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1. Let w(x) be a non-negative weight function for the finite interval

(a, b) such that w(x) dx exists and is positive, and let Tr{x), r = 0, 1, 2, ...
Ja

be the corresponding orthonormal system of polynomials. Then if F{x)
is continuous on (a, b) and has "Fourier" coefficients

cr=\ F(x)Tr(x)w(x)dx, r = 0,l, 2, ...,
Ja

Parseval's formula 2 gives

w{x)[F(x)fdx= 2 cr
2. (1)f

Ja
r=0

We shall show that for the weight function w(x) C(x) and F(x) = A (x)/C(x),
»

both satisfying the conditions above, 2 cr
2, s = 0, 1, 2, ..., of Parseval's

r=0
formula takes the form of a ratio of two determinants. The successive
values of this determinantal ratio will be shown to provide a sequence
of convergent approximants to the value of the integral. Moreover in
the case when C(x) is a polynomial, an expansion of the integral is given in
terms of the roots of G (x). The particular case when C (x) is linear indicates
the relation of the present method to the expression of integrals of the type

1 —\-t dx as continued fractions. The case when the range of integrationJ x+z
is infinite is to be treated in Part 2.

r
2. Let Br{x) = S arsa^, an =£ 0, be a polynomial of degree r in x, and

' 0r(x) 68(x)w(x) C(x) dx = y,s = y«, (2)

»=o

Ja

1 Applications have been given in Biometrika, 37 (1950), 111 and 38 (1951), 58.
2 See for example D. Jackson, Fourier Series and Orthogonal Polynomials (Garus Math.

Mon., 1941), Ch. I I , and p. 228, or G. Szego, Orthogonal Polynomials (New York, 1939),
Ch. I I I .
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where it is assumed that w(x)C(x) is non-negative and I w(x)C(x)dx
Ja

exists and is positive.
r

Further let pr(x) = £ p,9,(x) be an orthonormal system associated
« o

with the weight function w(x) C(x) on (a, b), so that1

eo(x) ex{x) ... er(x) .

pr(x) =
Yo.o Yo,i

Yi.o Yi.i

Yo.r

Yl,r (3)

Yr-l.O Yr-1,1 ••• Yr-\,r

where A r = | r o , O = Yl,l> ••' Yr.rY

Hence the Fourier coemcients for A(x)/C(x), assumed continuous on
(a, b), are given by

= 0, I, 2, ...)

Yoi> Y12, •••> r « - i

where
rb

Jo
(r = 0, 1, 2, ...)•

Hence, using Parseval's theorem, we find

[b [A(x)Yw(x) « |a0) Yoi> Yi2> - ,

(4)

(5)

(6)

which, by Schweins' theorem on determinants2, may be written as

0 an a, ... a,
ao

— lim a i

a,

Yos

1 See Szego, toe. dt., Ch. II .
2 Muir, Theory of Determinants, Pts. I and II (London, 1906), or A C. Aitken.

Determinants and Matrices (Edinburgh, 1946).
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46 L. R. SHENTON

In general the partial sums of the series (6) and the corresponding part of
the determinantal ratio (7) form non-decreasing sequences. A more general
result is found by applying Parseval's formula to the functions

{A(x)±B(x)}/C(x),

assumed continuous on (a, b), whence

[bA(x)B(x)w(x).
TVXA ax—Ja ^\x)

| • |)80, y 0 1 , y I 2 , • • • , y , - 1 ,— —

= — lim

0 a0

A> 7oo

Pi 7io 1-^IVoo. Vn, (9)

in which j3r is given by (5) with B{x) replacing A(x).
It is convenient to use a matrix notation in (9) and write

C(x)
(10)

The special case A(x) = -B(a;) = / , C(a;) = x-\-z is known in the theory of
continued fractions2 in which case, with dr(x) suitably restricted, the deter-
minants are of "continuant" type. The formula (10) is thus seen as an
extension of this type of continued fraction. Since the convergents of a
continued fraction satisfy a second order difference equation, a generalised
continued fraction might be one for which the "convergents" satisfied a
difference equation of the n-th order, this suggestion being given by
Fiirstenau in "Ueber Kettenbriiche hOherer Ordnung"2. The deter-
minants in (10) do not in general appear to satisfy any simple difference
equation. It is of interest to note that Rogers 3, in representing certain
definite integrals as continued fractions, suggested that some form of

—-t——, which were
intractable by his method.

