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Abstract

Schur's matrix M,, is ordinarily defined to be the n by n matrix (e'k), OS/', k < n, where
f = exp(2m/n). This matrix occurs in a variety of areas including number theory, statistics, coding
theory and combinatorics. In this paper, we investigate Pn, the permanent of Mn, which is defined by

where n ranges over all n ! permutations on {0,1, • • •, n — 1}.
Pn occurs, for example, in the study of circulants. Specifically, let Xn denote the n by n circulant

matrix (xul) with x,,, = x, , where the subscript is reduced modulo n. The determinant of Xn is a
homogeneous polynomial of degree n in the x, and can be written as

detXn = 2 A(jn,--;jn-,)x',f-xU-

Then />„ = A{\, I , - - - . 1).

Typical of the results established in this note a re :

(i) P2n = 0 for all n.

(ii) Pp = p\ (mod p') for p a pr ime > 3.

(iii) If p" divides n then p""-11""" n"° divides />„.

Also, a table of values of Pn is given for I S n g 23.

Introduction

Schur's matrix (Schur (1921)) Mn(t) is the n by n matrix defined by

Afn(r) = («'.*) = (£"")' 0 S / , f c < n ,

where

e = exp (2THIn).
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488 R. L. Graham and D. H. Lehmer [2]

and (t, n) = 1. Ordinarily one takes ( = 1 in which case we abbreviate a$ by a,,k
and M_(l) by Mn. i

Mn occurs in a variety of contexts, e.g., number theory, statistics, coding
theory and combinatorics. In this note we investigate Pn, the permanent of Mn.
This is defined by

p = V
IT

where tr ranges over all n\ permutations on {0,1, • • •, n - 1} = [0, n - 1].
One place in which Pn comes up is in the study of circulants. Specifically, let

Xn denote the n by n circulant matrix (xu) with JC,,, = x,_, where the subscript is
reduced modulo n. The determinant of Xn is a homogeneous polynomial of
degree n in the x, and can be written as

det Xn = ^ A (Jo, • • -J.-i)*'? • • • x ' r f •

Then

(1) Pn = A (1,1, - - s i ) .

This follows immediately from the explicit expression (see Muir (I960)) for
det Xn, namely,

detXn = f[ 2) sikxk.
1-0 k-0

Elementary facts

Let Sn denote the set of permutations v: [0, n - 1 ] —* [0, n - 1 ] . We begin
by defining the spread of a permutation vr £ Sn to be the inner product

k-0

where the sum is reduced modulo n.

FACT 1. Let (a, n) = 1 and let TT,, Tr2eSn satisfy

772(k) = avi{k) + t (mod n).

Then

( acr(ir,) if n is odd or t is even,

a<r(ir,)+ n/2 otherwise.

The proof is immediate from the definition.
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[3] Schur's matrix 489

Denote by Un(r) the set {IT G Sn : cr(-ir) = r] and let un(r) denote | Un(r)\.
Of course,

(1) JJun(r)=n\
r = o

The following table gives some of the small values of un(r).

Table 1. un(r)

n r 0 1 2 3 4 5 6 7 8 9

1
2
3
4
5 20 25 25 25 25
6 144 108 108 144 108 108
7 630 735 735 735 735 735 735
8 5696 4608 5248 4608 5696 4608 5248 4608
9 39366 40824 40824 39285 40824 40824 39285 40824 40824
10 366400 362000 362000 362000 362000 366400 362000 362000 362000 362000

FACT 2. For n even,

« „ ( / • ) = u n

PROOF. The map a : Sn —» Sn given by

a(v)(k) = 7r(fc)+l

is a bijection of Un(r) into [/„ (r + (n/2)). •

FACT 3. Let n, r and s be integers with (n,r)= (n,s). Then

un(r) = un(s).

