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An associative ring R is called a left Si-ring if every singular left /?-module is
injective. In Goodearl [4] it is shown that these rings have a finite ring decomposition into
a ring K with K/Soc K left semisimple, and simple rings which are Morita equivalent to
left Si-domains.

For an /?-module M denote by o[M) the full subcategory of /?-Mod subgenerated by
M. Extending the definition of Si-rings, we call an R-module M an Sl-module if every
singular module in o[M] is M-injective. This also generalizes a similar notion in Yousif
[11]. We obtain that every finitely generated, self-projective Si-module M has a
decomposition

with fully invariant submodules K, Vh such that K/Soc K is a semisimple /?-module, and,
for i = 1 , . . . ,« , Endfl(V )̂ is a simple ring, and the category o[Vj] is equivalent to 7]-Mod
for an Si-domain Tt.

1. Preliminary results. Let R be an associative ring with unit and ft-Mod the
category of unital left ft-modules. For M e R-Mod we denote by o[M] the full
subcategory of ft-Mod whose objects are submodules of M-generated modules. M is
called self-projective if it is M-projective. SocM (resp. RadA/) denotes the socle (resp.
the radical) of the module M. An ft-submodule of M is said to be fully invariant (or
characteristic) if it is invariant under any ft-endomorphism of M.

Morphisms are written on the opposite side to the scalars. For basic notions see [10].
The following elementary observations will be useful.

1.1. PROPOSITION. Consider a self-projective R-module M with S = End/?(M).
(1) / / Rad M = 0, then S has zero (Jacobson) radical.
(2) Assume M is finitely generated. Then M has no non-trivial fully invariant

submodules if and only if S is a simple ring.

Proof. (1) This follows from the fact that, for any simple homomorphic image E of
M, HomR(M, E) is a simple left EndR(M)-module.

(2) For every ideal IczS, MIcM is fully invariant. Since M is self-projective,
/ = HomR(M, Ml) by [10,18.4] and hence MI ± M for / # 5.

For every fully invariant submodule f / cM, HomR(M, U) is an ideal in 5.

If K <= M is an essential submodule, we write K ^ M.
Let M and N be /?-modules. N is called singular in o[M] or M-singular if N — L/K

for some L e o[M] and K s L (see [9]).
By definition, every M-singular module belongs to o[M]. For M = R the notion

ft-singular is identical to the usual definition of singular for R-modules.
The class of all M-singular modules is closed under submodules, homomorphic

images and direct sums (e.g. [10, 17.3 and 17.4]). Hence every module N e o[M] contains
a largest M-singular submodule which we denote by ZM(N). The following properties of
M-singular modules are shown in [9,1.1] and [8,2.4].
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1.2. PROPOSITION. Let M be an R-module.
(1) A simple R-module E is M-singular or M-projective.
(2) / / Soc M = 0, then every simple module in o[M] is M-singular.
(3) / / M is self-projective and ZM{M) = 0, then the M-singular modules form a

hereditary torsion class in o[M].

We extend the definition of a left Si-ring (see [4]) to modules.

DEFINITION. An /?-module M is called an Sl-module if every M-singular module is
M-injective.

In Yousif [11], M is called an Sl-module if every singular module in /?-Mod is
M-injective. Since M-singular modules are singular in /?-Mod, this is a stronger condition
than the one given above.

Though for M = R the two notions coincide, in general Si-modules in our sense need
not be Si-modules in the sense of Yousif (compare the example after [9, 2.2]).

Let T be a left Si-ring which is not left semisimple (for examples see [4], [1]), and R
the ring of lower triangular (2,2)-matrices over T. The map

is a surjective ring homomorphism whose kernel is essential as left ideal in R. Hence
every left /"-module is singular as an R -module and all 7-singular modules are T-injective,
i.e. 7 is a Sl-module over R. Since T is not left semisimple, not every ^-singular module
is T-injective. Hence T is not an Sl-module over R in the sense of Yousif.

Every left module over a left Si-ring is an Sl-module in the sense of Yousif and hence
is an example of an Sl-module in our sense.

