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1. Let w(z) be a non-negative weight function for the finite interval

b
(@, b) such that j' w(z) dx exists and is positive, and let 7',(z), r=0,1, 2, ...

a
be the corresponding orthonormal system of polynomials. Then if F(x)

is continuous on (a, b) and has “Fourier” coefficients
b
c,:j Fa)T,(x)w(x)de, r=0,1,2, ...,
a

Parseval’s formula 2 gives

b @
[ w@ r@ra= £ o (1)

a r=0
We shall show that for the weight function w(x) C(x) and F(x) = A (x)/C(x),
both satisfying the conditions above, é ¢, 8=0,1,2, .., of Parseval’s

r=0

formula takes the form of a ratio of two determinants. The successive
values of this determinantal ratio will be shown to provide a sequence
of convergent approximants to the value of the integral. Moreover in
the case when C'() is a polynomial, an expansion of the integral is given in
terms of the roots of C'(x). The particular case when C(x)is linear indicates
the relation of the present method to the expression of integrals of the type
j Z—fg dx as continued fractions. The case when the range of integration
is infinite is to be treated in Part 2. '

2. Let 8,.(x) = é a,, 2%, @, %0, be a polynomial of degree r in z, and
t=0

[/ 6,@)0,(@)0(@) Cl@) B = 7=y @

! Applications have been given in Biometrika, 37 (1950), 111 and 38 (1951), 58.

2 See for example D. Jackson, Fourier Series and Orthogonal Polynomials (Carus Math.
Mon., 1941), Ch. II, and p. 228, or G. Szegd, Orthogonal Polynomials (New York, 1939),
Ch. III.
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b
where it is assumed that w(x)C(x) is non-negative and S w(z) C(z)dx
exists and is positive,

Further let p,(z) = é p,8,(x) be an orthonormal system associated
& 0
with the weight function w(x) C{z) on (a, b), so that?!
Bo(x) 6y(z) ... O,(x) |
Yo,0 Yo,1 -+ Yo,r

pr(x) = (Y10 Y11 oo Y1,r ; -:—'\/(Ar—l Ar)’ (3)
‘ Yr-1,0 Yr-1,1 +-+ Yr-1,r
where A= |'yo,0, Vi1 oo 'y,.,,l.

Hence the Fourier coefficients for A4(z)/C(x), assumed continuous on
(@, b), are given by

4 =r‘ﬂ“’_)w(x)0(x)ps(x)dx (=0,1,2 ..)

* Ja Cl)
_ b |90(x)’ Yors Y12 --+» 'ys—l,sl
= | Ayute) g e Vsl g
=|ag, You, Y120 ++» Va1 s|[V (D51 As), (4)
. :
where a,=j b,(x)wiz)A@)dz (r=0,1,2, ...). (5)
. \
Hence, using Parseval’s theorem, we find
b [A (x)]zw(x) _ = |°‘01 Yors Y1z --+> ')’s—l,s|2 6
ja C(x) do = REO A.s—-l As ( )

which, by Schweins’ theorem on determinants?, may be written as

0 o« o ... oa
% Yoo Yor -+ Yos
— lim % Y10 Y11 - VY1 ":‘l')’oo’ Y11 o> Ys:|~ (7)

>®

%y V50 Yer o+ Vas

1 See Szegd, loc. cit., Ch. II.
2 Muir, Theory of Determinants, Pts. I and II (London, 1906), or A C. Aitken,
Determinants and Matrices (Edinburgh, 19486),
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46 L. R. SHENTON

In general the partial sums of the series (6) and the corresponding part of
the determinantal ratio (7) form non-decreasing sequences. A more general
result is found by applying Parseval’s formula to the functions

{4 (x) £ B(x)}/C(x)

assumed continuous on (a, b), whence

sbA(x) B(x)w(x) da ;_“ 'do: Yo1> Vigs -++> Y1, s‘ : '\@2’_7/0717:}‘/1'217'7‘_"_‘)’3—]7 sJ_ (8)

a C( ) 8—=0 Aa—lAs
0 op o ... a
Bu Yoo Yor - Yos
= —lim B] Y10 Y11 --- ’)/1,!+I')’007 Y1 ey '}’ssl’ (9)
8—>® . . . .

Bs Yso Vs1 +or Vss

in which B, is given by (5) with B(z) replacing 4 (z).

