
Journal of Tropical Ecology

www.cambridge.org/tro

Research Article

Cite this article: Souza-Oliveira AFde, Bruzzi
Lion M, Venticinque EM, and Garda AA (2025).
Landscape and microhabitat structure dictate
lizard diversity in semiarid in Caatinga. Journal
of Tropical Ecology. 41(e7), 1–12. doi: https://
doi.org/10.1017/S0266467425000069

Received: 14 May 2024
Revised: 8 December 2024
Accepted: 13 March 2025

Keywords:
Topography; heterogeneity; squamata; dry
forest; habitat amount; conservation; rocky
outcrop; community structure

Corresponding author:
Marília Bruzzi Lion;
Email: marilialion@gmail.com

© The Author(s), 2025. Published by Cambridge
University Press

Landscape and microhabitat structure dictate
lizard diversity in semiarid in Caatinga

Alan Filipe de Souza-Oliveira1,2, Marília Bruzzi Lion3,4 ,

Eduardo Martins Venticinque5 and Adrian A Garda2

1Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Universidade Federal do Rio Grande do
Norte, Campus Universitário, Lagoa Nova, 59078-900, Natal, RN, Brazil; 2Laboratório de Anfíbios e Répteis,
Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa
Nova, CEP 59078-900, Natal, RN, Brazil; 3Departamento de Ecologia, Universidade Federal de Goiás, Campus
Universitário Samambaia, 74690-900, Goiânia - GO, Brazil; 4Programa de Pós-Graduação em Ecologia e Evolução,
Universidade Federal de Goiás, Campus Universitário Samambaia, 74690-900, Goiânia, GO, Brazil and
5Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova,
59078-900, Natal, RN, Brazil

Abstract

Species abundances and richness are central parameters in ecology and crucial for describing
diversity and composition across environments. Understanding how they vary in natural
environments is critical for informed conservation decisions, especially in the face of
anthropogenic pressures, such as deforestation and climate change. We evaluate the influence
of landscape and local habitat variables on the richness and abundances of lizards in the
Caatinga, the largest continuous block of seasonally dry tropical forests. We sampled seven
lizard communities for three months using visual encounters along transects. We recorded
landscape and microhabitat variables and evaluated their influence on lizard species richness,
diversity, and occurrence using model selection. Ten lizard species were recorded, with
Tropidurus semitaeniatus, Ameivula ocellifera, and Tropidurus hispidus being the most
abundant. Topographic complexity and the number of rocky outcrops positively affect species
richness and diversity by promoting environmental heterogeneity and hence increasing refuges,
shelters, and thermoregulation sites. Different microhabitat and landscape variables were
important predictors of the occurrences of individual lizard species. The quantity of rocks
significantly increased the likelihood of Tropidurus semitaeniatus occurrence, while litter
negatively affected Tropidurus hispidus, and fallen logs increased the probability of Ameiva
ameiva occurrence. We argue that preserving topographically complex regions is essential for
maintaining the diversity of lizards in the Caatinga biome.

Introduction

Species richness and abundances are central parameters for ecology, crucial for measuring
biodiversity and species composition of any given site (Magurran, 2004). Such information is
paramount to understand community interactions because composition and diversity influence
relationships among species and their interactions with the surrounding landscape (Morin,
2011). Richness and composition data can also support conservation decisions to defray threats
to habitats and landscapes that species use (Robinson, 2006).

Changes in natural landscapes can affect species diversity, benefiting or harming some
groups according to their relationships with these environments and landscape structure
(Fahrig, 2003; Gardner et al., 2007). These modifications may interfere dramatically in various
aspects of an organism’s biology, such as interspecific interactions and distribution patterns
(Magrach et al., 2014). Landscape fragmentation, along with topographic complexity and
proportion of forested area can, for example, increase richness of birds adapted to altered
environments and decrease endemic species within the forest (Davies et al., 2007; Martinez-
Morales, 2005), and the same has been shown for lizards and amphibians (Cabrera-Guzmán and
Reynoso, 2012; Leavitt and Fitzgerald, 2013). Furthermore, the conversion of forest areas into
agriculture landscapes can significantly alter the structure and dynamics of a lizard community
(D’Cruze and Kumar, 2011), and when this happens within elevation gradients, they may affect
species richness in different groups (Qian, 2010). Similarly, habitat loss promoted by anthropic
alterations decreases diversity of amphibians by limiting the persistence of species that depend
on different habitat types in larval stages, for example (Becker et al., 2007; Becker et al., 2010),
but also due to influences in species interactions in general (Fagan et al., 1999).

Habitat changes inherent to degradation caused by human activities can significantly
influence diversity through changes in species richness and abundance patterns (D’Cruze and
Kumar, 2011; Nogueira et al., 2005; Vitt et al., 2007; Zeng et al., 2014). This is in fact the main
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cause of biodiversity loss worldwide (Sala et al., 2000), and
therefore understanding the impact of such changes is critical for
conservation strategies. Habitat variables, for example, may be
more important to explain species distribution than species
phylogenetic relationships (Garda et al., 2013). In addition, habitat
heterogeneity can also contribute to explain patterns of species
richness, abundances, and composition, whether due to a high
diversity of vegetation types (Nogueira et al., 2005) and/or through
structural factors of the environment itself (Vitt et al., 2007).