In Smith [7], R is called a left RIC-ring if every cyclic singular left /?-module is
injective. It is observed in [5, Corollary 5] that RIC-rings are Si-rings. By [9, 3.8 and
3.10] and [2, Lemma 2], we have more general statements in our next proposition which
also include Proposition 3.1 and 3.6 in [4]. For this we recall two definitions.

An R-module M is called hereditary in a [M] if every submodule of M is projective in
a[M] (see [10, 39.1]). M is a GCO-module {generalized co-semisimple) if every
M-singular simple ^-module is M-injective (see [9, 2.2]).

1.3. PROPOSITION. For a finitely generated, self-projective R-module M the following
conditions are equivalent:

(a) M is an Sl-module;
(b) every cyclic M-singular module is M-injective;
(c) MIK is semisimple for every KsM and ZM{M) = 0;
(d) M is hereditary in o[M] and M-singular modules are semisimple;
(e) M is a GCO-module, M/Soc M is noetherian and Soc{M/K) i^Ofor every K^M.

We will need the following lemma.

1.4. LEMMA. Let M be a self-projective Sl-module with finite uniform dimension and
Rad M = 0. Then M contains no proper fully invariant submodule which is essential as
an R-submodule.
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Proof. Assume V c M i s a fully invariant submodule and V<RM. Since RadM = 0,
S :=EndR(M) has zero radical by Proposition 1.1. RadM = 0 also implies that
HomR(M,U)^0 for non-zero U<zM (see [8], p. 1475, (iv)). With this knowledge we
derive from Theorem 3.7 in [8] that there exists a monomorphism / : M —* V, and since M
has finite uniform dimension, the image of every monomorphism in 5 is essential in M.
Hence the image of/2 is essential in M. Therefore M/Mf2 is a semisimple module and the
following exact sequence splits:

0-» Mf/Mf2-> M/Mf2-+ M/M/-> 0.

Applying the functor HomR(M, —) and the isomorphisms Sg — Hom(M, Mg) for any g e S
(see [10], 18.4), we obtain that Sf/Sf2 is a direct summand in the S-module S/Sf2. Hence
there exists a submodule SfcUcS with Sf + U = S and Sf(~\U = Sf2. This yields
id = rf + u for some reS and ue U and hence / =frf +fu. Since fueSf C\U = Sf2 we
finally have f=frf + sf2 for some seS. Since / is monic this means id =fr + sf and
M = Mfr + Msf a V.

2. Structure theorem. Let us first describe uniform Si-modules with zero socle.

2.1. PROPOSITION. For a finitely generated, self-projective R-module M, the following
are equivalent:

(a) M is a uniform SI-module with Soc M = 0;
(b) M is a self-generator and EndR(M) is a left Sl-domain which is not a division

ring.
Under this condition, M has no fully invariant submodules and EndR(M) is a simple

ring.

Proof. (a)=>(b). If M is an Si-module with zero socle, all simple modules in o[M]
are M-singular (by Proposition 1.2), hence M-injective and M-generated. Therefore M is
a projective generator in CJ[M]. This implies that o[M] is equivalent to 5-Mod (see [10,
18.5 and 46.2]) and 5 is a left Si-ring.

Since ZM(M) = 0, every / e EndR(M) is a monomorphism.
(b)=£>(a). The functor HomR(M, —) is an equivalence.
The last part follows from Lemma 1.4 and Proposition 1.1.

Now we investigate the decomposition of Si-modules with zero socles.

2.2. THEOREM. For a finitely generated, self-projective R-module M and S =
Endfl(M), the following are equivalent:

(a) M is an Si-module and Soc M = 0;
(b) M is a generator in o[M] and S is a left SI-ring with zero left socle;
(c) M = M, ©. . . © Mn, with Mt minimal fully invariant submodules, and o[Mj\ =

o[Li] for some finitely generated, self-projective and uniform SI-module L, with zero
socle;

(d) M = M, © . . . © Mn, with Af, fully invariant submodules, EndR(M,) simple rings
and o[Mj] equivalent to 7j-Mod, for left SI-domains T( which are not division rings.

