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QUADRATIC EQUATIONS AND APPLICATIONS

TO CHANDRASEKHAR'S AND RELATED EQUATIONS

lOANNIS K, ARGYROS

A new technique, using the contraction mapping theorem, for

solving quadratic equations in Banach space is introduced.

The results are then applied to solve Chandrasekhar's integral

equation and related equations without the usual positivity

assumptions.

1. Introduction

Consider the equation

x = y + B(x,x) (1)

in a Banach space X over the field S of real numbers, where

B : X*X •*• X is a bounded bilinear operator and y e X is fixed. We prove

a consequence of the contraction mapping principle which can be used to

prove existence and uniqueness of solutions of (1). For the special cases

of Chandrasekhar's equation [5]:

X(S) = 1 + XX(S) -^rX(t)dt (C)

J S+t

and the Anselone-Moore system [l]:

\XJ ( S > = h j ( S ) + Yj LjX
{s't)x\(t)X2(t)dt + y\ Lj2lx,t)jx^{t)dt, 0 = 1,2, (H)
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276 Ioannis K. Argyros

our theorem yields existence and uniqueness for larger values of the

positive parameters \,y than previously known in [?], [9], as well as

providing more accurate information on the location of solutions.

More precisely we prove existence and uniqueness in a specific closed

ball U{z,r) for a solution of (C) provided that

A < .424059

and for a solution of (H) provided that

Y < [4Ht/U max (H£.J + ̂ L .J ) l~l.
,7=1,2

From [4], [5], [6], [7], LSI, one can describe the existence theory

of (C) completely for the case i?e(A) > o , however, the techniques

applied there are not as general as the one described here, because they

make use among other assumptions (which hold only for the specific B

given in (C)) of the differentiability of the operator

IP(x) (s) = x - 1 - Xx(s)

and the invertibility of P' (xQ) for some specific xQ e C[0,l] .

The principal new idea in our general theorem is the introduction of a

second quadratic equation

z = y + F{z,z) (2)

for comparison with (1) . The estimates on (C) and (H) are then obtained

under suitable choices of F.

Finally we show how we can use the solutions of finite rank equations

to approximate solutions of (1) when B is the uniform limit of finite

rank operators.

Some of these results were announced in [2].

2. Preliminaries

DEFINITION 1. An operator B -. XxY -> Z sending lx,y) e X*Y to

B(x,y) 6 Z is called bilinear if it is linear in each variable separately
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and symmetric if X = Y and B{x,y) = B(y,x) for all x e X .

DEFINITION 2. The mean B of B on X*X is defined by

S(x,j/) = j(B(x,y) + B(y,x)) for all x,y e X.

DEFINITION 3. An operator Q -. X •* Z sending x e X to Q(x) e Z

is called quadratic if there exists a bilinear operator B : X*-X -*• Z such

that

Q(x) = B(x,x) for all x e X.

The following proposition can now be easily proved.

PROPOSITION 1. An operator Q -. X -v Z is a quadratic operator if and

only if there exists a symmetric bilinear operator B -. XxX •+ Z

satisfying

for all x,y e X , c ,c e. S . Such a symmetric B is unique.

DEFINITION 4. A bilinear operator B : X x J + Z is said to be bounded

if there exists c > 0 such that

BS(x,t/)H < cOarOOyO for all Lx,y) e. X*l.

The quantity llBB = sup BB(x,y)ll is called the norm of B .
D aril <1, D 2/0 <i

DEFINITION 5. A quadratic operator B : X + Z is said to be bounded if

there exists a > 0 such that

BQ(x)ll < eOxH 2 for all x e X.

The quantity I§I = sup l$(x)i is called the norm of Q .

From now on we assume that X - X = Z unless otherwise stated.
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3. A consequence of the contraction mapping principle,
Rail's Theorem and equation (1)

We can assume without loss of generality that B in (1) is symmetric

since it agrees with B on the diagonal of X'xX .

We now prove a consequence of the contraction mapping principle for

(1).

THEOREM 1. Let B be a bounded bilinear operator on X*X and

suppose y and z belong to X . Define T -. X -v X by

T{x) = y + B(x, x).

