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ON STRONG NORLUND SUMMABILITY FIELDS 

BRIAN KUTTNER AND BRIAN THORPE 

1. Introduction. Let p denote the sequence \pn) and set p(z) = 2pnz
n 

wherever this series converges. (Where no limits are stated, sums are throughout 
to be taken from n = 0 to n = oo .) We use a similar notation with other letters 
in place of p. Given two sequences p, q, the convolution p*q is defined by 

n 

(P*q)n = H Pn~vq_v î 

it is familiar, and easily verified, that the operation of convolution is commu
tative and associative. We write Pn = (p*l)n (where 1 denotes the sequence {1} ), 
and take P_i to mean 0. If, for all n ^ 0, Pn ^ 0, then we define the Nôrlund 
mean (N, p) of the sequence s as <rn, where 

<rn = —— (n ^ 0) 
•F n 

and (7_i = 0. If <jn -^ X as n —> co, then 5 is said to be limitable (N, p) to the 
number X. We say s is absolutely limitable (N, p) or limitable |7V, p\ if a- is of 
bounded variation, i.e., 

(1) E k„ - (Tn-l\ < °0 

We write x = a(y) to mean that x = by for some sequence b of bounded 
variation ; thus (1) can also be written a = a ( l ) . We shall denote by o(N, p) the 
set of all sequences limitable (N, p) to zero, and by a(N, p) those which are 
limitable \N,p\. 

It follows from Toeplitz's theorem [2, Theorem 2] that necessary and 
sufficient conditions for the regularity of (N, p) are that 

(2) pn = o(\Pn\) 

and that 

(3) £ \p,\ = 0(\Pn\). 

Necessary and sufficient conditions in order that (N, p) should be absolutely 
regular (that is, that 5 = a(l) should imply that a = a ( l ) , and that {sn}, {an) 
should have the same limit) were given by M ears [5]. The conditions are (2) 
together with 

0 0 P P i 
\""* n—k -L n—k—1 (4) 

•^n -L n— 1 
S M (k = 1, 2, . . . .)• 
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NORLUND SUMMABILITY 391 

We write throughout 
n 

Sn / j &v 
v=0 

Then, following Borwein and Cass [1], we describe the sequence 5 as strongly 
summable (N, p) with index X > 0 to /z, and write sn —> /x[7V, p]\, if 

i, \pxtx\v>, - *p.t = 0(1 ,̂1), 

where w = p*a ; it is assumed that, for all n, pn ^ 0. As was pointed out in [3], 
this definition is of use only when \Pn\ —» oo as n —> oo . 

We recall that if (N, p) is regular, or absolutely regular, then p{z) is regular in 
\z\ < 1 (see, for example, [2, p. 65]). Generalising some earlier results of 
Peyerimhofr [7], Miesner [6] obtained relations between the sets o(N, p) and 
o(N, q), and between the sets a(N, p) and a(N, q), where q(z) = p(z)r(z), and 
where r(z) satisfies appropriate restrictions. Miesner's theorems are as follows. 

THEOREM A. Let r(z) = ]T r
nz

n be absolutely convergent for \z\ ^ 1, with 
r(z) ^ 0 for z = 0 and \z\ = 1, and having inside the unit circle the roots 
«i, a2j . . . , ak with multiplicities 71, 72, . . . , 7^(7* > 0). Let p{z) = JZ Pn*71 be a 
function regular for \z\ < 1, and suppose that the root at of r(z) is a root of p(z) 
with multiplicity \ t ^ Q(i = 1, . . . , k). Define q(z) = r(z)p(z). 

(i) If p satisfies conditions (2) and (3), then s Ç o(N, q) if and only if 
fc X , - + 7 i - l 

(5) Sn = tn + 2iu ai 2-J CijAn > 

( n ~\~ j \ 
J and Cij constants. 

(ii) If p satisfies the conditions (2), (3), and (4), then s G a(N, q) if and only 
if (5) holds with t G a(N, p). 

THEOREM B. Let 
m 

r{z) = P{z)k{z) = p(z) FI (« ~ £<)Xi 

m'/fe 1/3*1 = 1, jo* 5̂  1, Xj a positive integer, and where the Taylor series of p(z) is 
absolutely convergent and different from zero for \z\ ^ 1. Let p(z) be a function 
regular in \z\ < l,and put q(z) = r{z)p(z). 

(i) If p satisfies conditions (2) and (3), then s G o(N, q) if and only if 

(6) 5 = (n r^y 
where t G o(N, p) and the operator T is defined by 

(7) (7V), = - Ê t*(T~~\ 

and (T^T^t = Tfil(Tfi2t) = T V TV). 
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392 B. KUTTNER AND B. THORPE 

(ii) If p satisfies the conditions (2), (3), and (4), then s Ç a(N, q) if and only 
if (6) holds with t 6 a(N, p). 

