ON THE PERMANENT OF SCHUR'S MATRIX

Dedicated to George Szekeres on his 65th birthday

R. L. GRAHAM and D. H. LEHMER
(Received 22 November 1974; revised 7 March 1975)
Communicated by Jennifer Seberry Wallis

Abstract

Schur's matrix M_{n} is ordinarily defined to be the n by n matrix $\left(\varepsilon^{j k}\right), 0 \leqq j, k<n$, where $\varepsilon=\exp (2 \pi i / n)$. This matrix occurs in a variety of areas including number theory, statistics, coding theory and combinatorics. In this paper, we investigate P_{n}, the permanent of M_{n}, which is defined by $$
P_{n}=\sum_{\pi} \prod_{j=0}^{n-1} \varepsilon^{\prime \pi(j)}
$$ where π ranges over all n ! permutations on $\{0,1, \cdots, n-1\}$. P_{n} occurs, for example, in the study of circulants. Specifically, let X_{n} denote the n by n circulant matrix ($x_{1, j}$) with $x_{1, j}=x_{2}$, where the subscript is reduced modulo n. The determinant of X_{n} is a homogeneous polynomial of degree n in the x_{i} and can be written as $$
\operatorname{det} X_{n}=\sum_{j 0+\cdots+j_{n-1}=n} \quad A\left(j_{0}, \cdots, j_{n-1}\right) x_{f}^{i j} \cdots x_{n-1}^{j_{n}}
$$

Then $P_{n}=A(1,1, \cdots, 1)$.
Typical of the results established in this note are:
(i) $P_{2 n}=0$ for all n,
(ii) $P_{p} \equiv p$! $\left(\bmod p^{3}\right)$ for p a prime >3.
(iii) If p^{α} divides n then $p^{\left(p^{a}-1\right) n / /_{p}}{ }^{1) p^{\alpha}}$ divides P_{n}.

Also, a table of values of P_{n} is given for $1 \leqq n \leqq 23$.

Introduction

Schur's matrix (Schur (1921)) $M_{n}(t)$ is the n by n matrix defined by

$$
M_{n}(t)=\left(\alpha_{,, k}^{(t)}\right)=\left(\varepsilon^{t, k}\right), \quad 0 \leqq j, k<n,
$$

where

$$
\varepsilon=\exp (2 \pi i / n)
$$

and $(t, n)=1$. Ordinarily one takes $t=1$ in which case we abbreviate $a_{i, k}^{(1)}$ by $\alpha_{j, k}$ and $M_{n}(1)$ by M_{n}.
M_{n} occurs in a variety of contexts, e.g., number theory, statistics, coding theory and combinatorics. In this note we investigate P_{n}, the permanent of M_{n}. This is defined by

$$
P_{n}=\sum_{\pi} \alpha_{0, \pi(0)} \alpha_{1 . \pi(1)} \cdots \alpha_{n-1 . \pi(n-1)}
$$

where π ranges over all n ! permutations on $\{0,1, \cdots, n-1\}=[0, n-1]$.
One place in which P_{n} comes up is in the study of circulants. Specifically, let X_{n} denote the n by n circulant matrix ($x_{i, j}$) with $x_{i, j}=x_{i-j}$ where the subscript is reduced modulo n. The determinant of X_{n} is a homogeneous polynomial of degree n in the x_{i} and can be written as

$$
\operatorname{det} X_{n}=\sum_{j_{0}+\cdots+j_{n-1}=n} A\left(j_{0}, \cdots, j_{n-1}\right) x_{0}^{j_{0}} \cdots x_{n=1}^{j_{n}} .
$$

Then

$$
\begin{equation*}
P_{n}=A(1,1, \cdots, 1) . \tag{1}
\end{equation*}
$$

This follows immediately from the explicit expression (see Muir (1960)) for $\operatorname{det} X_{n}$, namely,

$$
\operatorname{det} X_{n}=\prod_{j=0}^{n-1} \sum_{k=0}^{n-1} \varepsilon^{j k} x_{k}
$$