Set

a = WBT- '*'•

, { 2
b = a ~ [a -

{ 2 0T(3)-3ll"|l/2
[a - - T 5 1 J '

and assume b is nonnegative and a ? 0 . Then

(i) T has a unique fixed point in U{z,a) = {x e X|llx-sll < a};
(ii) this fixed point actually lies in U[.z,b) .

Proof. The hypothesis, b 2 0 and a ? 0 , implies that a > 0 and

2 _ lTLz)zla ITst •

Fix r such that b i r < a .

Claim 1. T is a contraction operator on U{z,r) . If

^ , ^ 2 e U(z,T) , then i t is routine to show

Set q = 2(r+Isi)BBB. By hypothesis,

r < 1 ^ f - I s l

so 0 <q < 1 and the claim is proved.
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Claim 2. T maps Z7(z,r) into 17(3,r) . We have

< llBUr2

Define the real quadratic polyhomial g(r) by

= »Bllr2+ (20BOD3II-1)2>+0|P(2)-3D.

To establish the claim we must show that g{r) < 0 for a l l r, b £ r < a
Now the quadratic function g(r) is convex, with smallest root at b
and minimum occurring at a . So for b ^ r < a ,

BBir2 +2BBlll3Br+BrCsJ-sD s r .

The theorem now follows from the contraction mapping principle.

COROLLARY 1. If

then

(i) the equation

x = y + B(x,x\ (1)

has a unique solution x in the open ball y(.O,r_) , where

r 2 = C2IBI)"1;

(ii) moreover x e U{O,r ) , where

rx = [l-(l-4BBBIlyl)1/2]C2DBll)"1.

Proof. Take 3 = 0 in Theorem 1.

We now state Rail's theorem for comparison. The proof can be found in

[9].

THEOREM 2. If

then
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(i) equation (.1) has a solution x e X satisfying

0x0 < Cl-(l-4«B0Hi/n)1/2]{.2BB0)"1;

(ii) moreover x is unique in U(x,R), where

R = ( l - 4 l l B H n ! / l l ) 1 / 2 ( 2 0 B 0 ) " 1 .

Note that Theorem 2 and Corollary 1 provide the same estimate on

11x0 , but Theorem 2 guarantees uniqueness in U(x,R) and not in U(0,V) .

Corollary 1 is a crude application of Theorem 1. Sometimes it is

possible to introduce an auxiliary quadratic equation which is "close to"

(1) , but easier to handle. In the next section, we will use Theorem 1 in

a more subtle way to exploit this idea. In particular, we will learn how

to solve (.1) in cases not covered by Rail' s theorem.

4. Auxiliary quadratic equations

THEOREM 3. Consider the equation

z = y + F(z,z) (2)

where F -. X*X •*• X is a bounded syrmtetrio bilinear operator and y is

fixed in X . Suppose that there exists a solution z of {2) satisfying

Hall < L2AW{M^Fi + A B T ) ] " 1 . (3)

Then

(i) equation (1) has a unique solution x e U(z,a);

( i i ) moreover, x e U{s,b)} where

b = {l-2flBH»sll - [ ( 2 l l S l l l l 3 l l - l ) 2 - 4 l l B - F 0 l l B l l B 2 n 2 ] 1 / 2 } ( 2 I I S 0 ) " 1 .

P r o o f . Wi th T a s i n Theorem 1 , we h a v e

0y(3)-z0 = 0 (B-F) iz,z) +FLz,z)+y-zi

< B(B-F)(s,s)0 + iFLz,z)+y-si

So

lT(z)-zl < iB-Fiizi2. (.4)
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Now (3) implies the hypothesis of Theorem 1 since

Izfl < (2BSH)"1 =» a > 0,

while by (3) and (4) we have

" z

or

The following generalization of Theorem 3 allows us to deal with the

situation when s is not an exact solution of (2).