PROOF. By hypothesis , there exists an integer /, with (t, n ) = 1, such that
x = rt (mod n ) . If y :S,, —• Sn by

y(Tr)(k) = tTr(k) then y : l / n ( r ) - » L/n(s)

is an injection. By symmetry, «„ (r) = un (s) . •

Thus , to evaluate un{r) for all r, it suffices to evaluate un(S) for all 8 \n.
From the definition of Pn we have

(2) Pn = *Zun(r)exp(2mr/n).
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Since the sum of the primitive feth roots of unity is /u,(fe), where fi denotes the
ordinary Mobius function, then by Fact 3 we can write

(3) p. = 2;M«)M(»/fi).
Sin

In the case that n is prime we have by (1)

n - 1

THEOREM 1.

(4) P2n = 0.

PROOF. By (2)

2n

Pin = 2 U2n(r) exp {2mrl2n)

= 2 M2n(exp(27ri>/2n) + exp(27n (r + n)/2n)) by Fact 2
r = !

= 0

since the right hand factor in the sum vanishes. •

Note that if n is odd then ak: Sn —> Sn defined by ak(7r)(i) = TT(()+ k
actually satisfies ak : Un(r)^> Un(r) for all r, since SiUofc — 0 (mod n). Thus,

(5)

and

(6)

by (3) and (4)

un (r) = 0(mod n)

Pn = 0 (mod

, n

n).

In the next sections, considerably stronger modular results will be estab-
lished.

Some modular results for n prime

Let n be a fixed odd prime p and let Up denote t/p(0). Suppose G is a group
of permutations acting on Up. The set Up is then partitioned into some number,
say m, disjoint orbits TT? for suitable TT, G UP, I S i g m.

Since

(7)
UP = UP = Z i r " and I TT? G I for all i

then if G is chosen appropriately (for example, so that | G | has a small number
of prime factors), it is often possible to determine the structure of some of the
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smaller orbits of G and, as a consequence, gain information about up. In this
section, we give several illustrations of this technique.

THEOREM 2. For any prime p > 3,

(8) F p - p ! ( m o d p 3 )

PROOF. Let G be the group generated by the two maps a, /3 : Sp —» Sp

defined by:

a(7r)(/c)= 7r(fe)+l,

J 3 ( 7 T ) ( / C ) = T 7 ( / C + 1 ) ,

where k G [0,p — 1], 77 G Sp and all addition is taken modulo p. Note that for
77 G £/„

and

so that a and /3 map t/p into Up. Since a and /3 commute and each has order p,
then \G\ = p2. Of course, each orbit TT? is nontrivial so that (7) implies
177? I = p or I 77? I = p2, 1 g i g m. We call these small and /arge orbits,
respectively.

Suppose 77G is a small orbit of G. Since

are all distinct then we must have

/3(77) = a(0(77)

for some t ̂  0 (mod p). Thus, for all k,

(T(a(n)) = ^ /ca(7r)(/c) = O-(TT)+ (?) = O(modp)

i.e.,

ir{k + 1) = 77(fc)+ f(mod p)

and so

(9) 77(/c)=77(0)+/c/(modp), 0Sk<p.

Hence, we have shown that if 77 belongs to a small orbit of G, then 77 satisfies

(9).
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On the other hand, if TT is any element of Up which satisfies (9), then

<T(TT)= § kir(k) = § k(ir(O)+kt)
fc=O fc=O

lt-0 lt-0

= ,r(0)(O

since p is odd and greater than 3. Therefore, all n which satisfy (9) belong to tlp.
From this we conclude that exactly p(p — 1) elements of Up (corresponding to
the choices of 77(0) and /) belong to small orbits and so we may write

for some /, i.e.,

(10) up = -p{moAp2).

Hence,

- ^ Y = p(modp2).

By (3') we have for some integer z,

P p =p(p + zp 2 - (p-2) ! )

= p! (mod p3)

and the theorem is proved. •

THEOREM 3. Suppose p and q are odd primes satisfying p = 2q" + 1 for some
a & 1. Then

(11) PP = 0(mod q)

PROOF. Let r be a fixed primitive root of p. Define the maps y, 8: Sp—> Sp

by
y(v)(k)=nr(k),

(mod p)
8(n)(k)= ir(rk).

