼1 aiFiXn
i¼1 ai

: (14)

Factor analysis is applied for data reduction or structure
detection. It is used to reduce the number of variables
(F1, F2, . . . , F8) and to detect a structure in the relationships
among the variables. This work is done using statistical
analysis software (SPSS Version 11). From factor analytic
techniques, the resulting new factors are given as two linear
combinations of aesthetic variables. The linear combinations

are regression lines that represent the best summary of the
linear relationships between the variables Fi.

Factor 1:

fac1 ¼ 0:167F1 þ 0:133F2 þ 0:131F4 þ 0:25F5 þ 0:21F7

þ 0:364F8, (15)

Factor 2:

fac2 ¼ 0:227F3 þ 0:678F6: (16)

From factor loadings, we obtain the weights (a1, a2, . . . , a8)
of the variables (F1, F2, . . . , F8) as shown in Eqs. (15) and
(16). It is clear that the first factor fac1 has high weights
on logarithmic spiral symmetry F8, golden ratio F5, and
rotational symmetry F7. The second factor, fac2, has high
weights on mirror symmetry F6 and the largest Lyapunov
exponent F3.

Based on linear regression analysis, relationships between
aesthetic factors (fac1, fac2) and effects of aesthetic factors to
the aesthetic values Âlinear in Eq. (14), we obtain the linear
aesthetic computation model:

Âlinear ¼ �0:02504þ 0:456 fac1 þ 0:214 fac2: (17)

When the weights or coefficients (a1, a2, . . . , a8) are varied,
they affect the factors fac1 and fac2, and then aesthetic scores
computed by Âlinear. As a result, the generated art forms
change.

4.3.2. Methodology to develop a human aesthetic
attractiveness model

We recognize that there are several subjective aspects,
which are nonquantifiable, that influence human aesthetic
considerations. Humans have their own senses to evaluate
aesthetic individually. Therefore, the subjective aesthetic
attractiveness of jewelry rings’ ornaments is studied through
surveys, interviews, and questionnaires, which are based on
theory of design of experiment (Montogomery, 2001).

Our target group consists of 72 members of university com-
munity: 36 males and 36 females. Participants were 24–35

Table 6. Ranges of all aesthetic variables
of the selected art forms

Aesthetic Variable Minimum Maximum

F1 0.3456 0.9405
F2 0.2407 0.9456
F3 0.0000 0.8654
F4 0.0000 0.6700
F5 0.0000 0.9992
F6 0.0000 0.9946
F7 0.0000 0.9927
F8 0.0000 0.9739

Fig. 7. A comparison of the morphology between two art forms: (a) a
disconnected and incompact form and (b) a compact form.
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years old. Eighty ring designs generated by our system are
selected based on aesthetic values and randomly presented
to the participants. The samples used for the survey are pro-
vided in Figure 8 with the aesthetic scores from our initial
model Eq. (17) and the scores from the survey next to each
design.

Color is not included in our system. Therefore, in the survey,
we requested the participants to consider only the shapes of

ornaments, so all have the same gold color. The participants
were asked to assign the aesthetic score f0, 1, 2, . . . , 6g to
each of 80 designs, where 0 is assigned for the most unattrac-
tive, and 6 is assigned for the most attractive or beautiful.

We apply statistical analysis to analyze the results from the
survey. Curve-fitting and nonlinear regression techniques are
used to formulate the computational aesthetics. The resulting
formulation is that the survey scores Âsurvey have cubic

Fig. 8. A template of the jewelry ring designs generated by the system and used in the surveys. A1, Aesthetic score computed by the system
using Eq. 21; A2, aesthetic score from the surveys; A1 and A2 are normalized in the range of [0, 1]. [A color version of this figure can be
viewed online at www.journals.cambridge.org]
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dependence upon fac1 and fac2:

Âsurvey ¼10:9� 53:78 fac1 þ 344:26 fac2
1 � 409:18 fac3

1

� 297:04 fac2 þ 3146:09 fac2
2 � 10090:05 fac3

2

þ 894:39 fac1 fac2 � 10495:75 fac1 fac2
2

þ 38604:13 fac1 fac3
2 � 4749:1 fac2

1 fac2

þ 31422:67 fac2
1 fac2

2 � 83202:09 fac2
1 fac3

2

þ 5675:65 fac3
1 fac2 � 31324:62 fac3

1 fac2
2

� 66375:69 fac3
1 fac3

2: (18)

The model fits to the survey results with R2 ¼ 0.655. In curve
fitting, R2 ranges are [0, 1], where 1 means the fittest.

4.3.3. Investigation of aesthetics of the popular
long-lasting forms

Other artifacts that are considered as beautiful forms are the
popular long-lasting symbols, such as a cross, star, yin-yang,
swastika, female, male, and peace (see Fig. 9). They play
important roles as icons that influence human psychology
and human aesthetic perception.

In the design of jewelry, sometimes designers are inspired
by these symbols. Therefore, the symbols are used as a part of
verification of the algorithmic aesthetics. We compute their
aesthetic variables (F1, F2, . . . , F8) and use the results to
improve the algorithmic aesthetics in the next section.

4.3.4. Verification and adjustment of the aesthetic fitness
function

We take into account the results of the survey and the inves-
tigation of popular long-lasting symbols to adjust the algo-
rithmic aesthetics. We apply the factor analytical techniques
to classify the aesthetic variables (F1, F2, . . . , F8) computed
from the various art forms and the popular long-lasting

symbols and to analyze the relationships between variables
in terms of factors. The results of factor loadings are given
in terms of factor 1 (fac1_ad) and factor 2 (fac2_ad):
Factor 1:

fac1 ad ¼ 0:277 �F1 þ 0:252 �F2 þ 0:174 �F4

þ 0:24 �F5 þ 0:188 �F7 þ 0:174 �F8, (19)

Factor 2:

fac2 ad ¼ 0:387 �F3 þ 0:448 �F6: (20)

It is clear that the first factor fac1_ad has high weights on ca-
pacity dimension F1, correlation dimension F2, and golden ra-
tio F5. Rotational F7 and logarithmic spiral symmetry F8 still
play a role in fac1_ad, but less than in fac1. The second factor
fac2_ad has high weights on mirror symmetry F6 and largest
Lyapunov exponent F3, the same as in fac2.

Using regression analysis, we obtain new aesthetic fitness
ÂðadÞ that has cubic dependence upon fac1_ad and fac2_ad:

Âad ¼ 0:12� 1:04 fac1 ad þ 3:01 fac2
1 ad � 1:66 fac3

1 ad

� 44:09 fac2 ad þ 60:6 fac2
2 ad þ 38:09 fac3

2 ad

þ 184:4 fac1 ad fac2 ad � 211:89 fac1 ad fac2
2 ad

� 197:73 fac1 ad fac3
2 ad � 231:55 fac2

1 ad fac2 ad

þ 210:6 fac2
1 ad fac2

2 ad þ 314:43 fac2
1 ad fac3

2 ad

þ 94:67 fac3
1 ad fac2 ad � 74:78 fac3

1 ad fac2
2 ad

� 131:57 fac3
1 ad fac3

2 ad: (21)

The measure of model fit is R2 of 0.728. This model is a better
fit to the data than Eq. (18).

Accordingly, we use the aesthetic algorithm Âad in Eq. (21)
to evaluate aesthetics of art forms in the aesthetic fitness

Fig. 9. A template of the results of testing the aesthetic fitness by the popular long-lasting forms. Aesthetic A is computed by using Eq. (21).
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function, as described in Section 3.6. All of the aesthetic
mathematical models are summarized in Table 7.

4.4. Results and discussion on aesthetic computing

In the tests of the aesthetic fitness function, our assumption
is that the popular long-lasting forms should have higher
aesthetic scores than other forms. We use 160 various art
forms generated by our system, a set of 80 ring designs
used in the survey, and 32 popular long-lasting forms in
our tests. The details of the tested art forms are provided in
Table 8.

