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In this paper, I introduce a class of arrangements called arrays
of strength d and discuss methods of constructing them with the help
of finite geometrical configurations and algebraic groups involving
elements of a Galois field. The definitions of arrays of strength d
And other configurations that are used are given below.

Arrays of strength d. Let there be n factors Alt A2..., An each
of which can assume 5 values, those corresponding to At being repre-
sented by ij, i2,..., i,. An ordered set ( l a26 . . . nk), denoted simply by
(a b...k), may be called a combination or an assembly. There are
altogether sn assemblies of which a subset of N assemblies is called
an array and represented by (N, n, s). This array is said to be of
strength d if all sd assemblies corresponding to any d factors chosen
out of n occur an equal number of times. The array of strength d is
represented by (N, n, s, d). This array is called a hypercube of
strength d when N is of the form sm. These hypercubes when s is a
prime or a prime power have been used by the author (Rao: 1946)1

in arriving at certain arrangements in the theory of experimentation
in statistics.

Web geometry. A system of points and lines is defined as a web
and denoted by W (n, s) if the following incidence relations hold:

(i) two lines can be incident with one and only one point,

(ii) not more than one line can pass through two points,

(iii) all lines form n classes or pencils each containing s lines
with s points on each such that no two lines of the
same pencil intersect but two lines of two different
pencils intersect.

Orthogonal Latin squares. An arrangement of s2 elements con-
sisting of s values each taken s times, in the cells of a square formed
by 5 rows and columns such that each value is repeated once and

1 See the list of references at the end of the paper.
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only once in every row and column, is called a Latin square. Two
squares are said to be orthogonal if all s2 combinations of s values
occur once when they are superimposed.

We now prove the following theorems.

THEOREM 1. The following relationships hold good among the
parameters N, n, s and d of the array (N, n, s, d).

(a) N = Xsd where \ is an integer.

(b) N ^ »C0 +
 nC1 (s - 1) + . . . +nCdl2 ( 5 - 1 ) «'2

when d is even.

(c) JV ^ »C0 + »CX (s - 1) + . . . + »C(d _ 1)/2 (s -

+ n-lc(d-
when d is odd.

Proof. The result (a) follows from definition. To prove (b) we
define the symbolic sum involving the levels iu i2, . . . , i, of the i-th.
factor

i" = S mja ij

such that S mia = 0, a = 1, 2,. . ., s — 1

S mia wij6 = 0, a 4= 6,

wi;V, = 1 for all j when a = s.

The symbolic product la 2b... nk when expanded gives a linear function
of the assemblies which may be represented by [a b... k] to differen-
tiate it from the assembly (ab... k). If in the linear function [a b... k]
we retain only those assemblies present in the array (N, n, s, d) we get
another function which may be represented by {a b... k).

Consider the case d = 4. Since all combinations of every four
factors are equally repeated it follows that all combinations of every
/ factors, where / < 4, are equally repeated. Hence we see that the
functions

{a b s... s} and {s s c d s.. .. s], except when a = b = c = d = s,

{ab s... s}and {s b' c' s.. .. s}, except when a = 6 = a' = b' = c' = s,

considered as linear functions of assemblies, are mutually orthogonal
and hence independent. Since the total number of assemblies in the
array is JV, the number of independent linear functions of the
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assemblies is not greater than N. The numbers of functions of the
type {a b... k} with all s's, {n — 1) s's and (n — 2) s's are 1, nC1 (s — 1)
and "C2 (s — I)2 respectively, and these are all independent, being
orthogonal. Hence

N ^ 1 + "Cj (s - 1) + nC2 (s - I)2.

The extension to general d is obvious, and the result (b) is proved.
To prove (c) let us consider the case d = 5. Besides the ortho-

gonal functions enumerated above for d = 4, we have "~lC2 (s — I)3

more functions obtained by fixing any value in the first position and
keeping any two other values different from s. Hence we get, when
d = 5,

N ^ 1 + nC1 (s - 1) + nC2 (s - I)2 + n ~ 'C2 (s - I)3.
This can be extended to general d, and the result (c) is proved.

THEOREM 2. The configuration of the web W (n, s), (n — 2)
mutually orthogonal squares of side s, and the array (s2, n, s, 2) of
strength 2 exist together.