It is convenient to use a matrix notation in (9) and write
b .10 .asf .
J' {l(ﬁ)—gg)ﬁ}(ﬁ de=—1lim |, "]y, (10)
a (x) 1Ps Vsl
The special case A(x) = B(x) =1, C(z) = x4z is known in the theory of
continued fractions ! in which case, with 8,(x) suitably restricted, the deter-
minants are of “continuant” type.- The formula (10) is thus seen as an
extension of this type of continued fraction. Since the convergents of a
continued fraction satisfy a second order difference equation, a generalised
continued fraction might be one for which the “convergents’’ satisfied a
difference equation of the =»-th order, this suggestion being given by
Fiirstenau in “Ueber Kettenbriiche hoherer Ordnung’’ 2 The deter-
minants in (10) do not in general appear to satisfy any simple difference
equation. It is of interest to note that Rogers?, in representing certain
definite integrals as continued fractions, suggested that some form of
o ® g p—xl

algebraic fraction might exist for cases, such as j t—;——ﬂ—f, which were
. . . o Y7

intractable by his method.

18ee for example H. S. Wall, Continued Fractions (New York, 1948), Ch. XTII
onwards, or O. Perron, Die Lehre von den Kettenbriichen (Leipzig, 1913), Ch 9.

2 Muir, Theory of Determinants, Vol. 111 (London, 1920).

3 L. J. Rogers, ' Asymptotic series as convergent continued fractions 7, Proc. London
Math. Soc. (2), 4 (1905-6).
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3. We now turn to a further use of formula (10). Consider the deter-
minant whose elements are definite integrals

S" A, (z) Ap(z) w(z)dx

=1, C@) R

(j) k= 1’ 21 e n)’ (11)

in which 4,(z), j=1, 2, 3, ..., n, are continuous functions over (@, b) and
w(z) C(x) satisfies the same conditions as for (10). We may approximate
to A by replacing each integral by the corresponding ratio (10) with the
same s, and using the notation

b
,akzs 0,(x) A;@@)w)dz (j=1,2,..,n k=0,1,..,3),

[iop) = [00, 5015 j%tg; oo %)
to obtain
) 0 [e] .
A= (—1)"1 s = Ty k=12, ..., n),
(=0t ey ) || 1A )

which, by an “extensional ”’ identity in determinants?, leads to

A Sb{lj(x)Ak(x)w(x)dx" (12)
a C(x) ‘n
0 0 0 o 1% v 10
io 0 o 0 40 sty e 2%
= (—1)"‘ lim ! 0 0 0 2% %1 - n% (13)
5>© 1%y 9% - % Yoo Yor -+ Yos
;10‘1 2%1 +-- 2% Y10 Y11 --- Vis
1% 9% oo n%g VYso VYs1_ --- Vss |
|700’ Vi e 'yssl

If the 4;(x), =1, 2, ..., n, are linearly independent, then A is positive.
This follows from the fact that the quadratic form

b <§ “1A5(x)> :

L b A,(x) A(z) i .
S5 [ S0 w0 vt

is positive definite. That a determinant with definite integral elements
similar to A is positive appears to be due to Kowalewski®. We thus see

1 Aitken, loc. cit.
2 G. Kowalewski, Einftikrung in die Determinantentheorie (Leipzig, 1925), 224,
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that under the conditions attached to 4;(x) and w(x) C(«x), the bordered
determinant in (13) has the same sign as (—1)*. It may be remarked that
in certain cases the numerator of (13) reduces to a multiple of

|Yo0> Y115 -5 ')’ul
with a certain number of rows and corresponding columns deleted.

4. There is an alternative form for the expansion given in (8) when
C(z) is a polynomial. Let C(z)=k ﬁ (x—=z,). Then by Christoffel’s
: Al

theorem (Szegd, loc. cit., 2.5), if p.(z) are orthonormal polynomials with
respect to the weight function w(z) on (a, b), the orthogonal set with
respect to C(x)w(x) is g9,(x) where

pr( ) pr+1( ) . pr+n(x) l
qr(x) pr(xl) pr+1(x1 pH—n(xl) i—C(x) (14)
pr( n) pr+1(xn) pf-!—n(xn)!
If C(«x) has a root of multiplicity m at x,, then the corresponding rows in
(14) are to be replaced by the 0, 1, 2, ..., m—1-th derivatives of p(z) at z,.
We further require a theorem of Darboux (Szego, loc. cit., 3.2):

(@ x
o) bt [w—y) = —521 § 5,01 2,10, (15)
) Praa(y)
where the recurrence relation for the polynonljals p(x) is
P(x) = (xAr+Br).pr—-l(x)_orpr——z(x) (18)

with 4. =k k._,, C.= A,/A,_,, and where k, is the highest coefficient in
p.(x). An extension of this is found by using the recurrence relation in
(14), namely