The statistical result of the aesthetic fitness computation
Âlinear in Eq. (17) gives the average scores of 0.5576. The stan-
dard deviation of the computed aesthetics is relatively low
(see Table 9). The different art forms with different sets of
aesthetic variables have not much difference in the computed
aesthetics. The Âlinear in Eq. (17) cannot clearly classify be-
tween bad and good art forms. The resulting computations
and their statistical analysis show that the aesthetic measure

Âad Eq. (21) is closest to the results of the survey and the study
of the popular forms. In addition, the measure Âad has better
differentiation between bad and good forms than Âlinear and
Âsurvey (see Table 9).

Using the aesthetic measure Âad in Eq. (21), the resulting
aesthetic scores of the popular long-lasting forms fall in the
range of [0.80, 0.99] (see Fig. 9), which is higher than other
art forms. This result proves that the aesthetic measure Âad is
the most significant. The aesthetic fitness Âad formulated
from Factor 1 (fac1_ad) and Factor 2 (fac2_ad) shows the cubic
dependence upon both factors. The fac1_ad is the combination
of rotational symmetry, logarithmic symmetry, and golden
ratio. The fac2_ad measures mirror symmetry.

Capacity dimension F1 correlation dimension F2, and
largest Lyapunov exponent F3 have more influence on
aesthetic attractiveness in fac1_ad and fac2_ad than fac1 and
fac2, due to the fact that they reflect the compactness and con-
nectivity of the forms. Compactness and connectivity reflect
to morphologies of the forms that have influence in human
perception.

Table 7. Summary of the aesthetic models

Aesthetic Model Equation

Aesthetic model (1)
Eq. (17)

Âlinear ¼ �0:02504þ 0:456 fac1 þ 0:214 fac2

fac1 ¼ 0:167F1 þ 0:133F2 þ 0:131F4 þ 0:25F5 þ 0:21F7 þ 0:364F8,

fac2 ¼ 0:227F3 þ 0:678F6

Aesthetic model (2)
Eq. (18)

Âsurvey ¼ 10:9� 53:78 fac1 þ 344:26 fac2
1 � 409:18 fac3

1 � 297:04 fac2 þ 3146:09 fac2
2 � 10090:05 fac3

2

þ 894:39 fac1 fac2 � 10495:75 fac1 fac2
2 þ 38604:13 fac1 fac3

2 � 4749:1 fac2
1 fac2 þ 31422:67 fac2

1 fac2
2

� 83202:09 fac2
1 fac3

2 þ 5675:65 fac3
1 fac2 � 31324:62 fac3

1 fac2
2 � 66375:69 fac3

1 fac3
2

Aesthetic model (3)
Eq. (21)