1 See for example H. S. Wall, Continued Fractions (New York, 1948), Ch. XIII
onwards, or O. Perron, Die Lehre von den Kettenbriichen (Leipzig, 1913), Ch. 9.

2 Muir, Theory of Determinants, Vol. I l l (London, 1920).
3 L. J. Kogers, " Asymptotic series as convergent continued fractions ", Proc. London

Math. Soc. (2), i (1905-6).
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3. We now turn to a further use of formula (10). Consider the deter-
minant whose elements are definite integrals

(11)

in which A^x), j = 1, 2, 3, ..., n, are continuous functions over {a, b) and
w(x) 0(x) satisfies the same conditions as for (10). We may approximate
to A by replacing each integral by the corresponding ratio (10) with the
same s, and using the notation

rb
j<xk=\ 6k(x)Aj(x)w(x)dx ( j = l , 2, ..., n, & = 0, 1, ..., s),

i a l > 3 a 2 > ••• ' J"*!-]

0
to obtain

A= (-1)" lim

which, by an "extensional" identity in determinants1, leads to

If* Aj{x)Ak(x)w(x)dx

0

(12)

0 0

= ( — I)1' lim 1

0 0 ... 0 2a0

0 0 ... 0 Kao

2 a s

; iao 2ao n a 0

(13)

| y O o > vu> • • • > y s s |

If the Aj{x), j = 1, 2, ..., n, are linearly independent, then A is positive.
This follows from the fact that the quadratic form

/ v:». A t~\'

x)ax — \ 7i/~Z\~'~ w\x)">%

is positive definite. That a determinant with definite integral elements
similar to A is positive appears to be due to Kowalewski2. We thus see

1 Aitken, loc. cit.
2 G. Kowalewski, Einfuhrung in die Determinantentheorie (Leipzig, 1925), 224.
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that under the conditions attached to Aj(x) and w(x)C(x), the bordered
determinant in (13) has the same sign as ( — 1)™. It may be remarked that
in certain cases the numerator of (13) reduces to a multiple of

IVoo. Yu> •••» y..\
with a certain number of rows and corresponding columns deleted.

4. There is an alternative form for the expansion given in (8) when
n

C(x) is a polynomial. Let C(x) = k U (x—xk). Then by Christoffel's

theorem (Szego, loc. cit., 2.5), \i pr(x) are orthonormalpolynomials with
respect to the weight function w(x) on (a, b), the orthogonal set with
respect to C(x)w{x) is qr(x) where

Prix) pr+1{x) ... pr+n{x) |

n lr\— Frv*'!/ Fr+l^ll ••• Fr+n\-°l> \ _j_niv\ (141

: : 1

Prixn) Pr+lixn) ••• Pr+nixn)

If C(x) has a root of multiplicity m at xk then the corresponding rows in
(14) are to be replaced by the .0, 1, 2, ..., m— 1-th derivatives of p(x) at xk.

We further require a theorem of Darboux (Szego, loc. cit., 3.2):

>r(x) pr+1(x)

PriV) Kr » = 0

where the recurrence relation for the polynomials pr(x) is

(15)

Pr^(x)-CrPr_2(x) (16)

with Ar = A;r/fcr_1; Gr = ArlAr_x, and where kr is the highest coefficient in
pr(x). An extension of this is found by using the recurrence relation in
(14), namely

, ••; Pr+n-li*n)\ (17)

with derivatives appearing in the rows of the determinants when C(x) = 0
has multiple roots. Using (14) and (17), we have

k
= (-l^-^rM

X S |pAxJ, pr+1{x2), ..., pr+n_1{xn)\G{x)ps(x)w(x)dx
« = 0

) ( ) | b ( ) ( ) . • • •' Pr+n ix
n) \

^ say. (18)
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If now A(x) and B(x) are polynomials of degree L and M respectively,
we may write

A(z)= I axPk(x), B(x) = I bxPk(x).