Proof, (a )o(b) . As observed in the proof of Proposition 2.1, (a) implies that M is a
projective generator in o[M]. Hence a[M] is equivalent to 5-Mod (see [10, 18.5 and
46.2]) and M is an Si-module if and only if S is a left Si-ring.
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(a)=>(c). As noted above, M is a generator in o[M], and by Proposition 1.3, M is
noetherian and hereditary in o[M]. Every essential submodule of M is an intersection of
maximal submodules, and SocA/ = 0 implies RadA/=O and S has zero radical by
Proposition 1.1.

By Theorem 3.7 in [8], the endomorphism ring of the A/-injective hull M is
semisimple artinian, i.e. EndK(M) = 71, ©. . . © Tn with simple artinian rings 7J. Denoting
by e, the unit in Th we have ex + . . . + en = id^ and, since the e, are in the center of
End*(M),

M = Me, © . . . © Men

is a decomposition into fully invariant submodules. The intersection M,:=MnMe,- is a
fully invariant submodule of M and Mj ©. . . © Mn ̂ R M. As we have seen in Lemma
1.4, this means

Mi®.. .®Mn=RM.

Since Hom^M,-, M,) = 0 for i =£j, we observe that Me, is the injective hull of M, in
a[Af,]. Moreover M, is a self-projective self-generator with ZM(M) = 0 and, again
applying Theorem 3.7 in [8], we know that EndR(Me,) = T, is the classical left quotient
ring of EndR(Mj). Hence End/?(M,) has no non-trivial central idempotents and Af, has no
non-trivial decomposition into fully invariant submodules.

To study properties of the summands M, we may assume that M itself has no
non-trivial decomposition into fully invariant submodules. We want to show that M has
no proper fully invariant submodules.

Let A ' c M be fully invariant. First consider a non-zero R-submodule YcM with
X (~)Y = 0. We show that X and Y do not have isomorphic uniform submodules: assume,
for a uniform submodule UcX, there exists a monomorphism g:U—*Y. Since
HomR(M, U) is a non-zero left ideal in 5 and Rad S = 0, we can find f:M-+U with f2 ± 0
and hence (U)f*0. Then (U)fg<=Y and, by the invariance of X, also (U)fgcX
implying (U)f = 0, a contradiction.

Now let {1A}A denote the family of all submodules of M, with no uniform
submodules isomorphic to submodules of X, and put Y = S ^A-

A

Assume Y contains a uniform submodule U isomorphic to a submodule of X. Since
M is hereditary in o[M], we may suppose U a © Yx, and we conclude that U has an

A

isomorphic copy in one of the YA's (compare [10, 39.7]), a contradiction. Obviously,
X D 7 = 0 and, by the above observation, X © Y^R M.

Hereditariness of M also implies that, for any/ e 5, (y)/has no uniform submodules
isomorphic to submodules in X. Hence (Y)f c Y, i.e. Y and X © Y are fully invariant in
M. By Lemma 1.4, we have X © Y = M. This means by assumption X = M.

Now choose a uniform submodule UczM and a non-zero f eHomR(M, U). Then
L:=(M)f is uniform and Af-projective. The trace Tr(L, M) of L in M is fully invariant
and hence Tr(L, M) = M, implying a[M] = o[L\.

(c)=>(d). Each of the L, is a progenerator in o[Mt] = o[Lt] (see proof of (a)o(b)) .
Hence CT[A/,] is equivalent to 7j-Mod where 7j:=EndR(L,) is a left Si-domain by
Proposition 2.1.

According to Proposition 1.1, EndR(M,) is a simple ring.
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). By the given equivalences, every M, is an Si-module and a[M,] contains an
M,-projective generator L, with zero socle. Then also M, has zero socle and is a
progenerator in o[M,] (see proof of (a)<=>(b)), and EndR(M,) is a left Si-ring. As a
product of these rings, End R{M) is also a left Si-ring.

REMARK. For the proof of (b) => (c) we could have used part of Goodearl's structure
theorem for left Si-rings in [4, 3.11]. For M = R our proof provides an alternative to
Goodearl's proof of the corresponding part.

Finally we are ready to prove the following extension of Goodearl's characterization
of Si-rings in [4, 3.11].