0:@) = (— 1 5 £ (p ), pra@r), Braled s Braal@)pi@) (1)

with derivatives appearing in the rows of the determinants when C(x) =0
has multiple roots. Using (14) and (17), we have

j: qr2(x) O(x) w(z) dx = JZ |pr(z)’ .pr+1(aélz;:)“" pr+n(xn)| (_l)n &;‘;—_n

X E @), Bral®), s Prin-a(an)| @) (o) w0(a) da
= (_ l)n ]%L !pr(xl); pr+1 (xz)’ ey pr+n—1(xn) | . lpr+1(x1)’ pr+2(x2): b ] pr—*—n(xn) |

= ¢, say. | (18)
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If now A(z) and B(z) are polynomials of degree L and M respectively,
we may write

L M
A(z) = )EO a,pi(z), B(z)= )Eobxpa(x)-

Hence the Fourier coefficients of 4 (x)/C(x) with respect to the orthogonal
set g.(x) and the weight function C(z)w(z) are given by

b
a,qS,:LA(x) 4,(@) w(z) do

kr n : ’
= (—)n k_+ : )‘an’)\pk(xl): Pr+a (x2): 1)r+2(x8)’ ] pr+n—l(xn) | (lq)

with a similar expression for B(z). In the expression Z'T a, () it is to

: A=0

be understood that a, =0, A> L, and similarly, in £b, p,(2,),0,=0,A> M.

Hence if 4 (x)/C(z), B(x)/C(z), w(z) C(x) satisfy the conditions of Parseval’s

theorem, we have from (18) and (19)

s" 4 (x) B(z) w(x)dz

o C(x)

kr+n Ag‘oa’)\p)‘(xl); pr+1(x2)a pr+2(x3)’ ceey pr+n—1 (xn) }

. ‘ Z b}\pl\(xl)7 pr+1(x2)’ et pr+n—1(xn)
0 . (20)

= (=" S% o
r=0 kr lpr(xl), pr+1(x2)7 eney pr+'n-—l (xn)l
- |pr+1(x1): pr+2(x2)7 R pr+n(xn)|

If (20) is compared with (8) and (9) it will be observed that (a) the deter-
minants in (20) are all of order n whereas in (8) the order increases with
the term, (b) whereas the partial sums of (8) may be expressed as (9) by
Schweins’ theorem, this does not appear to be the case with the partial
sums of (20). Itis however clear that there will be determinantal identities

between the denominators A,_; of (8) and |p,(#,), Per1(%2), -5 Peyn_1(,)]
of (20). The special case 4(z) = B(x)= 1, C(x) = x4z (z real) gives the
expansion P
b w(x)dx ® 1
N T =(=1) 2 e+ . 21
I o N o -

5. Therelation of (21) to the corresponding continued fraction expansion
appears from (7). For (21)is an example of (7) with 4(z) = 1, C(x) = z+2
—'kr+1

d 8,(x)= {—~ -5
and 6,2) = P®) &, 5, (=) Braa(—2)
with respect to w(z). If however we take §,(x) = p,(#) and use the recur-

}
} , P, (x) being the orthonormal set
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rence relation (16), then «,=1 and « =0, r#0. Moreover, writing
z+2z = k71 p,(x)+y+2, where k, 7 0, we find

Yr,s = (z—Br;&-l Ar_+11) .8r,.s+A:4~11 8r+1,.‘z_i“—Ar_1 8r—-l,s (7'; §=1, 2, )
and vy, ,=z—B, 47!, 4,> 0.

b
From (7), j ;"fg dx:-}i?;gsg;, (22)

where :

0 1 0 0o ..,
1 2—B, A7 ATt 0

N,(z) = 0 AT z—B, Azt A7 ‘

\o 0 Azt z—B A7 . .
- let+1

and D,(z) is N,(z) with the first row and column deleted. In other words
we have the continued fraction expansion

b w(x) 1 AT? A2
——-—d@;: —_— e e——m - —_—
2 T2 2—B AT — 2—B, A3 —2— B, A1 —...°

It is of some interest to notice another form for the expansion. Take

(23)

b
8,(x) = (x+2)" so that oc,—-:J (z+2z)y w(z)der = m, say, and is an Appell
a

polynomial of degree rin z. (These are treated by J. Geronimus, Journal
London Math. Soc., 6 (1931), 55.) Similarly for v, ,=m,,,.,. From (7),
with the usual notation for persymmetric determinants,

b ZU(Z) . . P(O7 m()) My, ..oy m2a—1) ’
J'a x+z de = _.l.]:.)ri ) VP(mla 7’”2} sees 7"1;23—1) ) (24)

6. The expressions (21)-(24) indicate that there are relations between
the various forms of the approximants to the definite integral. Consider