Âad ¼ 0:12� 1:04 fac1 ad þ 3:01 fac2
1 ad � 1:66 fac3

1 ad � 44:09 fac2 ad þ 60:6 fac2
2 ad þ 38:09 fac3

2 ad

þ 184:4 fac1 ad fac2 ad � 211:89 fac1 ad fac2
2 ad � 197:73 fac1 ad fac3

2 ad � 231:55 fac2
1 ad fac2 ad

þ 210:6 fac2
1 ad fac2

2 ad þ 314:43 fac2
1 ad fac3

2 ad þ 94:67 fac3
1 ad fac2 ad � 74:78 fac3

1 ad fac2
2 ad

� 131:57 fac3
1 ad fac3

2 ad

fac1 ad ¼ 0:277 �F1 þ 0:252 �F2 þ 0:174 �F4 þ 0:24 �F5 þ 0:188 �F7 þ 0:174 �F8

fac2 ad ¼ 0:387 �F3 þ 0:448 �F6

Table 8. Summary of ranges of all aesthetic variables
of the tested art forms

Aesthetic
Variable

160 Art
Forms

80 Survey
Ring Designs

32 Popular
Symbols

F1 0.4775–0.9284 0.5865–0.9841 0.7586–0.9401
F2 0.2407–0.9436 0.4125–0.9583 0.4978–0.9213
F3 0.0–0.7644 0.0–0.8379 0.0586–0.8819
F4 0.0–0.6691 0.0–0.7569 0.0191–0.7690
F5 0.0–0.9743 0.0–0.9992 0.5390–0.9309
F6 0.0–0.9827 0.0–0.9912 0.0–0.9946
F7 0.0–0.9544 0.0–0.9604 0.0–0.9927
F8 0.0–0.9691 0.0–0.9739 0.0–0.5010

Table 9. Statistical results of aesthetic computing
using Eqs. (17), (18), and (21)

Aesthetic Algorithm Eq. (17) Eq. (18) Eq. (21)

Correlation to results of survey 0.6070 0.6510 0.7580
Mean 0.5275 0.5342 0.5321
Variance 0.1700 0.0750 0.1080
SD 0.1106 0.2763 0.3282
Minimum 0.1083 0.0000 0.0000
Maximum 0.6659 1.0000 1.0000
Range 0.5576 1.0000 1.0000

SD, Standard deviation.
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We do not conclude that our aesthetic algorithm can
entirely quantify aesthetics. In fact, we do believe that hu-
mans have their own sense to assess aesthetics individually.
Aesthetic considerations are based on two parts: universal
aesthetics aspects that can be quantified and nonquantifiable
information. This result support Moles’s study of aesthetic
perception (Moles, 1966).

Our aesthetic evaluation is validated in three ways. The first
way is based on the well-known theories of human perception
in Table 3. The second way is based on the results of the
surveys of aesthetic attractiveness. The third way is done by
the use of popular long-lasting symbols.

The results of the surveys confirm that aesthetics is linked
with universal aesthetic perception aspects such as symmetry,
balance, complexity, and proportion. We found that the loga-
rithmic–spiral–symmetrical forms affect human aesthetic
perception and correlate with the golden ratio, because they
reflect order and balance of the elements inside the forms.

From the study of popular forms, we found that the pre-
ferred forms mostly contain mirror symmetry, rotational sym-
metry, and golden ratio. Other variables, such as logarithmic
spiral symmetry, do not clearly appear in those samples.

We examine the relationship between the golden ratio and
aesthetics of jewelry forms through the popular logos and
symbols and the survey. We apply statistics and factor analy-
sis to discover the relationship between the golden ratio and
human preference. We found that visual aesthetic preference
is directly related to the golden ratio and the golden rectangle.
Therefore, we can use the golden ratio for evaluating the good
proportion in jewelry design.

By using factor analysis, we found reasonable correspon-
dence from the survey and the investigation of popular
long-lasting forms. The weighting coefficients ai of the
aesthetic variables Fi in the aesthetic measure are adjusted
according to the factor analysis.

5. PARAMETRIC STUDY

We design full factorial experiments to explore the parameter
setting for the proposed GA. The purpose is to optimize the
genetic control parameters (number of initial parent nip;
mutation probability pm; crossover probability pc; and popu-
lation size pop_size). We explore the population size ranges
from 3 to 16. The experiments are divided into two tests.
The first test is the study of the parameters within a limited
running time (1830 s). The second test is the investigation
of the parameters in a long run (4300–5500 s). The results
of the parametric study show a tradeoff between time and
quality of solutions, as shown in Table 10.

The maximum aesthetics for the case of short run time is
lower than the case of long run. We explore the long run
behavior and the convergence of the GA. The number of
consecutive generations that the fitness does not change is
shown in Table 10; this number can be used as a stopping
criterion in the GA.

6. DEMONSTRATION OF AESTHETIC-DRIVEN
EVOLUTIONARY ALGORITHM

The proposed GA and all experiments are implemented on an
ACER Pentium 4 PC (2.8 GHz CPU, 60 GB RAM) using
MATLAB V.6.5.

