J. Austral. Math. Soc. (Series A) 54 (1993), 213-220

ROSENTHAL SETS AND THE RADON-NIKODYM PROPERTY

PATRICK N. DOWLING

(Received 5 April 1991; revised 24 July 1991)

Communicated by P. G. Dodds

Abstract

Let X be a complex Banach space, G a compact abelian metrizable group and Λ a subset of \hat{G} , the dual group of G. If X has the Radon-Nikodym property and $L^{\infty}_{\Lambda}(G; X)$ is separable, then $L^{\infty}_{\Lambda}(G, X)$ has the Radon-Nikodym property. One consequence of this is that $C_{\Lambda}(G, X)$ has the Radon-Nikodym property whenever X has the Radon-Nikodym property and the Schur property and Λ is a Rosenthal set. A partial stability property for products of Rosenthal sets is also obtained.

1991 Mathematics subject classification (Amer. Math. Soc.): 46 B 22, 43 A 46. Keywords and phrases: Rosenthal sets, Radon-Nikodym property.

1. Introduction

For Banach spaces X and Y we denote by $\mathscr{L}(X, Y)$ the Banach space of all bounded linear operators from X into Y. In this set-up, Pettis's last theorem states: if $\mathscr{L}(X, Y^*)$ is separable, then $\mathscr{L}(X, Y^*)$ has the Radon-Nikodym property [3, p. 165]. Notice that if $\mathscr{L}(X, Y^*)$ is separable, then X^* and Y^* are separable and so X^* and Y^* have the Radon-Nikodym property.

In this note, we will prove a result which is a variant of Pettis's last theorem. In our case, we will replace X by a particular quotient of L^1 and Y^* by an arbitrary Banach space with the Radon-Nikodym property. To be more specific, if G is a compact abelian metrizable group and Λ is a Rosenthal subset of \hat{G} , then $L^{\infty}_{\Lambda}(G)$ is a separable dual space. If we

^{© 1993} Australian Mathematical Society 0263-6115/93 \$A2.00 + 0.00

let $\Lambda' = \{ \gamma \in \widehat{G} : \overline{\gamma} \notin \Lambda \}$, then $L^{\infty}_{\Lambda}(G)$ is the dual of $L^{1}(G)/L^{1}_{\Lambda'}(G)$. We will show that $\mathscr{L}(L^{1}(G)/L^{1}_{\Lambda'}(G), X)$ has the Radon-Nikodym property whenever X has the Radon-Nikodym property and $\mathscr{L}(L^{1}(G)/L^{1}_{\Lambda'}(G), X)$ is separable. In fact, a close analysis of Lemma 4 of [2, p. 62] yields that proving the above result is equivalent to proving that $L^{\infty}_{\Lambda}(G, X)$ has the Radon-Nikodym property whenever X has the Radon-Nikodym property and $L^{\infty}_{\Lambda}(G, X)$ is separable. This is the first result we prove in the next section.

One consequence of these results is that if Λ is a Rosenthal subset of \hat{G} and X is a complex Banach space with the Radon-Nikodym property and the Schur property, then $C_{\Lambda}(G, X)$ has the Radon-Nikodym property. It is unknown, at the moment, if the restriction of X having the Schur property is necessary. Actually, a related question, which is also still unanswered, is the following: if G_1 and G_2 are two compact abelian metrizable groups and Λ_1 and Λ_2 are two Rosenthal subsets of \hat{G}_1 and \hat{G}_2 , respectively, is $\Lambda_1 \times \Lambda_2$ a Rosenthal subset of $\hat{G}_1 \times \hat{G}_2$? However, we will be able to show that if Λ_1 is a Rosenthal set and Λ_2 is such that $L^{\infty}_{\Lambda_2}(G_2)$ has the Schur property, then $\Lambda_1 \times \Lambda_2$ is a Rosenthal set. The question of whether the product of two Rosenthal sets is again a Rosenthal set was first raised by F. Lust-Piquard.

2. The results

Throughout this section, G will denote a compact abelian metrizable group, $\mathscr{B}(G)$ denotes the σ -algebra of Borel subsets of G and λ is normalised Haar measure on G. The dual group of G is denoted by \hat{G} . If f is a function defined on G and $\gamma \in \hat{G}$, we define $\hat{f}(\gamma)$ by

$$\hat{f}(\gamma) = \int_G \overline{\gamma(g)} f(g) d\lambda(g).$$

For a subset Λ of \widehat{G} , we define

$$C_{\Lambda}(G) = \{ f \in C(G) : \hat{f}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda \}$$

and

$$L^{\infty}_{\Lambda}(G) = \{ f \in L^{\infty}(G) : \hat{f}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda \}.$$

A subset Λ of \widehat{G} is called a Rosenthal set if $L^{\infty}_{\Lambda}(G) = C_{\Lambda}(G)$. A result of Lust-Piquard [5] says that Λ is a Rosenthal set if and only if $C_{\Lambda}(G)$ has the Radon-Nikodym property.