Elementary facts

Let S_{n} denote the set of permutations $\pi:[0, n-1] \rightarrow[0, n-1]$. We begin by defining the spread of a permutation $\pi \in S_{n}$ to be the inner product

$$
\sigma(\pi)=\sum_{k=0}^{n-1} k \pi(k)
$$

where the sum is reduced modulo n.
Fact 1. Let $(a, n)=1$ and let $\pi_{1}, \pi_{2} \varepsilon S_{n}$ satisfy

$$
\pi_{2}(k) \equiv a \pi_{1}(k)+t(\bmod n)
$$

Then

$$
\sigma\left(\pi_{2}\right) \equiv\left\{\begin{array}{c}
a \sigma\left(\pi_{1}\right) \text { if } n \text { is odd or } t \text { is even, } \\
a \sigma\left(\pi_{1}\right)+n / 2 \text { otherwise. }
\end{array}\right.
$$

The proof is immediate from the definition.

Denote by $U_{n}(r)$ the set $\left\{\pi \in S_{n}: \sigma(\pi)=r\right\}$ and let $u_{n}(r)$ denote $\left|U_{n}(r)\right|$. Of course,

$$
\begin{equation*}
\sum_{r=o}^{n-1} u_{n}(r)=n! \tag{1}
\end{equation*}
$$

The following table gives some of the small values of $u_{n}(r)$.

Table 1. $u_{n}(r)$

$r n r$	0	1	2	3	4	5	6	7	8
1	1							9	
2	1	1							
3	0	3	3						
4	4	8	4	8					
5	20	25	25	25	25				
6	144	108	108	144	108	108			
7	630	735	735	735	735	735	735		
8	5696	4608	5248	4608	5696	4608	5248	4608	
9	39366	40824	40824	39285	40824	40824	39285	40824	40824
10	366400	362000	362000	362000	362000	366400	362000	362000	362000

Fact 2. For n even,

$$
u_{n}(r)=u_{n}\left(r+\frac{n}{2}\right)
$$

Proof. The map $\alpha: S_{n} \rightarrow S_{n}$ given by

$$
\alpha(\pi)(k)=\pi(k)+1
$$

is a bijection of $U_{n}(r)$ into $U_{n}(r+(n / 2))$.
Fact 3. Let n, r and s be integers with $(n, r)=(n, s)$. Then

$$
u_{n}(r)=u_{n}(s)
$$

Proof. By hypothesis, there exists an integer t, with $(t, n)=1$, such that $s \equiv r t(\bmod n)$. If $\gamma: S_{n} \rightarrow S_{n}$ by

$$
\gamma(\pi)(k)=t \pi(k) \quad \text { then } \quad \gamma: U_{n}(r) \rightarrow U_{n}(s)
$$

is an injection. By symmetry, $u_{n}(r)=u_{n}(s)$.
Thus, to evaluate $u_{n}(r)$ for all r, it suffices to evaluate $u_{n}(\delta)$ for all $\delta \mid n$. From the definition of P_{n} we have

$$
\begin{equation*}
P_{n}=\sum_{r=1}^{n} u_{n}(r) \exp (2 \pi i r / n) \tag{2}
\end{equation*}
$$

Since the sum of the primitive k th roots of unity is $\mu(k)$, where μ denotes the ordinary Möbius function, then by Fact 3 we can write

$$
\begin{equation*}
P_{n}=\sum_{\delta \mid n} u_{n}(\delta) \mu(n / \delta) \tag{3}
\end{equation*}
$$

In the case that n is prime we have by (1)

$$
P_{n}=\frac{n}{n-1}\left(u_{n}(0)-(n-1)!\right)
$$

Theorem 1.
(4)

$$
P_{2 n}=0
$$

Proof. By (2)

$$
\begin{aligned}
P_{2 n} & =\sum_{r=1}^{2 n} u_{2 n}(r) \exp (2 \pi i r / 2 n) \\
& =\sum_{r=1}^{n} u_{2 n}(\exp (2 \pi i r / 2 n)+\exp (2 \pi i(r+n) / 2 n)) \text { by Fact } 2 \\
& =0
\end{aligned}
$$

since the right hand factor in the sum vanishes.
Note that if n is odd then $\alpha_{k}: S_{n} \rightarrow S_{n}$ defined by $\alpha_{k}(\pi)(i)=\pi(i)+k$ actually satisfies $\alpha_{k}: U_{n}(r) \rightarrow U_{n}(r)$ for all r, since $\sum_{k=0}^{n-1} k \equiv 0(\bmod n)$. Thus,

$$
\begin{equation*}
u_{n}(r) \equiv 0(\bmod n), n \text { odd } \tag{5}
\end{equation*}
$$

and by (3) and (4)

$$
\begin{equation*}
P_{n} \equiv 0(\bmod n) \tag{6}
\end{equation*}
$$

In the next sections, considerably stronger modular results will be established.