THEOREM 4. Let B and F be bounded bilinear operators on ZxX and

suppose y and z belong to X . Define T -. X -*• X by

T(x) = y + B{x,x),

and set

1a = —I. I. — n s D

^ ^ ii i i r . L * t * - A* II ii _ ~ . il ^ ^

r~ 2 B B-FQ I
- a - \a

Assume that

+ /&B-FH+e)

(i) 21 has a unique fixed point in U{s,a) •,

(ii) this fixed point actually lies in TJ{z,b) .

Proof. Similar to Theorem 3.

We complete this section by recording certain facts concerning

Theorem 3.

REMARK 1. The iteration
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xn). n= 1 ,2, . . .

converges for any x_ e U(z,b) to the solut ion x of (.1) a t the r a t e of

a geometric progression with quotient

q = 1 - [C2HBHH3H-1)2 _ 4llB-.FllllBllll3ll2]1/2.

Proof. By Theorem 3 we have

q = 2Ci»+ll3ll)llBll

= 1 - cC211BUDsQ-i)2 - 4 D B B I B - F O H B H 2 ] 1 / 2 .

PROPOSITION 2. Under the hypothesis of Theorem 3, the solution

obtained in Theorem 3 satisfies

Hxll < (.2IBD1"1.

Proof. By Theorem 3 we have

laj-sll < a,

so t h a t

11x11 < M + a,

t h a t i s , IIxB < C2HB1)"1, and the resu l t follows.

COROLLARY 2. For any y e X such that Hz/11 < C4»BH ) ~ 1
1

(i) equation (1) has a unique solution x e U(y,a), where

a = (l-2lBlll l j /U) ( 2 H B 0 ) " 1 ;

( i i) moreover x e U(y,b), where

b = [ l-2l5llyl - (l-4aBl«yi)1/2](2iBB)"1.

Proof. Apply Theorem 3 with F = 0 and Z = y .

REMARK 2 . Theorem 3 may be applicable even if the hypothesis in

Corollary 1 or Theorem 2 is violated. Here is an example in X = J? .

EXAMPLE 1. Let

x = -.251 + x2 for x = y + B(x,x) and

z = -.251 + .832 for z = y + FCz,2) .
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PROPOSITION 3 . Assume

(i) the hypotheses of Theorems 2, 3 and Corollary 1 are satisfied;

( i i ) ( I S l - I S - F B ) l 3 i 2 - B s i + H y i > 0 .

Then Theorem 3 provides a sharper estimate on x than Theorem 2 or

Corollary 1.

Proof. By Theorem 3 ,

Ox-sll < b so M < b + DzO.

By Theorem 2 and C o r o l l a r y 1,

so i t i s enough to show

< [ l - ( 1-411 BID2/D)1/2](2llBB)"1

or

1B-PH) llsll2 - Isll + Hz/11 > 0

and the result now follows from (ii).

5. Chandrasekhar's integral equation

PROPOSITION 4. Take X = C[O,1] with sup-norm and define the operator

K-.XxX + X by

K{x,y)ts) =-|tx(s)j ^y(t)dt+y(.s)\ ~^

Then §XD = in 2 .

Proof. The operator Q : X •* X defined by

Q(X) = x(s)\ -^

is a quadratic operator since

K(x,x) = Q(x) for all x e X.

Now

Q = max l^x | dt = in 2
s •'O
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and since always

I$I < ixi

we obtain

in 2 < IIAH.

The proof wi l l be completed i f we prove tha t

II#1 s m 2.

But by the definition of K ,

< ^maxC2|
1

s )c

s
s+t

dt) = in 2

and the result follows.

We now apply Theorem 2, Corollary 1 and 2 in (C) with B = XK

According to Corollary 1,

(i) equation (.1) has a unique solution x e ULz,r ) , where

r2 = (2X in 2 ) " 1 ;

(ii) moreover x e V(z,r ) , where

rx = [1-(1-4X In 2)1/2](2X m 2)"1,

provided that 4X In 2 < lj that is, A < .36067 .

Similarly according to Theorem 2,

(i) equation (1) has a unique solution in U(x,R), where

R = (1-4X In 2 ) 1 / 2 (2X In 2)" 1

provided that X < .36067 .