6.1. GA and its efficiency

We construct an IFS design library that contains 200 chromo-
somes for seeding the initial population. The genetic parame-
ters based on the parametric study in Section 5 are the number
of initial parents nip ¼ 3, mutation probability pm ¼ 0.75, cross-
over probability pc ¼ 0.75, population size pop_size ¼ 9, and
maximum number of generation max_gen ¼ 15.

The process converges to the maximum aesthetic score
computed by the Âad in Eq. (21). The Âad is the combination
of several aesthetic variables. Based on the surveys, we found
that human aesthetic perception has a relation to more than
one variable, as well as the fact that some aesthetic variables
have a relation to the other variable. For example, the
logarithmic–spiral–symmetrical forms are related to the
golden ratio.

From the experiments it is found that mutation offers var-
iation of individuals but less than crossover. However, muta-
tion has an advantage in that it can maintain variety of good
individuals in the gene pool. Crossover causes a larger num-
ber of individuals that lack compactness and connectivity, but
crossover offers higher variation and creativity of individuals.

From our study of jewelry design for consumer market, a
jewelry company typically creates about 50–60 designs a
week. A jewelry designer typically creates approximately
three designs per day (6 working h). In other words, a jewelry
designer takes 3 h (10,800 s) on average to design a jewelry

Table 10. Summary of the results of the parametric study
in the short run and long run

Case 1a Case 2b

Short Run Long Run Short Run Long Run

Maximum aesthetics 0.8926 0.9410 0.8818 0.9518
Run time (s) 1830 4350 1830 5220
Parameters
No. of initial parents 3 4 3 3

Mutation rate 1.0 0.25 0.75 1.0
Crossover rate 0.75 0.75 0.75 0.25
Population size 10 9 9 8

No. of max. generations 15 30 15 35
No. of consec.

generations that
fitness did not change
improvement 12 15

aCase 1: Genetic algorithm using an iterated function system with the
associated probabilities computed by Barnsley’s equation.

bCase 2: Genetic algorithm using an iterated function system with the
uniform random probabilities.
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ring. Fashion movement limits the time for design. Hence,
our objective is that the interactive evolutionary design
system can work with the designer in the design of jewelry
faster than the designer works alone.

We measure the performance of the GA by comparing with
the production rate of a jewelry designer. Our system takes
30–35 min on average for generating one design solution.
Compared to human design, we can reduce design time by
145 min or about 80%. In other words, within 3 h we can
create five designs by our system, while a human designer
creates one design. It shows that our system can increase
productivity in the design process.

Rosenman and Gero (1993) describe that creative design
consists of four properties: combination, mutation, analogy,
and first principles. Cross (1997) presents a generic descrip-
tive model of creative design, which includes an emergent
property introduced by Gero (1994). From the above referen-
ces, we can conclude that our evolutionary design system is a
creative design process, which can generate creative designs
from those properties.

6.2. Population size

The reasons that we use small population size are the
following:

1. Bentley (1999, p. 43) suggests using population sizes
,10. The system then quickly judges all individuals
in every generation. There are several evolutionary
systems that use population sizes ,10 (e.g., Dawkins,
1986; Sim, 1991; Todd & Latham, 1992, 1999;
Rowland & Biocca, 2000; Grundler & Rolich, 2003).

2. In our interactive evolutionary design, users work
collaboratively with the system. Therefore, a good re-
sponse time is necessary. The smaller the population
size, the faster the individuals improve their fitness
from one generation to the next generation. Grundler

and Rolich (2003) and McCormack (2006) support
these arguments. In addition, the small population
size can increase the productivity of generated designs.

6.3. Role of selection probability for rendering the
fractal

To explore the role of selection probability in the RIA, as ex-
plained in Sections 3.2.1 and 3.2.2, we divide the experi-
ments into two cases: case 1, using IFS with the associated
probability computed from Eq. (3), and case 2, using IFS
with the uniform random probability generated by Eq. (4).