Some modular results for \boldsymbol{n} prime

Let n be a fixed odd prime p and let U_{p} denote $U_{p}(0)$. Suppose G is a group of permutations acting on U_{p}. The set U_{p} is then partitioned into some number, say m, disjoint orbits π_{i}^{G} for suitable $\pi_{i} \in U_{p}, 1 \leqq i \leqq m$.

Since

$$
\begin{equation*}
u_{p}=\left|U_{p}\right|=\sum_{i=1}^{m}\left|\pi_{i}^{G}\right| \quad \text { and } \quad\left|\pi_{i}^{G}\right|||G| \text { for all } i \tag{7}
\end{equation*}
$$

then if G is chosen appropriately (for example, so that $|G|$ has a small number of prime factors), it is often possible to determine the structure of some of the
smaller orbits of G and, as a consequence, gain information about u_{p}. In this section, we give several illustrations of this technique.

Theorem 2. For any prime $p>3$,

$$
\begin{equation*}
P_{p} \equiv p!\left(\bmod p^{3}\right) \tag{8}
\end{equation*}
$$

Proof. Let G be the group generated by the two maps $\alpha, \beta: S_{p} \rightarrow S_{p}$ defined by:

$$
\begin{aligned}
& \alpha(\pi)(k)=\pi(k)+1 \\
& \beta(\pi)(k)=\pi(k+1)
\end{aligned}
$$

where $k \in[0, p-1], \pi \in S_{p}$ and all addition is taken modulo p. Note that for $\pi \in U_{p}$,

$$
\sigma(\alpha(\pi))=\sum_{k=0}^{p-1} k \alpha(\pi)(k) \equiv \sigma(\pi)+\binom{p}{2} \equiv 0(\bmod p)
$$

and

$$
\sigma(\beta(\pi))=\sum_{k=0}^{p-1} k \beta(\pi)(k) \equiv \sigma(\pi)-\binom{p}{2} \equiv 0(\bmod p)
$$

so that α and β map U_{p} into U_{p}. Since α and β commute and each has order p, then $|G|=p^{2}$. Of course, each orbit π_{i}^{G} is nontrivial so that (7) implies $\left|\pi_{i}^{G}\right|=p$ or $\left|\pi_{i}^{G}\right|=p^{2}, 1 \leqq i \leqq m$. We call these small and large orbits, respectively.

Suppose π^{G} is a small orbit of G. Since

$$
\pi, \alpha(\pi), \alpha(\alpha(\pi))=\alpha^{(2)}(\pi), \alpha^{(3)}(\pi), \cdots, \alpha^{(p-1)}(\pi)
$$

are all distinct then we must have

$$
\beta(\pi)=\alpha^{(1)}(\pi)
$$

for some $t \not \equiv 0(\bmod p)$. Thus, for all k,

$$
\beta(\pi)(k) \equiv \alpha^{(t)}(\pi)(k)(\bmod p)
$$

i.e.,

$$
\pi(k+1) \equiv \pi(k)+t(\bmod p)
$$

and so

$$
\begin{equation*}
\pi(k) \equiv \pi(0)+k t(\bmod p), \quad 0 \leqq k<p \tag{9}
\end{equation*}
$$

Hence, we have shown that if π belongs to a small orbit of G, then π satisfies (9).

On the other hand, if π is any element of U_{p} which satisfies (9), then

$$
\begin{aligned}
\sigma(\pi) & =\sum_{k=0}^{p-1} k \pi(k)=\sum_{k=0}^{p-1} k(\pi(0)+k t) \\
& =\pi(0) \sum_{k=0}^{p-1} k+t \sum_{k=0}^{p-1} k^{2} \\
& =\pi(0)\left(\frac{p}{2}\right)+t \cdot \frac{p(p-1)(2 p-1)}{6} \equiv 0(\bmod p)
\end{aligned}
$$

since p is odd and greater than 3 . Therefore, all π which satisfy (9) belong to \dot{U}_{p}. From this we conclude that exactly $p(p-1)$ elements of U_{p} (corresponding to the choices of $\pi(0)$ and t) belong to small orbits and so we may write

$$
u_{p}=\left|U_{p}\right|=p(p-1)+j p^{2}
$$

for some j, i.e.,

$$
\begin{equation*}
u_{p} \equiv-p\left(\bmod p^{2}\right) \tag{10}
\end{equation*}
$$