Proof. Given the configuration of W (n, s) we have to identify the
n pencils with n factors, s values of a factor with the s lines of a
pencil. There are s2 points through each of which pass n lines
belonging to n different pencils. Hence a point can be identified by
the nature of lines passing through it or an assembly. The s2

assemblies arising out of the s2 points, supply the array (s2, n, s, 2)
in virtue of the properties (i), (ii) and (iii) of a Web.

If we identify the s values of a factor with the rows and 5 values
of another with the columns of a square and fill in the cells repre-
sented by combinations of two factors with the corresponding values
of the third factor, we get a Latin square arrangement. The values
corresponding to the fourth factor give an orthogonal square and
those of the fifth factor give a square orthogonal to the first two.
The (n — 2) orthogonal squares are thus derivable from (s2, n, s, 2).
It is easy to see that by retracing the steps the array can be derived
from (n — 2) mutually orthogonal squares. This shows that any one
of W(n, s), (s2, n, s, 2) and (n — 2) mutually orthogonal squares of
side 5, can be derived from the others, thus establishing Theorem 2.

COROLLARY (2.1). The maximum value of n in (s2, n, s, 2) is (s -f- 1)
when s is a prime or prime power.

When 5 is a prime or a prime power it is known that the web
W (n, s) for n = s + 1 exists, for it is equivalent to a finite Euclidean
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geometry with (s + 1) points on a line. That this is the maximum
possible value of N is given by the inequality (b) of Theorem 1 when

COROLLARY (2.2). The maximum value of n in (62, n, 6, 2) is 3.
Euler conjectured that when s is of the form U + 2 no two

orthogonal squares exist. If this is correct then the maximum value
of n in ((4£ + 2)2, n, U + 2, 2) is 3. In particular it has been verified
by Fisher and Yates (1934) that when s = 6 Euler's conjecture ia
correct; hence the result.

Let s be a prime or a prime power, in which case there exists a
Galois field GF(s) with s elements. The s values of a factor may be
represented by the s elements of GF(s). In the following theorems
only these elements will be used.

If we represent the factors by Ax Fx + . ..+ Ar Fr, where Ax Ar

are elements in GF(s) with the convention that not all A's are zero
and the first non-zero coefficient is unity, and determine an assembly
by giving the value X1a1-\- . . . + Ar ar, corresponding to the factor
X1 F1 + ... + Xr FT, where ( a a . . . . ar) is a combination of r elements in
GF(s), then we get an array (sr, n, s) with sr assemblies by allowing
each a in (a1#.. ar) to assume all possible values in GF(s), n being the
number of factors used.

THEOREM 3. The array with 6r assemblies constructed above is of
strength 2, and this is possible with the maximum number of factors
n = (sr-l)/(s—1).

To prove that the array (sr, n, s) is of strength 2 we must show
that in the sr combinations

(Ax at + . . . +Xr ar), (ft! al+ . . . + /xr a r ) ,

where ax... .ar assume all possible values in GF(s), every ordered pair
of values in GF(s) occurs sr~2 times if Xj=$=cr ^ for all i, where a is an
element in GF(s). If f}lt fi2 is an ordered pair of values in GF(s) then
we require the number of solutions of the equations

Xi ax + ... + Ar ar = fii

which is evidently sr~ 2 if the above condition regarding A's and fi's
is satisfied.

Since a factor is represented by Ax F± + . . . + Ar Fr with the pro-
vision that the first non-zero A is the unit element, we find that the
number of different factors is (sr — 1) / (s — 1).
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If in the inequality (6) of Theorem 1 corresponding to d = 2,

N^l+ -C, (s - 1),

we substitute JV = sr, we find n ^ (sr — 1) / (s — 1), so that the number
of factors found above is the maximum possible. This completes the
proof of the above theorem and gives the method of constructing
arrays (sT, n, s, d) of strength 2 for the maximum possible number
of factors.

As an example we may construct the array (23, 7, 2, 2). The
elements of the field GF(2) are 0 and 1 with the law of addition
1 + 1 = 0, 1 + 0 = 1.

The array (8, 7, 2, 2).