For a complex Banach space X, we define

$$L^{\infty}_{\Lambda}(G, X) = \{ f \in L^{\infty}(G, X) : \hat{f}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda \},\$$

[3]

where $L^{\infty}(G, X)$ is the space of all (equivalence classes of) X-valued Bochner integrable functions defined on G that are essentially bounded. $C_{\Lambda}(G, X)$ can be defined in a similar manner.

THEOREM. Let G be a compact abelian metrizable group, let Λ be a subset of \hat{G} and let X be a complex Banach space. If X has the Radon-Nikodym property and $L^{\infty}_{\Lambda}(G, X)$ is separable, then $L^{\infty}_{\Lambda}(G, X)$ has the Radon-Nikodym property.

PROOF. To show that $L^{\infty}_{\Lambda}(G, X)$ has the Radon-Nikodym property it suffices to show that every bounded linear operator from $L^{1}[0, 1]$ into $L^{\infty}_{\Lambda}(G, X)$ is Bochner representable [2]. So, let $T: L^{1}[0, 1] \to L^{\infty}_{\Lambda}(G, X)$ be a bounded linear operator. For a Lebesgue measurable subset A of [0, 1] and $B \in \mathscr{B}(G)$, define

$$\mu(A\times B)=\int_B T(1_A)(g)d\lambda(g)\,.$$

If we let \mathscr{R} denote the algebra generated by sets of the form $A \times B$, where A is a Lebesgue measurable subset of [0, 1] and $B \in \mathscr{B}(G)$, then it is easily shown that μ is a finitely additive X-valued measure on \mathscr{R} . Also,

$$\begin{split} \|\mu(A \times B)\| &\leq \int_{B} \|T(1_{A})(g)\|_{X} d\lambda(g) \leq \int_{B} \|T(1_{A})\|_{L^{\infty}_{A}(G, X)} d\lambda(g) \\ &= \lambda(B)\|T(1_{A})\|_{L^{\infty}_{A}(G, X)} \\ &\leq \lambda(B)\|T\| \|1_{A}\|_{L^{1}[0, 1]} = \lambda(B)\|T\|m(A) \\ &= \|T\|(m \times \lambda)(A \times B), \end{split}$$

where *m* is Lebesgue measure on [0, 1]. Thus $\|\mu(R)\| \leq \|T\|(m \times \lambda)(R)$ for all $R \in \mathcal{R}$.

If we let \mathscr{A} denote the σ -algebra of Lebesgue measurable subsets of [0, 1], then the product σ -algebra, $\mathscr{A} \times \mathscr{B}(G)$, is generated by \mathscr{R} . Also, $m \times \lambda$ is a non-negative finite countably additive measure on $\mathscr{A} \times \mathscr{B}(G)$. For $E, F \in \mathscr{A} \times \mathscr{B}(G)$, define $d(E, F) = (m \times \lambda)(E\Delta F)$. Then $(\mathscr{A} \times \mathscr{B}(G), d)$ is a pseudo-metric space and \mathscr{R} is dense in $(\mathscr{A} \times \mathscr{B}(G), d)$. For $E, F \in \mathscr{R}, \ \mu(E) - \mu(F) = \mu(E \setminus F) - \mu(F \setminus E)$. Therefore,

$$\|\mu(E) - \mu(F)\| \le \|\mu(E \setminus F)\| + \|\mu(F \setminus E)\|$$

$$\le \|T\|(m \times \lambda)(E \setminus F) + \|T\|(m \times \lambda)(F \setminus E)$$

$$= \|T\|(m \times \lambda)(E \Delta F)$$

$$= \|T\|d(E, F).$$

Consequently, $\mu: (\mathscr{R}, d) \to (X, \|\cdot\|)$ is a Lipschitz function and since (\mathscr{R}, d) is dense in $\mathscr{A} \times \mathscr{B}(G), d$ there is a Lipschitz extension of μ ,

 $\overline{\mu}: (\mathscr{A} \times \mathscr{B}(G), d) \to (X, \|\cdot\|)$, such that $\overline{\mu}(R) = \mu(R)$ for all $R \in \mathscr{R}$. Thus, $\overline{\mu}$ is an X-valued countably additive measure on $\mathscr{A} \times \mathscr{B}(G)$ and $\|\overline{\mu}(S)\| \leq \|T\|(m \times \lambda)(S)$ for all $S \in \mathscr{A} \times \mathscr{B}(G)$. Hence, $\overline{\mu}$ is an X-valued measure of bounded average range and since X has the Radon-Nikodym property there exists $F \in L^{\infty}([0, 1] \times G, X)$ such that

$$\overline{\mu}(S) = \int_{S} F(t, g) d(m \times \lambda)(t, g)$$

for all $S \in \mathscr{A} \times \mathscr{B}(G)$.