Lizards have been used as ecological models in studies that
tested and proposed theories on population, community, and
foraging ecology (Pianka and Vitt, 2003; Vitt and Pianka, 1994).
However, research on the responses of this group to changes in
landscape and habitat structure is limited in comparison to other
terrestrial vertebrates (Gardner et al., 2007). Habitat variables such
as quantity of fallen logs, burrows, litter, rocky outcrops, vegetation
cover, and density were shown to affect the occurrence of certain
species and hence richness and abundances of lizard in each
community (Garda et al., 2013;Michael et al., 2008; Nogueira et al.,
2005; Vitt et al., 2007). Indeed, these habitat variables provide
refuges, reproductive and foraging sites, and places for thermo-
regulation. Also, as in other terrestrial vertebrate groups (Davies
et al., 2007; Martinez-Morales, 2005), landscape characteristics
such as topographic complexity, altitude, and canopy cover can
influence richness and abundance parameters (Qian, 2010).
However, such effects can vary among biomes, and the variables
most influencing lizard richness and abundances in Amazonia
(Garda et al., 2013) do not influence communities in more open
areas, such as the Cerrado (Nogueira et al., 2005) and in Caatinga
(Cavalcanti et al., 2023; Werneck et al., 2009).

Research on lizard diversity consistently highlights the impor-
tance of topographic heterogeneity and environmental complexity.
Pianka (1967) identified spatial heterogeneity, particularly in
vegetation, as a crucial factor determining lizard species diversity
inNorthAmerican deserts. This finding is supported bymore recent
global studies, which demonstrate positive effects of topographic
complexity on lizard species richness across various clades (Skeels
et al., 2020). Environmental factors such as temperature and
productivity also play significant roles in shaping lizard assemblages
(Skeels et al., 2020). Ashman (2018) found that rock-dwelling lizards
in topographically complex areas tend to have smaller geographic
ranges compared to widespread generalist species. While ecological
opportunity can drive diversification, evidence suggests that
environmental heterogeneity and refugial dynamics may be more
important in elevating lineage diversity (Ashman et al., 2018). These
studies collectively emphasize the complex interplay between
topography, environmental factors, and ecological traits in
determining lizard diversity patterns.

The Caatinga is a seasonally dry tropical forest typical of the
semiarid region of northeastern Brazil, with average annual rainfall
of 240–900 mm, occurring mostly over three months a year, but
highly unpredictable (Santos et al., 2011). The Caatinga Region
harbours several vegetation types, such as deciduous dry forests,
highland rocky outcrops, Cerrado savannas, and humid enclaves
(Araujo et al., 2022). It is one of the most threatened biomes in
Brazil, where deforestation and fragmentation induced by
agriculture and firewood extraction are the main causes of
landscape alteration (Antongiovanni et al., 2018; Fonseca et al.,
2017; Leal et al., 2005; Silva et al., 2017). Despite this, the Caatinga
vegetation presents a great variety of physiognomies throughout
its distribution, which accounts for a high environmental
heterogeneity (Araujo et al., 2022; de Queiroz et al., 2017;

Fernandes et al., 2022). This fact, combined with diverse climatic
conditions along its distribution, allows high vertebrate diversity
and endemism (Fernandes and Queiroz, 2018; Garda et al., 2018).

Squamates are one of the most diverse tetrapod groups with
some of the highest rates of endemism in the biome (Garda et al.,
2018; Guedes et al., 2014a; Uchôa et al., 2022). The Caatinga lizard
fauna is richer and more endemic than previously thought, with
93 species identified, 53% of which are endemic, mainly associated
with unique habitats like paleoclimatic dunes (Mesquita et al.,
2017; Uchôa et al., 2022). The highest species richness occurs in the
biome’s marginal areas, while nuclear regions show lower diversity
(Mesquita et al., 2017). However, significant gaps in the knowledge
of lizards within the Caatinga biome remain, as half of the area, or
70% of itsmunicipalities, lacks lizard sampling (Uchôa et al., 2022).

Climatic conditions have been implicated in the patterns of
species richness in this environment for this group (de Oliveira and
Diniz-Filho, 2010), although this relationship has not been fully
tested after the significant refinement of species distribution data
recently published (Guedes et al., 2014a; Uchôa et al., 2022).
Environmental heterogeneity significantly influences lizard com-
munities in seasonally dry forests like the Caatinga. More
heterogeneous environments with diverse plant structures support
higher lizard richness and abundance due to increased micro-
habitat availability (da Silva et al., 2020). Factors such as canopy
cover, temperature, understory density, and vegetation characteris
tics positively affect lizard occurrence (da Silva et al., 2020).