Finally, according to Corollary 2,

(i) equation (.1) 7zas a unique solution x e V(l,a)> where

a = Q-2X m 2) (2X in 2)"1,-

( i i ) moreover x c 77(1,£>), where

b = [1-2X in 2 - (1-4X lw 2)1/2](.2X In 2 ) " 1 .
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Theorem 3 has the following corollary.

PROPOSITION 5. Consider the equation

z = y + XB{z,z). (5)

Suppose

2XDBDDSH < 1 (6)

where z and X satisfy (5). Then for

X < Xx < c1 (7)

with

c = [411BINI3I1 a->

the conclusions of Theorem 3 for the equation

x = y + X B(x,x) C8)

hold.

Proof. To apply Theorem 3 we need to prove

I2I < [2(X1llBll)
1/2((|X-X1|[lBll)

1/2 + (X^lBll)172))]"1.

This is proved by using (6) and solving (.7) for H3II .

In practice, an exact solution of the auxiliary equation (2) or C5)

can seldom be obtained. The following proposition, whose proof is similar

to that of Proposition 5, guarantees that the original equation (1) has a

solution even when we can only find an approximate solution of (2) or (5).

PROPOSITION 6. Let B be a bilinear operator on XxX , suppose y

and 3 belong to X and X is a positive parameter. Set

and
_ -I

30 [ 1 - ( X - e ) BBO D3B ] } .

Then, for any X satisfying X < X < c , the equation

x = y +
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has a unique solution x in U{z,a) and in fact this solution lies in

V) . Here

b = a - la2 - ( l - -^- )M 2 -^- l s l l
2]1 / 2 .

REMARK 3 . According to Theorem 2 and Corollary 1 or 2,

Chandrasekhar's equation

t1 s= 1 + Xz{s) -±+ z(t)dtXK(z(s) ,
>o

has a solution for any X satisfying X < .36067 , but now using

Proposition 6 we can extend the range of \ to X < .424059.

Here are some characteristic values for X , the norm of the

corresponding approximate solution z and C, .

(C)

.35 1.44474532 .384363732

1.59821923 .405244331

.42 1.68363661 .420163281

.423 1.69644924 .423011429

.424 1.70085561 .424070047

.424059378

.424059379

1.700973716

1.700973721

.424059379

.424059379
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The approximate solution 3^ was calculated using the iteration

suggested in Remark 1 with 3 (s) = 1 for X < .36067 . The convergence

of the iteration is then guaranteed by Corollary 2. When

.36067 £ X < .424059 then the initial approximation zQ(s) for such a

X was the approximate solution of (C) for a smaller X , which was

sufficient for the use of Proposition 6. Simpson's rule was used for the

numerical quadratures over S in the range 0(0.05)(1.0) . The results

agree with those in [JI] at least to six decimal places. Finally o^

was calculated according to Proposition 6.

Numerical iteration LSI suggests that if X > .42406 then

lxll£ (2XB#B)~ . This implies that if the estimate on Uxll given by

Proposition 2 is the "best" that Theorem 4 can provide, then Proposition 6

provides the widest possible range for X .

6. Ansel one-Moore's system

A system of quadratic equations in X of the form

xi = yi + Bi(x'a; ) ' •£ = 1.2,. .. ,n

where x • ,y • e X , x = (x,,. . . ,x ) e X™ and 5. : XxX -*• X , i. = 1,2,. .. ,n

are bounded bilinear operators, can be viewed as a quadratic equation of

the form

x = y + 5(x,x) in f1 (9)

where the norm of a vector in X is defined by

lz> = max{lx1l,...,1x^1};

and therefore

ISi = max{l5 I,...,IB I}.

Let X = C[0,l] and define the continuous linear operators

Ljk:X^X b y

= j NjkLs,kf) is) = j NjkLs,Vf(.ndt, 0 < s < 1,
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where the N .-,,j,k = 1,2 are continuous functions of two variables.

Define the quadratic operator E : XxX -*• XxX by

E(x) =
i21XlX2 + 1 L22Xl

with x =

Also define the operator B : X*X.xXxX -> XxX by

B(x,y) = faix+y) -E{x-y)l.

Note that B is a bounded symmetric bilinear operator.

We now state for comparison Anselone-Moore's theorem concerning the

solution of (H). The proof can be found in [7].