2.3. STRUCTURE THEOREM. For a finitely generated, self-projective R-module M and
S = Endfl(M), the following are equivalent:

(a) M is an Si-module;
(b) ZM(M) = 0 and M has a decomposition

M = /C © V, © . . . © Vn

with fully invariant submodules K, Vh such that K/Soc K is a semisimple R-module, and,
for i = 1,. . . , EndR(Vi) is a simple ring and the category a[Vj] is equivalent to 7]-Mod, for
an Si-domain 7J which is not a division ring.

Under the given conditions, S is a left SI-ring.

Proof, ( a )^ (b) . Assume M is an Si-module. As already observed in Proposition
1.3, M is hereditary and M := M/SocM is noetherian.

As noted in Proposition 1.2, the M-singular modules form a torsion class in o[M].
Let K denote the fl-submodule Soc M cK<=M such that K/Soc M is the torsion
submodule of M in this torsion theory. Since Soc M is fully invariant in M and K/Soc M is
fully invariant in M/SocM, K is fully invariant in M.

By construction, Soc K = SocM. Also K/SocM is an Si-module and Soc M ^K since
K is projective in o[M] (M hereditary). Hence K/Soc M is semisimple by 1.3 and
A/-injective by assumption. Therefore

M = K/Soc M<£N/Soc M

for some R-submodule N czM containing Soc M. Since Soc M is a fully invariant
submodule, M is self-projective. As M/L is semisimple for L^M, and SocM is the
intersection of all L 3 M, we conclude Rad M = 0.

Hence M/K — N/Soc M is a self-projective Si-module with zero radical. By definition
of K, M/K contains no M-singular submodules. Therefore every simple submodule of
M/K is M-projective by Proposition 1.2. Since SocM c K, we conclude Soc(M/K) = 0.

Denote by {Hk}A the family of all submodules of M with Soc//A = 0 and set
V = £ Hk. Since all simple submodules of V cM are M-projective (by Proposition 1.2)

A

and © Hx has zero socle, also Soc V = 0 and K C\ V = 0. The M-projectivity of simple
A

submodules of M also implies that, for every feS, (V)f has zero socle and hence
(V) / cV , i.e. V is fully invariant. It is obvious from the definitions and the properties
derived that Soc M © V < K ® V^R M and that K 0 V is a fully invariant submodule of
M.
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Passing to the factor module, we have that (K © V)/K is a fully invariant submodule
of M/K which is essential as an R-submodule. Recalling the properties of M/K shown
above, by Lemma 1.4, this implies K © V = M.

The composition of V is now obtained from Theorem 2.2.
(b)^>(a). Obviously, for every essential submodule U cM, M/U is semisimple and

hence M is an Si-module by Proposition 1.3.
It remains to show that S is a left Si-ring. Since M is hereditary in o[M], S is left

semi-hereditary by [10, 39.14] and hence left non-singular.
By (b), End*(M) = End^A") x EndR( V,) x • • • x EndR(Vn). In the proof of Theorem

2.2 we have shown that all EndR(V;) are left Si-rings. Therefore it is enough to show that
S, = EndR(K) is also a left Sl-rng.

From the exact sequence 0—*SocM —>M —»M—»0, we derive the exact sequence

0-> Hom(A/, Soc M)-> 5^- Hom(M, M)->0.

Since M — K/SocK is semisimple, Hom(M,M) is a semisimple left 5-module. From
Hom(M, Soc M) <= Soc 5 we conclude that S/SocS is left semisimple and 5 is a left
Sl-ring by Proposition 1.3.

REMARK. For M = R, our Structure Theorem yields Goodearl's Structure Theorem
for Si-rings (see [4, 3.11]), which was also proved in Theorem 2.7 of Baccella [1] in a
different way.

Obviously any Si-module is a GCO-module (compare 1.3). By our Structure
Theorem we obtain that self-projective GCO-modules with descending chain condition on
essential submodules are Si-modules. Referring to [9, 3.11] we have the following
corollary.

2.4. COROLLARY. For a finitely generated, self-projective R-module M, the following
are equivalent:

(a) M is an SI-module with dec on essential submodules;
(b) M is a GCO-module with dec on essential submodules;
(c) M/Soc M is semisimple and ZM(M) = 0.
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