Conversely, the main factors increasing extinction risks for
Squamata worldwide are agriculture and the use of natural
biological resources (like wood extraction, Bohm et al., 2013),
which are also the main threats to Caatinga (Antongiovanni et al.,
2020; Melo, 2017). Furthermore, habitat loss, combined with
climate change, is among the main threats to biodiversity
worldwide. The unique and extreme climatic conditions of the
Caatinga, combined with its high biodiversity, make this ecosystem
extremely vulnerable to climate change (de Oliveira et al., 2012; de
Oliveira and Diniz-Filho, 2010), like other desertic and xeric
biomes (Li et al., 2018). Indeed, it has recently been considered the
Brazilian biome most threatened by climate change (Maksic et al.,
2022; Torres et al., 2017).

This work aims to evaluate the influence of landscape and
habitat variables on lizard assemblages in the Caatinga. We
specifically address the following questions: (i) Do microhabitat
variables influence parameters of richness and diversity of lizard
species in the Caatinga? (ii) Will changes in the Caatinga
landscape, in its vast majority inherent to human actions (Melo,
2017), negatively affect these same parameters for lizards? As these
changes have been shown to be the main causes of biodiversity loss
in this group (Bohm et al., 2013), we expect to contrast its relative
importance with microhabitat aspects.

Materials and methods

Study area

The work was conducted between April and August 2014 in seven
Caatinga areas located in the state of Rio Grande do Norte, in
northeastern Brazil, which were on average 57 km apart (Figure 1).

These areas show short, unpredictable periods of rainfall and
great dry periods (Prado, 2003). Geomorphologically, it presents
shallow and stony soils, with many rocky outcrops and peculiar
reliefs with interplanaltic regions (Ab’Saber, 1977), as well as peaks
of altitudes varying between 500 and 800 m in Northern Sertaneja
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Depression ecoregion and 150 and 850 m on the Borborema
Plateau, northeastern portion of the Caatinga biome (Figure 1)
(Velloso et al., 2002).

Sampling

The sampling was based on visual encounter surveys (Crump and
Scott, 1994). We used 150-metre-long transects, which were each
standardly surveyed for one hour. Each transect was at least 200 m
apart to avoid possible false replication of the same individual. In
each of the seven sampled areas, between two and nine transects
were randomly distributed, totalling 46 transects. This method-
ology is already widely used in research on herpetofauna in tropical
rainforests (Amazon rainforest) and has been shown to be more
efficient than other traditional methods, such as pitfalls and funnel
traps, for certain species (Doan, 2003; Rödel and Ernst, 2004).
However, for seasonally dry forests, such as the Caatinga, this
method has not yet been used. Species were recorded when
observed on the trail or at a distance up to 15 m perpendicular to
the transect line for both sides and within the standardized period.

Samplings were conducted in the period between 07:00 and
13:00 hours, always through two transects per day. Individuals
were not collected, only recorded when observed. On each transect,
at the end of the one-hour observation period, active searches were
made with a rake along three 3 × 4 m plots, which were located
every 50 m on the trail. This complementary method was carried
out to increase the chances of identifying fossorial and semi-
fossorial habit species and leaf litter specialists.

Predictor variables

We characterized landscape structure of each area in ArcGIS® using
the Caatinga databases available (MMA, 2011), measuring the
following three variables: (1) percentage of Caatinga, correspond-
ing vegetation cover in a 1000 m radius buffer around the transect
starting point; we also characterized landscape structure in terms
of topographic elements in each of the seven areas; (2) altitude,
corresponding to elevation, in metres, of the transect point

obtained from the Shuttle Radar Data Topographic Mission of
90 m and 1 m horizontal and vertical resolutions, respectively;
and (3) topographic complexity, measured as the standard
deviation of the altitude of pixels present in a 1000 m radius
buffer around the transect starting point (raw data for the
landscape predictors are presented in Supplemental Table S1).

Furthermore, for each transect, we characterized microhabitat
using six variables: (1) amount of leaf litter (cm), measured as litter
depth at five sampling points within a 0.5 × 0.5 m quadrat every 50
m along the trail; (2) number of fallen logs, as the number of logs
(>5 cm diameter) on the ground along the transect up to 5m on each
side of the transect; (3) number of burrows, up to 5m on each side of
the transect; (4) number of rocks, as the number of rock outcrops
distant up to 10 m on each side of the transect. For this variable, as
there were transects on top of large limestone outcrops, where
ground is just rock, a ranking of classes was created, ranging from
0 to 4, as follows: 0 – no rock, 1 – little rock (less than two outcrops
counted), 2 – intermediate (between three and four outcrops
counted), 3 – a lot of rock (more than five outcrops counted), and
4 – ‘lajedo’ (above eight outcrops, the maximum number before
considering the area a ‘lajedo’); (5) plant density, as the number of
trees with DAS (diameter at soil height)≥ 5cm within a 10 × 20 m
plot; and finally, (6) herbaceous plant cover, consisting on a visual
estimate of the percentage of vegetation cover at ground level in a plot
of 10 × 20 m, varying at intervals of 10%. Such variables were listed
for their biological importance for reptiles for being essential for
thermoregulation, reproduction, and as a refuge from predators, for
example. Mean and standard deviation values from predictors used
in representing each sampled area are in Supplemental Table 3.
Before the analyses, all variables were transformed into Z scores, thus
eliminating any statistical bias related to differences between their
measurement units.