Hence,

$$
\frac{u_{p}}{p-1} \equiv p\left(\bmod p^{2}\right)
$$

By (3') we have for some integer z,

$$
\begin{aligned}
P_{p} & =p\left(p+z p^{2}-(p-2)!\right) \\
& \equiv p!\left(\bmod p^{3}\right)
\end{aligned}
$$

and the theorem is proved.
Theorem 3. Suppose p and q are odd primes satisfying $p=2 q^{\alpha}+1$ for some $\alpha \geqq 1$. Then

$$
\begin{equation*}
P_{p} \equiv 0(\bmod q) \tag{11}
\end{equation*}
$$

Proof. Let r be a fixed primitive root of p. Define the maps $\gamma, \delta: S_{p} \rightarrow S_{p}$ by

$$
\begin{align*}
& \gamma(\pi)(k) \equiv r \pi(k) \\
& \delta(\pi)(k) \equiv \pi(r k)
\end{align*}
$$

It is easy to check that γ and δ map U_{p} into U_{p}. Since for any $\pi \in U_{p}$, the $p-1$ permutations

$$
\pi, \gamma(\pi), \gamma^{(2)}(\pi), \cdots, \gamma^{(p-2)}(\pi)
$$

are distinct, then any orbit π^{G} of G must satisfy

$$
\begin{equation*}
\left|\pi^{G}\right| \equiv 0(\bmod p-1) \tag{12}
\end{equation*}
$$

On the other hand, γ and δ each have order $p-1$, they commute, and all the products $\gamma^{i} \delta^{i}, 0 \leqq i, j<p-1$, are distinct. Therefore,

$$
\begin{equation*}
|G|=(p-1)^{2}=4 q^{2 \alpha} \tag{13}
\end{equation*}
$$

Let us call an orbit π^{c} small if $\left|\pi^{G}\right| \mid 4 q^{\alpha}$. Thus, π^{G} is small if and only if for some $m, 0<m<p-1$,

$$
\delta^{(2)}(\pi)=\gamma^{(m)}(\pi)
$$

iff

$$
\begin{equation*}
\pi\left(r^{2 t} k\right)=r^{m t} \pi(k) \tag{14}
\end{equation*}
$$

for all $k \in[0, p-1]$. Define a_{0} and a_{1} by

$$
\pi(1)=r^{a_{0}}, \pi(r)=r^{a_{1}}, 0 \leqq a_{0}, a_{1}<p-1
$$

Note that (14) implies $\pi(0)=0$. Also, by (14) we have

$$
\pi\left(r^{2 t}\right)=r^{m t+a_{0}}, \pi\left(r^{2 t+1}\right)=r^{m t+a_{1}}
$$

for $t=0,1, \cdots, q^{\alpha}$. Since $\delta^{(2)}$ has order q^{α} then we must have

$$
\begin{equation*}
(m, q)=1 \quad \text { and } \quad m \equiv 0(\bmod 2) \tag{15}
\end{equation*}
$$

Furthermore, it is also necessary that

$$
\begin{equation*}
a_{0}-a_{1} \equiv 1(\bmod 2) \tag{16}
\end{equation*}
$$

since otherwise π is not a permutation. Thus, by (14), (15) and (16) we see that there are exactly $q^{\alpha-1}(q-1)$ choices for m and $2 q^{2 \alpha}$ choices for $\left(a_{0}, a_{1}\right)$ so that the permutation $\pi=\pi_{m, a_{0}, a_{1}}$ determined by m, a_{0} and a_{1} has a small orbit π^{G}.