As Miesner remarks, the case in which r(z) has some zeros on \z\ = 1 and 
some zeros in \z\ < 1 may be dealt with by combining Theorems A and B. 

The main object of the present paper is to obtain analogues of Theorems A 
and B for strong Norlund summability with index 1. However, we wish first to 
point out that Theorem B can be simplified and generalised, since it is the 
analogue of this modified version which will be given. 

2. Statement of the theorems. We have stated Theorem B with (6) in 
the form given by Miesner, but using the notation for convolution previously 
introduced, (6) can be simplified. Let 

and observe that the expression on the right in (7) is just the convolution of I 
with the sequence { — fi~l~n]. Since 

(z - p)-1 = - £ p+V for \z\ < 1, 

it is clear that I is the convolution of the sequences { — fif~l~n} *=i,...,m taken with 
the appropriate multiplicities. Thus we can write (6) more simply as 

(8) 5 = /*/. 

In this form the result can be improved. 

THEOREM 1. Let r(z) = p(z)k(z), where £ \pn\ < oo, p(z) j£ 0 for \z\ ^ 1. 
Suppose that X! \K\ < °° , that k0 ^ 0 (so that l(z) = (k(z))~1 is regular in some 
neighbourhood of the origin), and that k(l) ^ 0. Let p(z) be regular in \z\ < 1, 
and put q(z) = p(z)r(z). 

(i) If p satisfies (2) and (3), then s Ç o(N, q) if and only if (8) holds with 
t£o(N,p). 

(ii) If p satisfies (2), (3) and (4), then s Ç a(N, q) if and only if (8) holds with 
t Ç a(N,p). 

We remark that the hypotheses on k(z) are satisfied in particular when k(z) is 
a product of a finite number of terms of the form (1 — a^)Xl" with \at\ = 1, 
at T6- 1, &(\i) > 0. Thus Theorem 1 includes the extension of Theorem B to 
the case in which the zeros of k(z) on \z\ = 1 may be of fractional order. Of 
course, since the regularity (or absolute regularity) of (N, p) implies that p(z) 
is regular in \z\ < 1, the case of zeros of fractional order inside \z\ < 1 cannot 
arise and so Theorem A cannot be extended in this way. While the hypotheses 
of Theorem 1 do not exclude the possibility that k(z) might have zeros in 
\z\ < 1, this case is better dealt with by Theorem A. 

THEOREM 2. Lett (z) = 2 rnz
nbe absolutely convergent for\z\ ^ lwithr(z) 9^0 

for \z\ = 1 or z = 0, and having inside the unit circle the roots a\, a2, • . • , ak with 

https://doi.org/10.4153/CJM-1972-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-032-4


NORLUND SUMMABILITY 393 

multiplicities 71, 72, . . . , yk (> 0). Let (N, p) be regular and suppose that the root 
at of r{z) is a root of p(z) with multiplicity \ t ^ 0 {i = 1, 2, . . . , k) and that 

(9) Z \p, - p,-i\ = o(\Pn\) (p-! = 0). 

Define q(z) = p(z)r(z). Then sn —» 0 [N, q]iifand only if (5) holds with 4 —> 0 [N, p\\. 

We remark that, if (9) is not assumed, the conclusion of the theorem may be 
false even in simple cases. As an example, take 

P(z)=T
1-2; r(z) = l + 2z. 1 — z 

Thus 

_ J 1 (n even) 
qn " (2 («odd). 

Now r( —|) = 0, so that, if sn = (-2)n, then (5) holds with tn = 0. But it is 
false that {sn} is summable [N, q]i to 0. For, writing w(z) = a(z)q(z), we have 

a(2) = (1 - z)s(z) = 1 + ^ ; w(z) = ; f + ^ -

Thus ww = ( — 1)*, so that 

Ê M * o(\Qn\). 

THEOREM 3. Let r(z) satisfy the same conditions as in Theorem 1. Let p(z) 
satisfy (2) and (3), and let q{z) = p(z)r(z). Then sn —> 0 [N, q]i if and only if (8) 
holds with 4 —> 0 [N, p]\. 

We remark that the hypotheses of Theorem 3 does not imply that \Pn\ —> 00 
as n —> 00 . However, as already indicated, it is only the case in which \Pn\ —-> 00 
which is of interest. 