Statistical analyses

Species richness and diversity
We constructed rank abundance curves to represent the propor-
tional abundance of species in each area (Figure 2). We used the

Figure 1. Transects distributed in the seven sampling areas in Rio Grande do Norte state, in relation to (A) altitude and (B) Caatinga remnants and its ecoregions: (1) Cerro Corá,
(2) Lajes, (3) Caiçara do Norte, (4) Santana do Matos, (5) Serrinha dos Pintos, (6) Martins, and (7) Felipe Guerra.
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‘BiodiversityR’ R package (Kindt and Coe, 2005). Rank abundance
curves also help clarify community structure in sampled areas.

To test the influence of the three landscape predictors
(percentage of Caatinga, landscape complexity, and mean altitude)
and the six microhabitat predictors (amount of leaf litter, number
of fallen logs, number of burrows, number of rocks, plant density,
and herbaceous plant cover) on lizard richness and diversity,
we used multiple linear regressions. For richness, the logarithm
with base 10 of species richness plus one for each transect was
considered the dependent variable. To contrast predictors’ relative
strength, we standardized them (Z scores), using the R base
function ‘scale’. For species diversity, we used Hill numbers order
q= 1, which corresponds to the exponential of Shannon’s entropy
index (Jost, 2006) as the dependent variable. We used the function
‘hill_taxa’ in the R package ‘hillR’ to estimate Hill numbers
(Li, 2018).

Two of the 46 transects were extreme outliers in terms of the
percentage of remaining Caatinga. Therefore, we remove these
transects from multiple linear models predicting species richness,
diversity, and species probability of occurrence. We then checked
correlations between predictor variables using a Pearson correla-
tion matrix in the corrplot R library (Wei and Simko, 2021). The
highest correlation was between topographic complexity (named
as Rugosity in models) and altitude (rPearson= 0.67), followed by
number of trees and altitude (rPearson= 0.40). All other predictors
had low correlation coefficients (Supplemental Figure S1).

Then, we defined all models a priori, according to their
importance for the species’ biology and, therefore, representing
biological hypotheses. In total, 19 models were built to predict
separately species richness and diversity (Tables 1 and 2): simple
models, composed of only one variable, and multiple models, with
two ormore variables combined, and a null model with no variable.

We ranked models using the second-order Akaike information
criterion (AICc), which favours more parsimonious models
throughmaximum likelihood penalized by the number of variables
used in the model’s composition (Burnham and Anderson, 2002).
Models were also ranked by ΔAICc (the difference between AICc
of the best model and other models) and wAICc, which represents
the proportional weight of each model, that is, how representative
the contribution of a model is. These values were used to identify
and select models that contributed the most to explain lizard
species richness, with those with ΔAICc less than or equal to two
(ΔAICc ≤ 2) considered substantially supported. We used the
‘AICcmodavg’ R package to perform this model selection
(Mazerolle, 2023).

Probability of occurrence
To test the influence of landscape structure and microhabitat
variables on each species occurrence, we used logistic regressions.
In this approach, we considered only the seven species that
occurred in five or more of the 44 sampled transects. We first
constructed a global model including all three landscape
predictors and all six microhabitat predictors. We then
considered all possible combinations of predictor variables
(512 models) to account for potential species-specific responses.
Subsequently, we generated the averaged model considering the
accepted models (ΔAICc ≤ 2), using the MuMIn R package
(Barton, 2024). To evaluate predictors’ relative influence on
species occurrences, we contrasted predictors’ coefficients and
adjusted errors and their relative importance (normalized sum of
Akaike weights in accepted models). Residuals from all linear
models (predicting species richness, diversity, and probability of
occurrence) were checked for normality and homoscedasticity
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Figure 2. Rank abundance curves for lizards sampled in the seven areas. Abundances are proportional abundances (species abundance/total area abundance). We present
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using the ‘DHARMa’ R package (Hartig, 2022). We also
confirmed the absence of spatial autocorrelation in all accepted
models’ residuals using the function ‘Moran.I’ from the ‘ape’
R package (Paradis and Schliep, 2019).

Results

We recorded 271 individuals belonging to 10 species of lizards
(Supplemental Table S2) over a period of three months of
fieldwork: 259 sighted along transects and 12 during active
searches. The most abundant species were Tropidurus semi-
taeniatus with 86 individuals, followed by Ameivula ocellifera with
70 and Tropidurus hispidus with 49 individuals. We covered 6,900
m of Caatinga in 46 hours of observations on trails and 690
minutes of active searches in 27,600 m2 of Caatinga.

Species proportional abundances

Tropidurus semitaeniatus was the most abundant species in
Serrinha dos Pintos, Felipe Guerra, and Martins, while Ameivula
ocellifera was the most abundant in Santana dos Matos, Caiçara,
and Lajes (Figure 2). Lygodactylus klugei was the most abundant
species in Cerro Cora. This area presented greater evenness in

species abundances when compared with the other sampled
locations.