Because the outputs of GA are stochastic, we replicate each
test problem 30 times, and then compute the average value for
evaluation. We evaluate the GA by comparing the best
solution of the first generation to the best solution of the final
generation; this number is called “improvement ratio.” It ex-
plains how much the GA can improve individuals. The other
indicator is the GA consistency, which is measured from the
deviation of the results,

deviation within group ð%Þ ¼

standard deviation
of results in group

average of
results in group

� 100:

In the short run, the GA in case 1 yields higher aesthetic
fitness within the predefined maximum number of genera-
tions (max_gen ¼ 15) than case 2. The GA in case 1 con-
verges faster to the maximum fitness value (after the seventh
generation) than case 2. The GA in case 2 can improve the fit-
ness value, but takes a longer time. The behavior of the GA in
case 1 and case 2 are shown in Figure 10. The experimental
results of the GA in the short run are provided in Table 11.

One advantage of case 2 is the ability for generating art
forms with higher variety and creativity. Notice that case 2
has a higher variation of the computed aesthetics, a higher

Fig. 10. The behavior of the genetic algorithm in cases 1 and 2.
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run time, and a higher improvement ratio. These results imply
that case 2 is less consistent than case 1, because there is more
randomness in the process; this event provides the emergent
property to produce unpredictable forms. The experimental
results of the GA are summarized in Table 10.

7. CONCLUSIONS AND FUTURE WORK

A GA and an algorithmic aesthetics for interactive design
were developed. These two parts are combined together
into an aesthetically driven evolutionary design system to
support users for creating artistic forms during design.

7.1. GA

The efficiency of the GA is measured by productivity and
diversity of the solutions. Users can interact with the system
in three stages: process initialization by input specifications
and their preferences, individual selection for the next genera-
tion, and process termination. Mutation and crossover work
as sources of diversity that are applied to a population to
reproduce a new set of individuals. The factorial experiments
are used to analyze the effects of genetic control parameters:
mutation probability, crossover probability, and population
size. Parametric study is used in optimizing these parameters.
We obtain the best set of the parameters for the GA that
preserves diversity and aesthetics of art forms, and at the
same time, minimizes the processing time.

7.2. Algorithmic aesthetics

The algorithmic aesthetics is based on universal aesthetics
principles. It is validated by well-known theories of human
perception and aesthetics, mathematical foundations, survey,
and popular long-lasting forms. The morphological and aes-
thetic algorithms are used for automatic aesthetic evaluation
in a two-step fitness function.

The two-step fitness function evaluates morphology and
aesthetics of the art forms. The first-step fitness function
eliminates unfit forms based on their morphologies, and
only the good forms can pass to the aesthetic fitness test.
This approach reduces the processing time. The total time
used in the design process is reduced by about 80%. Because
the designs are generated by computer in electronic formats,

the prototypes then can be produced faster by CNC and RP
machines.

7.3. Contributions

The outcomes of the research contribute to several fields: AI
in design, design study, and aesthetic computing, especially
for nonfunctional design. The morphological and aesthetic
algorithms are also applicable for other industrial product
designs such as the ornamental parts for watches, tableware,
furniture, architecture, and so forth. The ornamental parts
have influences on human emotion and product attractive-
ness. They essentially identify the concepts, characters, and
styles of products. These can be expressed via forms, curves,
lines, symbols, and logos.

7.4. Future works

Schaefer et al. (2005) prove that curves and surfaces can be
modeled as fractals, showing ways to extend our work to
artistic functional design. Wannarumon et al. (2004) classify
the styles of jewelry that can be extended to develop stylistic
fitness function.

It is possible to develop an individual’s stylistic algorithm
for any designer by collecting data when they are selecting the
designs during the process. We then could use these data to
develop the stylistic algorithms for their special fitness
functions. Other criteria that should be taken into account
in design evaluation are color and manufacturability.
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