THEOREM 5 . If

4 y II y IIII ffll < l

and

llffll < max (II£• II +11 L.J) ,
J=l,2 3l °2

then

(i) equation (H) has a unique solution x e U(.Q,r')j where

r'2 = (2YH51!)"1;

(ii) moreover xeU(.O,r')3 where

Equation (H) is of the form (9). Here, X = C[O,1] and

llBll < max (IlL.J +il£.J)
3=1.2 °L Z °Z

where

ii L •-, n = sup

s

Since

max
3=1,2

f l
I \Ndk(s,t)\dt, Q,k = 1 , 2 .

( » £ . J + i f l L . J ) < m a x ( i £ ., D+B Z, . _ 0 ) ,
3X 2 3Z J l j 2
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Corollary 2 provides both a wider range for y and better information

about where the solution lies than Theorem 5. Finally we can use

Proposition 6 to extend the range of y even more, but we omit the

details here.

7. Quadratic finite rank operator equations

DEFINITION 6. An operator P : X •+• Z sending x £ X to P(x) £ Z

has finite rank n if the span of the range of P has dimension n .

REMARK 4 . The problem of solving the quadratic equation

x = y + £(*) (10)

when Q is of rank n can be translated to a finite dimensional one by

making the substitution z = x-y to obtain the equation

z = QLz+y)

which shows that z must lie in the range of Q . More precisely we

state the following theorem. The proof can be found in [3].

THEOREM 6. The point w e X is a solution of (10) if and only if

n
w = y + I 5-Z).

where the vector (£,...,5 ) £ 5 " is a solution of

n n

i ~ i .L ai {. . L in i j' ~ >•,?.,...,n ^n b

where 1^, a^, b^., i3j = l,2,...,n are specific numbers depending on Q

and y .

REMARK 5. The linear part in equation (11) can sometimes be

eliminated and therefore (11) can be written as

n

i i i,k=\ ̂ 3 i 3' , ,...,n

THEOREM 7. Consider the quadratic equations

3=2/ + *LCz,3) (12)
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where F • XxX •*• X , n = 1 , 2 , . . . are bounded symmetric bilinear operators.

If

(i) the sequence tf^} converges to B uniformly as n •*• » ,

(ii) for each n there exists z , satisfying (12) and

suplls^U < (2USB)"1 ,

then the sequence ^zn^ converges to a solution z of (1).

(Note that B and the F 's are not necessarily of finite rank here.)

Proof. We have

zm~ zn= W V " V W ;

by adding and subtracting V V V ' ̂ m^n'V' Fn[ZmlZn) and Fm{zm'Zn]

and rearranging we obtain

zm~

U 3 )

Now, s ince supU2 II < (2HSII) there ex i s t s e > 0 such tha t

II3JI < o < (211B")"1 , n = 1 , 2 , . . . , (14)

Moreover using (14) and the t r i ang le inequali ty in (13) and s e t t i n g

p = limll2
n~2

m" as n,m •+ <*• we obtain

p i 2»5llcp

p(2»fl0c-l) S 0, (15)

by (14) and (15), which implies p = 0 , that is,

limll z -2 II = 0 as n -*•<*>.

Therefore the sequence ^•ZY1} >
 n = 1,2,... is a Cauchy sequence in a

Banach space and as such it converges to some 2 e X . The element 2 e X

is a solution of (1) since

3 = lim zn = lim
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y + lim P Iz ,z ) = y + B(z,z\.

and

Here we provide an example for Theorem 7 in X = JR :

EXAMPLE 2. Let

x = 0 + x for x = y + B(x,a:) (16)

3 = 0 + ̂  2 for s = y + Fniz,z) . (17)

Then since

n-1

>• 1 a s n •*• °°

and

3 = 0 is a solution of (17) for each n , n = 1,2,...,

the conditions of Theorem 7 are satisfied. Therefore since

3 -»• 0 as n -»• °> , 0 is a solution of (.16) .

The results presented here have been extended (3) to the more general

equation

x = y + L(x) + B(x,x)

where L : X •*• X is a bounded linear operator.
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