We must next determine how many of these π belong to U_{p}. By definition,

$$
\pi \in U_{p} \quad \text { iff } \quad \sigma(\pi)=\sum_{k=0}^{p-1} k \pi(k) \equiv 0(\bmod p)
$$

But

$$
\begin{align*}
& \sum_{k=0}^{p-1} k \pi(k) \equiv \sum_{k=0}^{q-1}\left(r^{2 k} \pi\left(r^{2 k}\right)+r^{2 k+1} \pi\left(r^{2 k+1}\right)\right) \equiv \sum_{k=0}^{q-1} r^{2 k+m k+a_{0}}+r^{2 k+m k+a_{1}+1} \\
& \equiv\left(r^{a_{0}}+r^{a_{1}+1}\right) \sum_{k=0}^{q^{\alpha-1}} r^{(m+2) k} \tag{17}\\
& \equiv\left(r^{a_{0}}+r^{a_{1}+1}\right)\left\{\begin{array}{ccc}
\frac{r^{(m+2) q^{\alpha}}-1}{r^{m+2}-1} & \text { if } & r^{m+2} \not \equiv 1(\bmod p) \\
q^{\alpha} & \text { if } & r^{m+2} \equiv 1(\bmod p)
\end{array}\right.
\end{align*}
$$

where all congruences are modulo p. However, since m is even by (15) then $r^{(m+2) q^{\alpha}} \equiv 1(\bmod p) \quad$ and so $\quad \sigma(\pi)=0$ when $r^{m+2} \not \equiv 1(\bmod p)$.

On the other hand, since a_{0} and a_{1} have different parity by (16) then $q^{\alpha}-a_{0}-a_{1}-1$ is odd and so

$$
2 q^{\alpha} \npreceq q^{\alpha}-a_{0}-a_{1}-1 .
$$

Hence,

$$
\begin{gathered}
r^{q^{\alpha-a_{0}-a_{1}-1} \not \equiv 1(\bmod p)} \\
r^{a_{0}+a_{1}+1} \not \equiv r^{q^{\alpha}} \equiv-1(\bmod p), \quad r^{a_{0}}+r^{a_{1}}+1 \not \equiv 0(\bmod p)
\end{gathered}
$$

Thus, since $\left(q^{\alpha}, p\right)=1$ then in the case that $r^{m+2} \equiv 1(\bmod p)$ we have $\sigma(\pi) \neq 0$. Therefore, we see that $\pi=\pi_{m, a_{0}, a_{1}} \in U_{p}$ iff $r^{m+2} \equiv 1(\bmod p)$, i.e., iff $m=$ $2 q^{\alpha}-2$. This implies that of the $q^{\alpha-1}(q-1) \cdot 2 q^{2 \alpha}$ permutations $\pi_{m, a_{0}, a_{l}}$ with small orbits, exactly

$$
q^{\alpha-1}(q-1) \cdot 2 q^{2 \alpha}-2 q^{2 \alpha}=\left(q^{\alpha}-q^{\alpha-1}-1\right) \cdot 2 q^{2 \alpha}
$$

of them belong to U_{p}. Since any $\tau \in U_{p}$ satisfies

$$
\left|\tau^{\sigma}\right|\left||G|=4 q^{2 \alpha}\right.
$$

then if τ^{G} is not small, we have

$$
2 q^{\alpha+1}| | \tau^{G} \mid
$$

Hence,

$$
\begin{equation*}
u_{p}=\left|U_{p}\right| \equiv\left(q^{\alpha}-q^{\alpha-1}-1\right) 2 q^{2 \alpha}\left(\bmod \left(2 q^{\alpha+1}\right)\right) \tag{18}
\end{equation*}
$$

Finally, by a straightforward calculation using (3') we conclude that

$$
P_{p \cdot} \equiv 0(\bmod q)
$$

and the theorem is proved.

Some modular results for \boldsymbol{n} composite

For an n by n matrix $M=\left(m_{i j}\right)$, let m_{i} denote the row vector ($m_{i,}, \cdots, n_{i n}$). For $x=\left(x_{1}, \cdots, x_{n}\right)$ and $y=\left(y_{1}, \cdots, y_{n}\right)$, let $x y$ denote $\left(x_{1} y_{1}, \cdots, x_{n} y_{n}\right)$ and let \bar{x} denote $\sum_{i=1}^{n} x_{i}$. Finally if η is a partition of $[1, n]$ with blocks $B_{1}, \cdots, B_{|\eta|}$, define $c(\eta)$ by

$$
c(\eta)=\prod_{i=1}^{\eta}(-1)^{\left|B_{i}\right|-1}\left(\left|B_{i}\right|-1\right)!
$$