Species richness and diversity

Among the 19 models constructed to predict richness, two
presented ΔAICc values lower than two (Table 1; Figure 3),
demonstrating substantial support to explain richness variation
between transects. The first model contained a single variable,
topographic complexity. The second accepted model contained
topographic complexity plus the number of rocks. Together, these
models accounted for 78% of the cumulative Akaike weight:
topographic complexity (wAICc = 0.51) and topographic com-
plexity plus number of rocks (wAICc = 0.27). Both predictors had
positive coefficients (Figure 3), which indicates that lizard species
richness was higher with increasing topographic complexity
(coefficient = 0.072 ± 0.024; P= 0.004; R2= 0.18) and with the
number of rocky outcrops present in the habitat (coefficient = 0.
045 ± 0.025; P= 0.086; R2= 0.07).

Only onemodel was selected to predict species diversity (Table 2;
Figure 4). This model contained just topographic complexity as
predictor, which was positively related to species diversity
(coefficient= 0.420 ± 0.142; P= 0.005; R2= 0.17) and accounted
for 51% of the Akaike weight (Table 2).

Table 1. Candidate models constructed according to biological importance for species richness in the multiple linear regression. Models are ordered by Akaike
weights. Acronyms stands for: K – number of parameters in the model; AICc – second-order Akaike criterion; ΔAICc – difference between the lowest and the other
values of the Akaike;w and cum.w – are, respectively, Akaikemodel weight and cumulativeweight; LL –model log-likelihood. Predictors were:Rugosity – topographic
complexity, measured as the standard deviation of the altitude of pixels present in a 1000 m radius buffer around the transect starting point; Altitude – elevation, in
metres; Caat% – percentage of Caatinga, corresponding vegetation cover in a 1000 m radius buffer around the transect starting point; Lliter – amount of leaf litter
(cm); Logs – number of fallen logs; Burrows – number of burrows; Rocks – the number of rocky outcrops; Trees – plant density, as the number of trees; Herb% –
herbaceous plant cover

Models K AICc ΔAICc w cum.w LL R2

Rugosity** 3 −33.44 0 0.51 0.51 20.02 0.18

Rugosity*þRocks 4 −32.15 1.3 0.27 0.78 20.59 0.2

Rocks 3 −28.02 5.42 0.03 0.81 17.31 0.07

Altitude 3 −27.94 5.5 0.03 0.84 17.27 0.07

Caat% 3 −27.35 6.09 0.02 0.87 16.97 0.05

null 2 −27.2 6.24 0.02 0.89 15.75 0

Burrows 3 −27.15 6.29 0.02 0.91 16.88 0.05

Logs 3 −26.47 6.97 0.02 0.93 16.54 0.04

Lliter 3 −25.82 7.62 0.01 0.94 16.21 0.02

Herb% þ Rocks 4 −25.81 7.63 0.01 0.95 17.42 0.07

Herb% 3 −25.11 8.33 0.01 0.96 15.85 0.005

Trees 3 −25.03 8.41 0.01 0.97 15.82 0.003

Llitter þ Logs 4 −24.92 8.52 0.01 0.97 16.97 0.05

Caat% þ Herb% þ Rocks 5 −24.9 8.54 0.01 0.98 18.24 0.11

Logs þ Llitter þ Burrows 5 −24.66 8.78 0.01 0.99 18.12 0.1

Caat% þ Llitter þ Logs 5 −23.99 9.45 0 0.99 17.78 0.09

Caat% þ Llitter þ Logs þ Burrows 6 −23.02 10.42 0 0.99 18.64 0.12

Caat% þ Herb% þ Trees 5 −22.88 10.56 0 1 17.23 0.07

Herb% þ Trees 4 −22.82 10.62 0 1 15.92 0.01

Caat% þ Rugosity* þ Altitude þ Rocks þ Herb% þ Llitter þ Logs þ Burrows þ trees 11 −17.54 15.9 0 1 23.89 0.31

** 0.001< P <0.01; *0.01< P <0.05.
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Probability of occurrence

As anticipated, various predictors exerted influence on species
occurrences (refer to Table 3 for details). Among the seven species
under consideration, microhabitat variables emerged as primary

influencers for five species, as indicated by highlighting in orange
within Table 3. Conversely, one species, Ameivula ocellifera, had a
landscape predictor as a main factor influencing its occurrence
(green in Table 3). While for another species, Gymnodactylus
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Figure 3. Relationship between species richness and (A) topographic complexity, measured in a buffer of 1 km surrounding each transect (coefficient= 0.072 ± 0.024; P= 0.004;
R2= 0.18), and (B) with the number of rocky outcrops present in the local habitat (simple model: coefficient = 0.045 ± 0.025; P= 0.086; R2= 0.07). The dashed line represents a
marginally significant coefficient.