Hence the Fourier coefficients of A(x)/C(x) with respect to the orthogonal
set qr(x) and the weight function C(x) w(x) are given by

rb
ar<£r = A(x)qr(x)w(x)dx

Ja
k r i

= ( — ) " i f 2 1 i S « * A ( « l ) . Pr+Ax2.)> Pr+i.{xz)> •••> ft+11-lWK r ! X = 0
r

with a similar expression for B(x). In the expression 2 ttxPx^i) it is to
\=o

be understood that ax = 0, A > L, and similarly, in lib^p^x^), bK = 0, A > M.
Hence if A(x)/C(x), B(x)/C(x), w(x) C(x) satisfy the conditions of Parseval's
theorem, we have from (18) and (19)

{bA(x)B(x)w(x)dx
C(x)

K•r+n , •••» Pr+n-l(xn)\
I

Xj), pr+1(x2), . . . , pr+n^(xH)

= (-)» S L? • (20)

^ l ^ ) fe) k ) !
)> •• •> Pr+n(xn

If (20) is compared with (8) and (9) it will be observed that (a) the deter-
minants in (20) are all of order n whereas in (8) the order increases with
the term, (b) whereas the partial sums of (8) may be expressed as (9) by
Schweins' theorem, this does not appear to be the case with the partial
sums of (20). It is however clear that there will be determinantal identities
between the denominators As-1 of (8) and \p,{xx), p8+1(x2), ..., ps+n^i(xn)\
of (20). The special case A (x) = B(x) = 1, C(x) = x-\-z (z real) gives the
expansion

(bw(x)dx__ g A x̂ (21.
Ja ^i " » = 0**/a.r«\ ^/.rJ+lV "I

5. The relation of (21) to the corresponding continued fraction expansion
appears from (7). For (21) is an example of (7) with A(x) = 1, C{x) = x+z

and dr(x) = pr{x) \ L -. r r J i , —A , Pr(
x) being the orthonormal set

with respect to w(x). If however we take 6r{x) =pr(x) and use the recur-
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50 L. R. SHBNTON

rence relation (16), then a o = l and ar = 0, r ^ O . Moreover, writing
x-\-z = kilp1(x)-\-y-\-z, where kx ^ 0, we find

Yr, s = (z~ Br+1 Ar+l) ^..s+A^ 3r+1> s+A'18r_1_ „ (r, S = 1, 2, ...)

and y0_0 = z—B1A^1, As > 0.

f* wfa;) N (z)
From (7), r l ^ * B = ~ h m 7) z • ( 2 2 )

Jo X~T~Z s^.oo ±Js\z)
where

0 1 0 0

JV (s) = ' 1 —-^2 2 -̂ 12 • •

and Ds(z) is Ns(z) with the first row and column deleted. In other words
we have the continued fraction expansion

} ax
}a x+z ax ~ Z-B.AT1 - z-B2A? - z-B3A^-...-

It is of some interest to notice another form for the expansion. Take

9r(x) = (x-\-z)r so that <xr= (x-\-z)rw(x)dx = mr say, and is an Appell
Ja

polynomial of degree r in z. (These are treated by J. Geronimus, Journal
London Math. Soc, 6 (1931), 55.) Similarly for yr>s = mr+s+1. From (7),
with the usual notation for persymmetric determinants,

dx = _ l i m P^P, ^ ^ j n ^
.̂ .oo P{m1,m2,...,m2,_1) '

6. The expressions (21)-(24) indicate that there are relations between
the various forms of the approximants to the definite integral. Consider