Factors
Ft
0
0
0

Assemblies Q
1
1
1
1

F2
0
0
1
1
0
0
1
1

^ 3

0
1
0
1
0
1
0
1

^i + F2

0
0
1
1
1
1
0
0

J*i + -P 3

0
1
0
1
1
0
1
0

F2 + F3 I
0
1
1
0
0
1
1
0

\+ 1
0
1
1
0
1
0
0
1

If we want the array with sr assemblies to be of strength 3, we
have to choose the factors so that the number of solutions correspond-
ing to any three factors

Ax ax +... + Xr ar = fit
H! ox + . . . + fir ar = p2

vla1+ ... + vrar= p3

is sr ~ 3. This means that the vector [v1... vr) does not depend on the
vectors (Aj...Ar) and (/^.../n,). The maximum number of factors
for which an array of strength 3 can be constructed by the above
method is equal to the number of vectors in a space of .r dimensions
such that no vector is a linear combination of any two vectors. This
can be generalised to the construction of arrays of strength d. Hence
we get the following theorem.

THEOREM 4. A set containing a maximum number of vectors in an
r-space such that no vector in the set is a linear combination of (d — 1)
vectors in the set, gives rise to the arrangement of an array with sr
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assemblies involving the maximum number of factors if the above method
of construction is followed.

The method of building up this set is to choose the elementary
vectors corresponding to the factors Fx,F2...,Fr and go on adding
vectors which satisfy the above condition. An application of this
leads to the following theorem in the case s = 2.

THEOREM 5. The array (2r, n, 2, d) can be constructed for the max-
imum number of factors n — 2r~l when d = 3.

I t is easy to verify that if we choose factors involving an odd
number of F's, then the condition of Theorem 4 is satisfied when eZ=3.
This is due to the fact that all linear combinations of two factors in-
volving an odd number of F's consist of two original factors and
another factor involving an even number of F'e. Thus in the case of
r = 3 we find that the choice of Flf F2, I\, Ft + F2 + F3 leads to an
array of strength 3. The number of factors involving an odd number
of F's in the general case is rcx +

 rc3 + . . . . =2 r - 1 . To prove that this
is the maximum possible, we have to substitute N = 2r in the relation
<c) of Theorem 1 for d = 3:

2r ^ 2n or n ^ V ~1.

This shows that the maximum possible n is 2r -x, and the theorem is
proved.

We now consider the problem of constructing arrays of maximum
strength for a given number of assemblies of the form sr and a given
number of factors n.

THEOREM 6. The group of solutions of the (n — r) independent
•equations

~L \jXj = 0, i = 1, 2,. .., n — r
3

gives an array of strength d if no equation in the group of equations
derived from the above set contains fewer than (d + 1) non-zero coefficients.

The number of solutions is sr. Since every solution satisfies all
the equations in the group of equations, i t follows that if any equation
has c, < (d + 1), non-zero coefficients, all the combinations of c factors
corresponding to the non-zero coefficients are not found in the group
of solutions. Otherwise the condition of strength is satisfied in the
array formed by the group of solutions. An important theorem giving
a relationship among s, n, r and d is as follows.

THEOREM 7.

d < 1A£ nl > _ i
— Sn-r _ j *•
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The number of distinct equations in the group of equations is
(s"- r — 1) / (s — 1). The number of zero coefficients corresponding
to Xj in all the equations is equal to the number of solutions of

bl XXj + b2 X2j + • • • + K _ , \n -T,j = 0.
This is (sn~r~ 1 — 1) / (s — 1). The mean number of zero coefficients
in all the equations is

s n - r - l _ l s"-"- _ 1 _ 7 i ( s n - r - 1 — 1)
" n JZ7\ ^^ZT\ a» - r _ i

If d + 1 is the least number of non-zero coefficients for equations
of the above group, then it follows that the maximum number of
zeros, n — d — 1, must not be less than the mean number of zeros.
Hence we get

n - d - 1 ̂  n{sn~r-1 - l ) / ( s n - ' - 1)

n —r — 1cn — r Q

or d^n—sd ^ n s n - r _ 1 -

An analogous result has been derived by Bhattacharya (1942) in
a certain minimal problem in the design of experiments.

The method of constructing these arrays when the number of
assemblies is not a power of the levels of a factor requires investiga-
tion. An important advance in this direction is made by Plackett
and Burman (1946), who have supplied an almost complete solution
to the problem of arrays of strength 2 when the number of levels of
a factor is 2.
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