¢r=r (x+2z)w(x)q,2(x)dx, where {g,(x)} is an orthogonal system with
respecat to (x+z)w(x), the coefficient of 2" in g,(x) being unity. Then
gr(x) = (=) 67 05(2), Qo1s Tazs > Gr—1,7 1/ 900> G115 -5 Dre1, v1l>
where 8,(z) is an arbitrary polynomial of precise degree s with highest
coefficient 4,, and ¢, ":K (z+2) 0,(x) B5(x) w(zx)dw. But &, is invariant

with respect to the choice of #(x). Hence taking 8 (x)= (x+=z)°, we find
¢, = P(my, my, ..., Mg, ;)| P(my, my, ..., my,_;). Again take {0,(z)} to be
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the orthonormal set with respect to w(z), and use (14) and (15), so that
¢, = — D1 (—2)/{k, k., p,(—2)}. But from the recurrence relation (16)
and the continued fraction expansion (23), p,(—2) = (—)*k,D,(2) Hence

D =
P(ml, Mo,y ooe) 'm2,+1) = (kokr:——.l.(.zll)z' (2{)3)

It therefore follows from (22) and (24) that

N
P(O, My, My, ..oy m2r+1) = W!f:“l.—(.z—]{):?. (25b)

The relations (25) have been derived by Geronimus (loc. cit.) by another
method.

7. As an illustration consider the hypergeometric function

Cren Zoaletl)...(ats—1) I'(b) L w(x)
F(1, a5 b; t)_Eo b(b+1)... (b+s—1) = Ia)l(b—a) SO l—xtd ’

where  w(z)=2z*"1(1—z)’%1, 0<<e<], >0, b—a>0,
and ! Pu(@) = /7, F(s+b—1, —s; a; a),

_ (2s+b—1)I'(s+a)['(s+b—1) b — s L(2s4+b—1)T(a)+/7,
"s= "P+1)T(stb—a)T{a)2 ° :={(=) C(s+a)T(s+b—1) °

It follows from (21) with z= —¢1, |¢| < 1, that
F(l,a; b; 1)
_ § ') (s+a—1)T(s+b—2)T'(s+-b—a—1) I'(s) 1252 ‘
s=1 (@) T(b—a) [ (2s4+-b—2)"(264+-b—3) F(—s, 1—a—s; 2—b—2s; 1)
X F(l—s, 2—a—s; 4—b—2s; 1)

(26)

Moreover, using the recurrence relation for p (x) (see Szego, loc. cit.; a
slight change of notation is required in Szeg6, 4.5 . 1) it will be found from
(23) that F(1, a; b; t) is the even part of the continued fraction

1 bt byt byt
T-T—1-1-., )
where ’
by = SFAHO=D) (e Detb—a)
2T (254 b—1)(2s+b) 22T (28+b)(2s+b+1)°

1 H. Bateman, Partial Differential Equations (New York, 1944), 392.
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In a similar way the odd part of the contmued fraction (27 ) arises from a

consideration of the relation .

o (o) (*aw(w)
FQa; 65 0 =14 v Tp—a) jo r—at

dz,

and approximating to the integral by using zw(z) for w(z) in (23). There
is also a corresponding series expansion similar to (26). If we call the s-th
convergent of (27) n,/d,, then the series expansion (26) may be derived
from the identity

Mg My o  byby...b,_ 2

$=2,4,6, ...

d.§ ) ds—z—_ ds—zds -

8. Finally, consider the relations between the persymmetric determin-
ants and continued fraction convergents given by (25), in connection
with the hypergeometric function. We find

v I(r4-b-+9)
Uokr oo b = I R T T st a) T (s k6 —a)’

_ s T@l(b—a)
=5 T )

Inserting these in (25a) and (25b), we find that
Z°P(F,, Fy, ..., Fo_)=F(r+b—1, —r; a; —2)

m F(—s, a; b; —z71).

'ﬁl s! (b—a),aﬁ_l’

=0 br+s
(28)
= —1el(h—
Z*1P(0, Fy, Fy, ..., Fp )= —N,(2) 11 s!(b—a).a,

, = 1’ 27 3: .
=0 br+s—-1

-

where F,=F(—a,a; b; —z1),
A, =A(A4-1)... (A4-s—1) under the continued product sign,
and N,(z) is the numerator of the r-th convergent of
{ . by by byb,
2+b, —24by+by — 2+by-+-b5 —...,
the b’s being given in (27a). A similar pair of relations would also be found
by considering the weight function azw{z) in place of w(z). Burchnall!?
has recently given similar expressions for P(F,, F,, ..., F,,_;) and its
minors. :

1 J. L. Burchnall, Quart. Journ. Math., Ozford, 2nd Series 3, 10 (1952), 151-157.

CoLLEGE oF TECHNOLOGY,
MANCHESTER, 1.
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