Cb

<£r=l (x-\-z)w(x)qr
2(x)dx, where {qr(x)} is an orthogonal system with

Ja
respect to (x-\-z)w(x), the coefficient of xr in qr(x) being unity. Then

tfrW^ (— ye^d^x), q01, q12, ..., qr-1>r\/\q0l), qu, ..., gr_i>r-i|,

where 0s(x) is an arbitrary polynomial of precise degree s with highest
Cb

coefficient 6S, and <70,i/3= (x-j-z)O<x(x)&fs(x)w(x)dx. But <f>r is invariant
Ja

with respect to the choice of 6(x). Hence taking 0s(x)•= (x-\-z)s, we find

4>f = P(rn1, m2, ..., TO2H-I)/-P(TOI> » 2 . •••> ra^-i)- Again take {6,(x)} to be
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the orthonormal set with respect to w(x), and use (14) and (15), so that
<f>r — — pr+1( —z)/{krK+iPr(—z)}- But from t n e recurrence relation (16)
and the continued fraction expansion (23), ps(—z) = ( — )sTcsDs(z) Hence

P(mi, m2, ..., m2r+1) = (kJ^{Zly (25a)

It therefore follows from (22) and (24) that

P(0, m0, m1; ..., m2r+1) = ( ^ + l ( ^ ) 2 . (25b)

The relations (25) have been derived by Geronimus (loc. cit.) by another
method.

7. As an illustration consider the hypergeometric function

-1) T(a)T{b—a) )ol-xt

where w(x) = xa~1{l—x)b~a~1, O ^ x ^ l , a > 0, 6—a > 0,

and1 ps(a;) =-\/rs-F(s+6—1, —s; a; re),

Ts= • " r ( s + l ) r ( s + 6 - a j r ( a ) 2 ' ^ = ( —)s r ( s + a ) I > + 6 - l ) S "

It follows from (21) with z = —<~\ |£| < 1, that

-F(l, <*; 6; 0

«> P(6) F(5+a—1) F(s+6 —2) F(s+6—a—1) T(s)t2s-2

\*
~ « = i r ( a ) r ( 6 — a ) T ( 2 s + 6 — 2 ) T ( 2 s + 6 — S)F(—s, 1—a—s; 2—6—2s; t)'

xF(l—s,2—a—s; 4—6—2s; t)
(26)

Moreover, using the recurrence relation for ps(x) (see Szego, loc. cit.; a
slight change of notation is required in Szego, 4. 5.1) it will be found from
(23) that ^ ( 1 , a; b; t) is the even part of the continued fraction

1 bxt b2t b3t
1 — 1 — 1 — 1 —. . . ,

w h e r e

(a+o)(a+6-l) (s+l)(g+6-a)
2s+1~ (2s+6-l)(2s+6)' 2s+2~(2s+6)(2s+6+l)" l ;

1 H. Bateman, Partial Differential Equations (New York, 1944), 392.
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52 L. R. SHENTON

In a similar way the odd part of the continued fraction (27) arises from a
consideration of the relation " '

F(l a- b- t ) - l \ tV(b)

and approximating to the integral by using xw(x) for w{x) in (23). There
is also a corresponding series expansion similar to (26). If we call the s-th
convergent of (27) njds, then the series expansion (26) may be derived
from the identity

dt <ZS_2~ d3_2ds ' s-*>*>*>>•-

8. Finally, consider the relations between the persymmetric determin-
ants and continued fraction convergents given by (25), in connection
with the hypergeometric function. We find

(hk h)*- n r(r+b+s)

r(a)T(6—a) „,
> ^ >F(-8,a; b; - z - i ) .

Inserting these in (25a) and (25b), we find that

lt F2, ..., F^J^Fir+b-l, -r;a; -z) '

(28)

, Fo, Fl3 ..., F9_1)=-Nr{z)'n8-l{*-a)-a; r = 1, 2, 3, ....
8 = 0 °r+s-l

where F0 = F( — a, a; b; —z,-1),

ASESA(A+1) ••• (A+s—1) under the continued product sign,

and Nr(z) is the numerator of the r-th convergent of

1 b1b2 bsbi

the 6's being given in (27a). A similar pair of relations would also be found
by considering the weight function xw(x) in place of w(x). Burchnall1

has recently given similar expressions for P{F0, F±, ..., -F^-i) a n ( i ^
minors.

1 J. L. Burchnall, Quart. Journ. Math., Oxford, '2nd Series 3, 10 (1952), 151-157.
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