Table 2. Candidate models constructed according to biological importance for species diversity, measured as Hill numbers order q= 1, in the multiple linear
regressions. Models are ordered by Akaike weights. Acronyms are the same as in Table 1

Models K AICc ΔAICc w cum.w LL R2

Rugosity** 3 122.87 0 0.51 0.51 −58.14 0.17

Rugosity**þRocks 4 125.26 2.38 0.16 0.67 −58.12 0.17

Altitude* 3 126.03 3.15 0.11 0.77 −59.71 0.11

Trees 3 127.89 5.02 0.04 0.81 −60.65 0.07

Burrow 3 128.66 5.79 0.03 0.84 −61.03 0.06

Caat% 3 128.68 5.81 0.03 0.87 −61.04 0.06

null 2 128.95 6.08 0.02 0.89 −62.33 0

Logs 3 129.53 6.65 0.02 0.91 −61.46 0.04

Herb% þ Trees 4 130.1 7.23 0.01 0.93 −60.54 0.08

Rocks 3 130.26 7.38 0.01 0.94 −61.83 0.02

Caat% þ Herb% þ Trees 5 130.61 7.74 0.01 0.95 −59.52 0.12

Lliter 3 130.65 7.77 0.01 0.96 −62.02 0.01

Herb% 3 131.08 8.2 0.01 0.97 −62.24 0.004

Logs þ Llitter þ Burrows 5 131.34 8.47 0.01 0.98 −59.88 0.11

Llitter þ Logs 4 131.39 8.52 0.01 0.98 −61.18 0.05

Caat% þ Llitter þ Logs 5 132.09 9.21 0.01 0.99 −60.25 0.09

Herb% þ Rocks 4 132.49 9.61 0 0.99 −61.73 0.03

Caat% þ Llitter þ Logs þ Burrows 6 132.82 9.95 0 1 −59.28 0.13

Caat% þ Herb% þ Rocks 5 133.18 10.31 0 1 −60.8 0.07

Caat% þ Rugosity* þ Altitude þ Rocks þ Herb% þ Llitter þ Logs þ Burrows þ trees 11 140.66 17.79 0 1 −55.21 0.28

** 0.001< P <0.01; *0.01< P <0.05.
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geckoides, both landscape and microhabitat variables were
important predictors.

For Tropidurus semitaeniatus, the most important predictor
was the number of rocky outcrops at the transects: the more rocks,
the higher the probability of this species occurrence. For
Tropidurus hispidus, the amount of fallen logs and leaf litter
appeared in all models selected: while the former positively
influenced species occurrences, the latter was the opposite.
The number of burrows and fallen logs both had maximum
importance in explaining Ameiva ameiva occurrences. While the
number of logs increased the probability of species occurrence, the
number of burrows decreased it. The percentage of herbaceous
plant cover was positively related to Vanzosaura multiscutata
occurrences, while Lygodactylus klugei occurrences were negatively
related to the number of burrows in transects. For Gymnodactylus
geckoides, landscape and microhabitat predictors both appeared in
all selected models and had maximum importance: Caatinga
percentage and altitude were positively related to species
occurrences, while local herbaceous cover percentage was
negatively related to it. Lastly, for Ameivula ocellifera, in contrast,
a single landscape variable was the most important one: the
percentage of Caatinga was negatively related to this species
occurrence.

Discussion

Topographic complexity and rocky outcrops positively affected
species richness, supporting our initial hypothesis that variables at
both local and landscape levels would influence species richness in
lizard communities. These variables were included when con-
structing our models because they were considered proxies of
refuges for species. Indeed, they significantly contribute to
environmental heterogeneity, given that topographic complexity
and biodiversity are intimately correlated (Badgley et al., 2017).
In the Caatinga, this pattern is clear for plant diversity, which is
correlated with topographic characteristics such as slope and
elevation (Silva and Souza, 2018). These characteristics influence
phytophysiognomic diversity by modifying environmental
conditions and allowing several plant species that have their

own environmental preferences (Fernandes et al., 2022; Silva and
Souza, 2018). Likewise, high altitude areas have been implicated in
high species richness of amphibians (Camardelli and Napoli,
2012; Garda et al., 2017), lizards (Uchôa et al., 2022), snakes
(Guedes et al., 2014b), and birds (Davies et al., 2007; Rahbek and
Graves, 2001).

It is important to notice that topographic complexity was a
stronger variable associated with species richness than rocky
outcrops: the model containing only the first variable has around
double the Akaike weight compared to the second model
containing both variables (0.51 and 0.27, respectively). High
topographic complexity possibly offers micro-refugia during
periods of climatic fluctuation reducing extinction risks and
may also increase speciation (Badgley et al., 2017). Moreover, local
rupicolous conditions are more likely to be present if topographic
complexity is high, while the positive relationship between rocky
outcrops and species richness is well reported in the literature
(Croak et al., 2008; Michael et al., 2008). At the microhabitat scale,
the presence of rocky outcrops provides shelter and thermoregu-
lation sites, and even small outcrops can also contribute to local
habitat heterogeneity (Croak et al., 2008).