It is easy to check that y and 5 map Up into Up. Since for any IT G Up, the p - 1
permutations

7T,y(7T),y(2)(Tr),--;ylp-2>(TT)

are distinct, then any orbit TTC> of G must satisfy

(12) 177° | = O(modp- l )
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On the other hand, y and S each have order p - 1, they commute, and all the
products y'S', Og i , j < p - 1, are distinct. Therefore,

(13) | G

Let us call an orbit TJ-G small if 77 4q°. Thus, TTC is small if and only if for
some m, 0 < m < p — 1,

S(2>(77) = y"">(7r)

iff

(14) Tr(r2lk) = rmI7T(fc)

for all k G [0, p — 1]. Define a0 and a.\ by

TT(I) = r°°, 7r(r) = r"-, 0 g a0, a, < p - 1.

Note that (14) implies 77(0) = 0. Also, by (14) we have

77(r 2 ' )=r m ' + a " , Tr(r2l+')=rmt+a<

for t = 0,1, • • •, q". Since 5<2) has order qa then we must have

(15) (m,q)=l and m = 0(mod 2).

Furthermore, it is also necessary that

(16) a0 - ax = 1 (mod 2)

since otherwise TT is not a permutation. Thus, by (14), (15) and (16) we see that
there are exactly q°' '(q - 1) choices for m and 2q2"' choices for (a0, a,) so that
the permutation 77 = 77ma(1,11 determined by m, a0 and a, has a small orbit TTG.

We must next determine how many of these n belong to Up. By definition,

TT<EUP iff O-(TT) = ^ kir{k) = 0 (modp) .

But

..2k + l _ r . 2 ' < + l^\ = V ,2k+mk+an , _2k+mk+a, + l2, ( r ^ C ) + ' w('"+ l)) = 2, r2t+mk+a"+r2

k=() k-0

(17)

r-<^ ^ l ( m o d p )

rm+2 = l ( m o d p )
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where all congruences are modulo p. However, since m is even by (15) then

r(n,+2)q° = J ( m o d p ) a n d S Q a ^ = Q

On the other hand, since a0 and a, have different parity by (16) then
q" — a0 — a, — 1 is odd and so

2q" Jf qa - ao~ a, - 1 .

Hence,

r«0+«,-i ^ r«- = - l ( m o d p ) , ra»+r"<+l ^ O(modp).

Thus, since (qa, p) = 1 then in the case that rm+2 = 1 (mod p) we have <r(n) / 0.
Therefore, we see that n = TTm^.a, £ Up iff rm*2 = l (modp) , i.e., iff m =
2q" -2. This implies that of the qa\q - 1) • 2q2a permutations n^^.a, with small
orbits, exactly

of them belong to Up. Since any T £ Up satisfies

T G | | G | = 4q2a

then if T G is not small, we have

2q"+1
 | T G | .

Hence,

(18) up = \Up\ = (qa -qaX-\)2q2a (mod {2qa*x)).

Finally, by a straightforward calculation using (3') we conclude that

Pp. = 0(mod q)

and the theofem is proved.

Some modular results for n composite

For an n by n matrix M = (miy), let m, denote the row vector (mu, • • •, nin).
For x - (xi, • • •, xn) and y = (y,, • • •, yn), let xy denote (xiyu • • •, xnyn) and let x
denote £r«iXj. Finally if 17 is a partition of [1, n] with blocks Bu • • -,B|,,|, define
C(T?) by

c(r>)= f l ( - l ) ' s | " ( | S , 1 - 1 ) !