3. Proof of Theorem 1. If we write m{z) = p(z)k(z), then g(2) = m(z)p(z). 
By [6, Lemma 2], (N,p) regular (absolutely regular) implies that (N,m) is 
regular (absolutely regular). By a further application of this lemma we deduce 
that (N, q) is regular in Case (i) and absolutely regular in Case (ii). But, by a 
theorem of Wiener and Levy (see, e.g., [8, Volume 1, p. 246]), quoted in [6] as 
Lemma 3, it follows that the Taylor series of (p(s))-1 is also absolutely convergent 
in |s| ^ 1. It therefore follows from [6, Corollary 1] that summability (N, q) is 
equivalent to summability (N, m) (in Case (i)) and (N, q) is absolutely equi
valent to (N, m) in Case (ii). 

Thus for (i) we have to show s G o(N, m) if and only if (8) holds with / G o(N, p). 
Now 5 G o(N,m) means by definition that (m*s)n = o(\Mn\), and similarly, 
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t £ o(N, p) means (p*t)n = o(\Pn\). But translating equation (9) of [6] into our 
notation, o(|M"w|) is the same as o(\Pn\). Further, 

ni*s = (p*k)*s = p*t, 

since the hypothesis 5 = l*t is equivalent to t = k*s. Hence (i) is proved. 
For (ii) we argue in a similar way, but use equation (13) of [6] in place of 

equation (9). 

4. Proof of Theorem 2. We first prove some lemmas. The first of these is 
not, in fact, required for the proof of Theorem 2, but is given because it helps to 
indicate the scope of that theorem. It follows from it that, if \Pn\ —> co as n —» co 
(the important case), then (9) is necessarily satisfied whenever (N, p) is regular 
and absolutely regular. For the assumption that p = a(P) is weaker than (4), 
since it is equivalent to the assertion that (4) holds in the special case k = 1. 

LEMMA 1. Suppose that (N,p) is regular, \Pn\ —» oo, and that p = a(P). 
Then (9) holds. 

Proof. Let pn = BnPn, so that 

6n = a(l) ; Pn-i = Pn- Pn = P»(l - Bn) {n ^ 1). 
Hence 

£ _ i = P A _ i ( l - Bn) {n > 0), 
and 

Pn — Pn-l = Pn{Qn ~ 0w-l(l — On)} = Pni^n ~ 0n-l) + Prfin-\-

Since (N, p) is regular and \Pn\ —» oo , we clearly have 

n n 

£ | P , ( 0 F - 0_i) | = o(|PB | )and £ N | 0 , - i | = o(|P»|), 
y = l v=l 

and hence (9) holds. 

LEMMA 2. Suppose that X) W < °° > KO) ^ 0, r(l) ̂  0. Suppose that p 
satisfies (2) awd (3), and let a(z) = r(z)p(z). Then a satisfies (2) and (3), awd 

& = Pn(r(\) + o(l)). 

If, further, (9) holds, then 

(10) £ \q, - 2 _i | = o(|Q.|). 

Proof. The first part of the lemma is given by [6, Lemma 2(i)]. For the second 
part, since 

V 

qv — qv-i = J2 (Pv-k — Pv-k-i)rk, 
k=0 

we have 
n n n 

Z) |â> ~ 9.V-A ^ X) W X) |£v-* - ^ - * - l | 
y=0 k=0 v=k 

= o(|Pre|) = 0 ( | & | ) . 
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LEMMA 3. Suppose that p{z) is regular in \z\ < 1. Let \a\ < 1, a ^ 0, and 
write 

q(z) = ( l - ^)p(z). 

If q satisfies (10), then p satisfies (9). 

Proof. Since p(z) is regular in \z\ < 1, we must have q(a) = 0. Hence 

n oo 

Pn = oTn 22 Qva = — a~n ^2 Qv<*\ 
v=0 v=n+l 

and thus 

TT = - 2^ 7 p a • 

Choose 77 > 0 so that |a |( l + 77) < 1. Since (10) implies that Qn+1 ~ Qn we see 
that, provided n is sufficiently large, 

(H) \Qn+A ^ (1 + Vy\Qn\, 

for all M ^ 1. Also, for fixed /x, Qn+n/Qn —» 1 as w —> co ; and it therefore follows 
by dominated convergence t h a t 

yw M=I 1 — a 

as w —> 00 . Hence o ( |P n | ) and 0(|QW|) are equivalent. Also, since q(a) = 0, 

n 

Pn — Pn-1 = oTn X (â> — g^-l)«" 
v=0 

00 

= —a~n ^ (qv — qv-i)a 
v=n+l 

00 

= ~ X te+* — g^-i)^. 
Thus 

n 00 n 

(12) z i A . - / v - i i ^ z i«r z I?M+F - ?M+V-I|. 