The higher richness in topographically complex environments
with more rocky outcrops can also be influenced by their lower
susceptibility to land use conversion (Nogués-Bravo et al., 2008).
In the Caatinga, a higher rate of conversion and land use in
topographically less complex areas (low and flat) and with less
stony soils leads to natural communities with impoverished
diversity (Silva and Barbosa, 2017). These relationships have been
documented in several mountainous regions of the world (Qian,
2010) and also reported as threats to biodiversity through the
loss of natural forests of these regions for agriculture (Yamaura
et al., 2011). Although we did not measure different land uses,
topographically more complex areas are more costly for crop
cultivation and conversion to agriculture (Yamaura et al., 2011)
and are usually the last option for such purposes. This trend has
been reported for Caatinga species diversity (Silva et al., 2014; Silva
and Barbosa, 2017), where better environmental conditions in
higher altitudes, along with a lower susceptibility to agropastoral
activities, allow greater species richness. In this way, these regions
guarantee better quality habitats for species; besides the intrinsic
heterogeneity these environments provide, they are usually less
converted to human use.

Species diversity, encompassing variation in species richness
and evenness, was primarily influenced by topographic complex-
ity. Our findings align with recent global analyses demonstrating a
positive effect of topographic complexity on lizard diversity across
various clades (Skeels et al., 2020). Similarly, topographic variables
have been shown to play a key role in explaining reptile occupancy
in hilly landscapes in Australia (Michael et al., 2017). Notably,
although themodel containing only altitude was not selected under
the Akaike information criterion, it exhibited a significant positive
coefficient. As discussed, topography can influence local factors
such as microhabitat heterogeneity, the availability of rock
outcrops, and deforestation patterns while also affecting temper-
ature. Higher altitudes typically experience milder temperatures,
and in hot and dry regions like the Caatinga, the temperature
reduction with altitude may provide a broader range of suitable
thermal conditions for lizard thermoregulation. Combined with
the increased habitat heterogeneity in areas with complex
topographies (Ashman et al., 2018), this could explain the higher
diversity observed in regions with greater altitude and topographic
complexity.

1

2

3

4

5

−1 0 1 2
Topographic complexity (standardized)

Sp
ec

ie
s 

di
ve

rs
ity

 (H
ill 

nu
m

be
r q

1)

Figure 4. Relationship between species diversity and topographic complexity,
measured in a buffer of 1 km surrounding each transect (coefficient= 0.420 ±
0.142; P = 0.005; R2= 0.17).
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Table 3. Averaged models explaining species occurrences. Only species with five or more occurrences were modelled. Numbers correspond to the predictor’s coefficients ± adjusted standard errors. The numbers in
parentheses are the relative importance of the corresponding predictor (normalized variable sum of weights in selected models). Predictors of maximum importance (value of one) are shown in bold. Predictors were:
Rugosity – topographic complexity, measured as the standard deviation of the altitude of pixels present in a 1000 m radius buffer around the transect starting point; Altitude – elevation, in metres; Caat% – percentage of
Caatinga, corresponding vegetation cover in a 1000m radius buffer around the transect starting point; Llitter – amount of leaf litter (cm); Logs – number of fallen logs; Burrows – number of burrows; Rocks – the number of
rocky outcrops; Trees – plant density, as the number of trees; Herb% – herbaceous plant cover. Species for which microhabitat variables were more influential are highlighted in orange, whereas those for which landscape
variables played a more significant role are highlighted in green

Landscape Microhabitat

Rugosity Caat% Altitude Rocks Burrows Logs Trees Herb% Lliter

Tropidurus semitaeniatus 0.982 ± 0.587 0.694 ± 0.662 −0.964 ± 0.621 1.224 ± 0.535* −0.937 ± 0.725 −0.506 ± 0.477 −0.818 ± 0.477 0.731 ± 0.485

(0.73) (0.23) (0.28) (1) (0.32) (0.09) (0.66) (0.4)

Tropidurus hispidus 0.439 ± 0.364 0.297 ± 0.432 0.291 ± 0.388 −0.313 ± 0.389 0.798 ± 0.442 −0.997 ± 0.441*

(0.22) (0.14) (0.14) (0.15) (1) (1)

Ameiva ameiva 0.553 ± 0.699 −4.522 ± 2.939 1.518 ± 0.682* 0.454 ± 0.635

(0.23) (1) (1) (0.22)

Vanzosaura multiscutata 0.783 ± 0.561 0.929 ± 0.705 −1.196 ± 0.771 1.042 ± 0.666 1.769 ± 1.142 1.750 ± 1.333

(0.38) (0.5) (0.15) (0.84) (1) (0.49)

Lygodactylus klugei 0.338 ± 0.383 −0.364 ± 0.385 −1.242 ± 0.703 −0.278 ± 0.405 −0.608 ± 0.398

(0.21) (0.23) (1) (0.1) (0.56)

Gymnodactylus geckoides −1.367 ± 1.177 11.458 ± 6.963 1.351 ± 0.874 0.869 ± 0.541 −1.168 ± 0.588 0.762 ± 0.681

(0.25) (1) (1) (0.65) (1) (0.39)

Ameivula ocellifera 0.435 ± 0.406 −1.106 ± 0.678 −0.265 ± 0.356 0.791 ± 0.522 −0.585 ± 0.397 −0.446 ± 0.367

(0.13) (1) (0.06) (0.58) (0.52) (0.32)