It is known (see Crapo (1968)) that the permanent of M can be expressed in the following form:

$$
\operatorname{Per} M=\sum_{\eta} c(\eta) \prod_{B \in \eta} \overline{\left(\prod_{i \in B} m_{i}\right)}
$$

where η ranges over all partitions of $[1, n]$.
In the case that M is the Schur matrix M_{n}, Graver (1967) has obtained from (15) the following particularly appealing expression for the permanent of M_{n} :

$$
\begin{equation*}
P_{n}=\sum_{\eta \in Q_{n}} c(\eta) n^{|\eta|} \tag{19}
\end{equation*}
$$

where $|\eta|$ denotes the number of blocks of η and Q_{n} is the set of all partitions $\eta=\left(B_{1}, \cdots, B_{|\eta|}\right)$ of $[1, n-1]$ for which $\Sigma_{b \in B_{1}} b \equiv 0(\bmod m)$ for $1 \leqq i \leqq|\eta|$.

An important aspect of (19) is that if $p \mid n$ then for each $\eta \in Q_{n}$, either $|\eta|$ is small in which case a large power of p divides $c(\eta)$, or $|\eta|$ is large and therefore a large power of p divides $n^{|n|}$. This implies P_{n} itself is always highly divisible by p since each term in the sum is. A careful analysis of this behavior results in the following theorem.

Theorem 4. If p^{α} divides n then $p^{\left(p^{\alpha-1) n /(p-1) p^{\alpha}}\right.}$ divides P_{n}. (This result for $\alpha=1$ was given by Graver (1967)).

The parity of P_{n}

Theorem 5.

$$
\begin{equation*}
P_{n} \equiv n(\bmod 2) \tag{20}
\end{equation*}
$$

Proof. For n even, (20) follows from (4). Hence, we may assume n is odd. Let $\Delta_{n}(1)$ denote the determinant of $M_{n}=M_{n}(1)$ so that

$$
\begin{aligned}
\Delta_{n}(1) & =\sum_{\pi \in S_{n}}(-1)^{\pi} \alpha_{0, \pi(0)} \cdots \alpha_{n-1 . \pi(n-1)} \\
& =-\sum_{\pi \in S_{n}} \alpha_{0 . \pi(0)} \cdots \alpha_{n-1 . \pi(n-1)}+2 \sum_{\pi \in A_{n}} \alpha_{0 . \pi(0)} \cdots \alpha_{n-1 . \pi(n-1)} \\
& =-P_{n}+2 Q_{n}(1)
\end{aligned}
$$

where A_{n} denotes subgroup of even permutations of S_{n} and $(-1)^{\pi}$ is 1 if $\pi \in A_{n}$ and -1 otherwise. That is,

$$
\begin{equation*}
\Delta_{n}(1)+P_{n}=2 Q_{n}(1) \tag{21}
\end{equation*}
$$

where

$$
Q_{n}(1)=\sum_{k=0}^{n-1} c_{k} \varepsilon^{k}
$$

for suitable integers $c_{k}, k \in[0, n-1]$.

Now it is well known (see Schur (1921)) that

$$
\Delta_{n}(1)=i^{\left(\frac{\pi}{2}\right)} n^{n / 2} .
$$

For $1 \leqq t<n$ with $(t, n)=1$, we see that

$$
\Delta_{n}(t)=\operatorname{det} M_{n}(t)=(-1)^{\rho_{t}} \Delta_{n}(t)
$$

where $\rho_{t}:[0, n-1] \rightarrow[0, n-1]$ is defined by $\rho_{t}(k) \equiv t k(\bmod n)$. (In fact, $(-1)^{\rho_{t}}=(t / n)$, the familiar Jacobi symbol.) Since the permanent of $M_{n}(t)$ is just P_{n}, independent of t, then we have

$$
\begin{equation*}
(-1)^{\rho_{1} i^{(n)}} n^{n / 2}+P_{n}=2 Q_{n}(t) . \tag{22}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\prod_{\substack{t=1 \\(t, n)=1}}^{n}\left((-1)^{\rho_{i}} i^{\left(\frac{1}{2}\right)} n^{n / 2}-P_{n}\right)=2^{\varphi(n)} \prod_{\substack{i=1 \\(t, n)=1}}^{n} Q_{n}(t) \tag{23}
\end{equation*}
$$

The right hand side of (23) is a symmetric function of the primitive $n^{\text {th }}$ roots of unity and consequently, an even integer. Any irrational and imaginary terms occurring on the left hand side must cancel. The one term in the expansion free of the factor P_{n} is

$$
\left(\prod_{1}(-1)^{\rho_{1}}\right) i^{\left(\frac{2}{2} \varphi(n)\right.} n^{n \varphi(n) / 2}= \pm n^{n \varphi(n) / 2}
$$

i.e., an odd rational integer. Thus, if P_{n} were even then the left hand side would be an odd integer while the right hand side is even. This contradiction completes the proof.