Given e > 0, the inner sum in (12) does not exceed 

n+v 

X) Iff/i _ ft*-l| < *\Qn+»\, 

for all sufficiently large n + v, and hence for all v ^ 0 if n is sufficiently large. 
Again using (11), we see that for sufficiently large n, (12) does not exceed 

(13) e\Qn\ £ M ' ( l + V)'. 
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Since the sum in (13) is constant, we see that 

n 

£ \P,-P*.i\ = 0 ( | & | ) 

= o(\Pn\), 

and hence the result. 

LEMMA 4. Suppose that p satisfies (2), (3), and (9), and that p(z) has a zero of 
order A ^ Ofor z = a, where \a\ < 1. Let q(z) = (1 — z[a)p{z). Then sn —»0 [N, q]i 
if and only if, for some constant c, 

(14) sn = tn + cAn^orn, 

where tn —> 0 [N, p\\. 

Proof. Write 

p(z) = (l-^\{z), 

so that h(z) is regular \z\ < 1, and h(a) ^ 0. Suppose first that sn —> 0 [N, q\\. 
Define tn by (14) (where c is to be chosen later), and write 

n 

tn = Z ) &,. 

Then 

- r^7« r(2) - (i - z/ar1) 

1 - z/a 

where we write w(z) — q(z)a(z). Thus we are given that 

n 

Z) Kl = 0(\Qn\). 

Hence w{z) is regular in \z\ < 1 (even though a(z) may not be). We now choose 

w(a) 
(1 - a)h(a) ' 

We also write 
d(z) = E dnz

n = w(z) - c(l - z)h{z). 

Thus d(a) = 0 ; also 

(15) dn = wn — c(hn — An_i). 
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Hence 

p(z)b(z) d(z) 
1 — z/a 

co / \n n 

= - E ( f ) E <**'. 
w=0 \OL/ v=n+l 

Thus we have to show that 
n I oo I 

(16) E E V H =o(\Pn\). 

Now, by repeated application of Lemmas 2 and 3 (9) is equivalent to 

(17) È | f c , - A _ i | =o(\Hn\); 

also, noticing that o(\Hn\) = o(\Pn\) = o(\Qn\), it follows from (15) that 

£ \d,\ = o(\pn\). 

We now apply the argument to obtain (13) in Lemma 3 to get 

22 dv+ffit 
M = l 

è E i«r E I^I 

= o(\Pn\), 

and hence (16). 
Now suppose that tn --> 0 [iV, ^>]i. We know (for example, by [4, Theorem 1]) 

that (N, p) implies (N, q) ; hence, by [1, Theorem 1], [Ny p\\ implies [N, q]i ; thus 
tn ~~* 0 [iV, q]i. Thus it remains only to show that 

An^a-n -> 0 [TV, <?]!. 

But 

g(g)(l ~ *) n , u M 

so that this assertion is equivalent to 

n 

E I*, - *r-ii = o(ie»i). 

But we have already seen that o(|Çn|) is equivalent to o(\Hn\), and this is 
therefore given by (17). 

LEMMA 5. Suppose that p satisfies (2) and (3). Suppose that X) \rn\ < °° , and 
that r(z) 7* Ofor \z\ ^ 1. Let q(z) = r(z)p(z). Then [N, p\\, [N, q]i are equivalent. 
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This follows at once from the theorem of Wiener and Levy already mentioned, 
together with [1, Proposition 2 and Corollary 1], 

LEMMA 6. Suppose that X) Vn\ < °° , and that r(z) has zeros of order greater 
than or equal to 7*(y* > 0) at the points at(i = 1, 2, . . . ft), where 0 < |a^| < 1. 
Let 

r{z) = fl (l - A\(z). 
i=l \ OLi/ 

Then the expansion of ri(z) as a power series converges absolutely for \z\ ^ 1. 

This is [6, Lemma 4]. 

Proof of Theorem 2. Let 

/>*(*> = p{z) n ( I - -Y". 

It follows by repeated applications of Lemma 4 (the regularity of the relevant 
methods being ensured by Lemma 2) that sn —> 0 [N, p*]i if and only if (5) holds 
with tn—>0 [N, p]\. But we deduce from Lemmas 5 and 6 that [N, p*]^ and 
[iV, q]i are equivalent, and the theorem follows. 

5. Proof of theorem 3. We use the same notation as in the proof of Theorem 
1. By Lemma 5, [N, q]i and [N, m]i are equivalent, and hence sn —> 0 [N, q]i 
is equivalent to the assertion that 

(18) E \(m*a),\ =o(\Mn\). 

But, defining t by (8), and writing 

n 

In = / J ®vi 

we have 

w*a = (p*k)*a = p*b. 

Also, by Lemma 2, o(|M"w|) = o(\Pn\), so that (18) is equivalent to 

Ê \(p*b),\ = oQP.l). 

But this is the definition of the assertion that tn —» 0 [N, p]i. Hence the result. 
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