* P< 0.05.
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Our results suggest that microhabitat aspects play a crucial role
in species distributions. Six of the seven analysed species had
microhabitat variables selected as more important than landscape
variables in predicting their occurrences. Five of these only had
microhabitat variables as major factors shaping the probability of
occurrence, while for only two species, landscape variables
appeared as main predictors. Habitat characteristics such as rock
availability, litter, and fallen logs directly influenced lizard species
occurrences and, consequently, can affect community composition
in this Caatinga region. Specific factors like canopy cover, air and
soil temperature, understory density, and fallen trunks positively
influence lizard occurrence in the Caatinga (da Silva et al., 2020).
And similar results are already reported for lizards in other
environments such as Restinga (Dias and Rocha, 2014; Rocha et al.,
2014), Amazonia (Garda et al., 2013), and Cerrado (Nogueira et al.,
2005; Vitt et al., 2007).

However, in a seasonally dry tropical forest enclave
(Werneck et al., 2009) and in Caatinga sites (Cavalcanti et al.,
2023; Gonçalves-Sousa et al., 2019), communities were not
structured in the spatial axis of their niches. Such differences may
be inherent to the different methodologies and scales used in our
study and the previous ones. Indeed, scale and sampling method
have been directly implicated in biases in community studies with
reptiles (Gardner et al., 2007). Furthermore, given the lownumber of
studies evaluating lizard community structure in the Caatinga at any
spatial level and with any specific methodology, it is too early to
evaluate if this is a general trend or not for the Caatinga.

Two species, Tropidurus semitaeniatus and Phyllopezus
pollicaris, are known to be associated with rocky environments
(Uchôa et al., 2022; Vanzolini et al., 1980; Vitt, 1995). The logistic
regression results for Tropidurus semitaeniatus confirm this
pattern, with the number of rocky outcrops selected as the main
variable to explain the probability of occurrence of this species. In
fact, T. semitaeniatus was the most abundant species in the three
areas where rocky outcrops were more frequent: Serrinha dos
Pintos, Martins, and Felipe Guerra (see Figure 2 and Table Table
S3). This Caatinga endemic species is strongly adapted to living in
rocky outcrops (Pelegrin et al., 2017), and the importance of this
local habitat variable surpasses the contribution of landscape
elements in predicting the species occurrences.

The congeneric Tropidurus hispidus population was also more
influenced by local rather than landscape features. Its occurrence
was not associated with the number of rocky outcrops but showed a
negative relationshipwith leaf litter, indicating a preference formore
open areas over forested sites, as commonly observed for heliophilic
species. However, its positive association with fallen logs suggests
that these may serve as important microhabitat resources for T.
hispidus, potentially providing refuges and/or feeding grounds, even
in open habitats. Similarly, Ameiva ameiva, a generalist species
widely distributed across South America and commonly associated
with ecotones and disturbed areas (Vitt and Pianka, 1994), was
strongly influenced by microhabitat variables. For this species, a
positive relationship with the number of fallen logs was also
observed, which may reflect an indirect association with food
resource availability. SinceA. ameiva primarily feeds on insects such
as cockroaches, insect larvae, and termites – especially as juveniles
(Silva et al., 2003) – fallen logs might enhance prey availability and
thus play a critical role in habitat use for this species.

Vanzosaura multiscutata occurrences were also modulated
mainly by microhabitat variables, specifically the percentage of
herbaceous cover. This positive relationship suggests that
herbaceous Caatinga (in contrast with arboreal) may play an

important role in this species’ niche. The negative relationship we
found between Lygodactylus klugei occurrences and the number of
burrows was somewhat unexpected for this arboreal Caatinga
endemic species. It is possible that it reflects the habitat suitability
for its predators. Due to their small size, these lizards potentially
have a great diversity of predators, such as arthropods, other
lizards, snakes, birds, and small mammals. However, more studies
should be performed to test such a hypothesis.

For two species, Ameivula ocellifera and Gymnodactylus
geckoides, landscape variables had the main importance in
explaining occurrences. The negative relationship between
Ameivula ocellifera occurrences and the percentage of preserved
Caatinga indicates the association of this generalist heliophile
species with more open areas at the landscape scale. This contrasts
with Gymnodactylus geckoides, which was strongly associated with
the percentage of preserved Caatinga and higher altitudes at the
landscape level, and with low herbaceous cover at the local,
microhabitat level.

Conclusions

Topographic complexity had a major role in explaining patterns of
species richness and diversity among our sites. The number of
rocky outcrops was also important in explaining species richness.
Different microhabitat variables helped to explain patterns of
species occurrences, with their importance surpassing that of
landscape variables in most of the investigated species (five out of
seven). This shows that habitat and landscape structural
characteristics significantly influence lizard assemblages in the
Caatinga. Besides advancing in the comprehension of how such
variables affect lizard biodiversity in the region, our work helps
action plans and conservation strategies of species for the biome by
indicating aspects of the local and landscape scales important for
species occurrences. Considering our results, together with the
threat of the consequent global changes in this biome, we highlight
the need for conservation policies not only in topographic complex
areas but also focused on restoring agriculture-prone low-
land areas.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0266467425000069.
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