Concluding remarks

The known values of P_{n}, n odd, are listed below in Table 2 .

Table 2.

n	P_{n}	
1	1	
3	-3	$=-3 \cdot 5 \cdot 7$
5	-5	$=3^{4}$
7	-105	$=3 \cdot 5 \cdot 11 \cdot 41$
9	81	$=11 \cdot 13 \cdot 1229$
11	6765	$=3^{5} \cdot 5^{3}$
13	175747	$=3 \cdot 13 \cdot 17 \cdot 38039$
15	30375	$=3^{2} \cdot 13 \cdot 19 \cdot 64283$
17	25219857	$=3^{8} \cdot 7^{3} \cdot 43 \cdot 47$
19	142901109	
21	4548104883	$=-3 \cdot 11$
23	-31152650265	$=-3^{2} \cdot 5 \cdot 11 \cdot 23 \cdot 733 \cdot 3733$

The last three values were calculated using an efficient algorithm for permanents of Nijenhuis and Wilf (1975).

Note that by Theorem 4,

$$
3^{4}\left|P_{9}, 3^{5} \cdot 5^{3}\right| P_{15}, 3^{7} \cdot 7^{3} \mid P_{21}
$$

and, in fact, we have equality for the first two. Theorem 3 explains why $3 \mid P_{7}$, $5 \mid P_{1} 1$, and $11 \mid P_{23}$. Except for the fact that $n \mid P_{n}$, most of the other small factors are not yet understood.

It follows from results of Wilf (1968) (also see Ryser (1963)) that

$$
\begin{equation*}
P_{n}=\frac{1}{2^{n}} \sum_{S}(-1)^{w(s)} \operatorname{det} C(S) \tag{24}
\end{equation*}
$$

where $C(S)$ denotes the circulant matrix with first row $S=\left(s_{1}, \cdots, s_{n}\right), w(S)$ denotes $\left|\left\{i: s_{i}=-1\right\}\right|$, and S ranges over all 2^{n} sequences of ± 1 's. It then follows from the Hadamard bound on determinants of ± 1 's. that $\left|P_{n}\right| \leqq n^{n / 2}$. On the other hand, it is not even known if $P_{n}>0$ infinitely often. From the limited data available, it certainly seems as if $\lim \left|P_{n}^{1 / n}\right|>0$.

Acknowledgements

The authors wish to acknowledge the valuable suggestions of H . S. Wilf and the aid of N. J. A. Sloane for his assistance in calculating P_{17}, P_{19}, P_{21} and for pointing out the third reference by means of Sloane (1973).

References

Henry H. Crapo (1968), 'Permanents by Möbius Anversion', J. Comb. Th. 4, 198-200.
J. E. Graver (1967), 'Notes on permanents' (unpublished).
D. H. Lehmer (1973), 'Some properties of circulants', J. Number Theory 5, 43-54.

Th. Muir (1960), The theory of determinants in the historical order of development, (London (1890), New York, Dover).
A. Nijenhuis and H. S. Wilf (to appear 1975), Combinatorial Algorithms, (Acad. Press, New York).
H. J. Ryser (1963), Combinatorial mathematics, (Carus Monograph 14, M.A.A., Wiley, New York).
I. Schur (1921), Über die Gausschen Summen', Akad. Wiss. Göttingen, Nachrichten, Math-Phys. Klasse, 147-153.
N. J. A. Sloane (1973), A handbook of integer sequences, (Acad. Press, New York).
H. S. Wilf, (1968), 'A mechanical counting method and combinatorial applications', J. Comb. Th. 4, 246-258.

Bell Laboratories
Murray Hill, N. J. 07974
U. S. A.

University of California
Berkeley, California
U. S. A.