It is known (see Crapo (1968)) that the permanent of M can be expressed in the
following form:
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where 17 ranges over all partitions of [1, n ] .
In the case that M is the Schur matrix Mn, Graver (1967) has obtained from

(15) the following particularly appealing expression for the permanent of Mn:

(19) P. = 2 c(T,)nl"i

where 117 | denotes the number of blocks of ?/ and Qn is the set of all partitions
17 = (B,, • • •, BM) of [1, n - 1] for which lb<EB,b = 0(mod m) for 1 g i S | TJ |.

An important aspect of (19) is that if p\n then for each 17 £ Qn, either 117 | is
small in which case a large power of p divides C(TJ), or 117 | is large and therefore
a large power of p divides nM. This implies Pn itself is always highly divisible by
p since each term in the sum is. A careful analysis of this behavior results in the
following theorem.

THEOREM 4. If p" divides n then p(p"-1)"'(p-1)p°' divides Pn. (This result for
a = 1 was given by Graver (1967)).

THEOREM

(20) •

5.
The parity of Pn

Pn = n (mod 2)

PROOF. For n even, (20) follows from (4). Hence, we may assume n is odd.
Let An(l) denote the determinant of Mn = Mn(\) so that

An(l)= 2
ires.

2 £j ft O.i (O) '

= -P«+2Qn(l)

where An denotes subgroup of even permutations of Sn and (— 1)" is 1 if n £ An

and — 1 otherwise. That is,

(21) A.(1)+P»=2O«(1)

where

0.(1) = 2ck£k

k-0

for suitable integers ck, k £ [0, n - 1].
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Now it is well known (see Schur (1921)) that

[10]

For l g / < n with (t, n) = 1, we see that

where p, : [0, n - 1]—>[0, n - 1] is defined by p,(/c) = tk (mod n). (In fact,
( - l)p' = (tIn), the familiar Jacobi symbol.) Since the permanent of Mn (t) is just
Pn, independent of t, then we have

(22)

Hence,

(23)

{-\y-i® n"12 + Pn = 2 0 , ( 0 .

-l)"'/®n'"/ 2-Fn) = 2(P<") f l 0 , ( 0 -

The right hand side of (23) is a symmetric function of the primitive nth roots of
unity and consequently, an even integer. Any irrational and imaginary terms
occurring on the left hand side must cancel. The one term in the expansion free
of the factor Pn is

fl ft ,

i.e., an odd rational integer. Thus, if Pn were even then the left hand side would
be an odd integer while the right hand side is even. This contradiction completes
the proof. •

Concluding remarks

The known values of Pn, n odd, are listed below in Table 2.

Table 2.

1
3
5
7
9
11
13
15
17
19
21
23

1
-3

-105

81
6765

175747

30375

25219857

142901109

4548104883

-31152650265

= -

= 3"

= 3-

= 11

= 35

= 3-

= 32

= 3*
= _

3-5-7

5-11-41

•13-1229

• 5 3

13-17-38039

•13-19-64283

• T-43-47

32 - 5 • 11 -23-733-3733
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The last three values were calculated using an efficient algorithm for permanents
of Nijenhuis and Wilf (1975).

Note that by Theorem 4,

-34 I p T5 C3 I p ->7 -73 I p
J I f 9 , J O I JT 15, J / I 1 21

and, in fact, we have equality for the first two. Theorem 3 explains why 31 P7,
51 P,l, and 111 P23- Except for the fact that n | Pn, most of the other small factors
are not yet understood.

It follows from results of Wilf (1968) (also see Ryser (1963)) that

(24) Pn = ^ r X ( - i r < S ) d e t C ( S )

where C(S) denotes the circulant matrix with first row S = (s>, • • -,sn), w(S)
denotes \{i:Si= - 1 } | , and S ranges over all 2" sequences of ± l's. It then
follows from the Hadamard bound on determinants of ± l's. that \Pn\ S n " 1 .
On the other hand, it is, not even known if Pn > 0 infinitely often. From the
limited data available, it certainly seems as if lim | P]l"\ > 0 .
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