In particular, for $A \in \mathscr{A}$ and $B \in \mathscr{B}(G)$,

$$\int_{B} T(1_{A})(g)d\lambda(g) = \mu(A \times B) = \overline{\mu}(A \times B) = \int_{A \times B} F(t, g)d(m \times \lambda)(t, g)$$
$$= \int_{B} \int_{A} F(t, g)dm(t)d\lambda(g).$$

Now, for $x^* \in X^*$, define

$$T_{x^*}: L^1[0, 1] \to L^{\infty}_{\Lambda}(G)$$
 by $(T_{x^*}f)(g) = x^*((Tf)(g))$

for $g \in G$ and $f \in L^1[0, 1]$. T_{x^*} is a bounded linear operator and $L^{\infty}_{\Lambda}(G)$ has the Radon-Nikodym property (this is so because $L^{\infty}_{\Lambda}(G)$ is a dual space which is separable since it is a subspace of the separable space $L^{\infty}_{\Lambda}(G, X)$). Therefore, there is $F_{x^*} \in L^{\infty}([0, 1], L^{\infty}_{\Lambda}(G))$ such that

$$T_{x^*}(f) = \int_{[0,1]} f(t) F_{x^*}(t) dm(t)$$

for all $f \in L^{1}[0, 1]$. In particular, if $A \in \mathscr{A}$ and $g \in G$, then

$$\begin{aligned} x^*(T(1_A)(g)) &= (T_{x^*}(1_A))(g) = \left[\int_{[0,1]} 1_A(t) F_{x^*}(t) dm(t) \right](g) \\ &= \int_A (F_{x^*}(t))(g) dm(t) \,. \end{aligned}$$

Thus for $A \in \mathscr{A}$, $B \in \mathscr{B}(G)$ and $x^* \in X^*$

$$\int_{B} x^{*}(T(1_{A})(g))d\lambda(g) = \int_{B} \int_{A} (F_{x^{*}}(t))(g)dm(t)d\lambda(g).$$
the forcell $A \in \mathcal{A}$, $B \in \mathcal{P}(C)$ and $x^{*} \in V^{*}$

Consequently, for all
$$A \in \mathscr{A}$$
, $B \in \mathscr{B}(G)$ and $x^* \in X^*$

$$\begin{split} \int_{B} \int_{A} x^{*}(F(t, g)) dm(t) d\lambda(g) &= x^{*} \left[\int_{B} \int_{A} F(t, g) dm(t) d\lambda(g) \right] \\ &= x^{*}(\mu(A \times B)) \\ &= x^{*} \left[\int_{B} T(1_{A})(g) d\lambda(g) \right] = \int_{B} x^{*}(T(1_{A})(g) d\lambda(g)) \\ &= \int_{B} \int_{A} (F_{x^{*}}(t))(g) dm(t) d\lambda(g) \,. \end{split}$$

The function $F_{x^*} \in L^{\infty}([0, 1], L^{\infty}_{\Lambda}(G))$, so by [4, p. 198], Theorem 17, there exists $H_{x^*}: [0, 1] \times G \to \mathbb{C}$ which is $m \times \lambda$ -measurable and such that $F_{x^*}(t) = H_{x^*}(t, \cdot)$ for *m*-almost all $t \in [0, 1]$. From this we get that for all $A \in \mathscr{A}$ and $B \in \mathscr{B}(G)$

$$\int_B \int_A x^* (F(t, g)) dm(t) d\lambda(g) = \int_B \int_A H_{x^*}(t, g) dm(t) d\lambda(g) dx$$

Therefore $x^*(F(t, g)) = H_{x^*}(t, g)$ for $m \times \lambda$ -almost all $(t, g) \in [0, 1] \times G$ (where the exceptional set of measure zero may vary with x^*). In particular, for *m*-almost all $t \in [0, 1]$, $x^*(F(t, g)) = H_{x^*}(t, g)$ for λ -almost all $g \in G$. This yields that for *m*-almost all $t \in [0, 1]$, $x^*(F(t, g)) = F_{x^*}(t))(g)$ for λ -almost all $g \in G$. Therefore, $x^*(F(t, \cdot))$ is λ -measurable for *m*-almost all $t \in [0, 1]$, where again we note that the exceptional set of measure zero may vary with x^* . However, since X is separable, there is a countable norming set $\{x_n^*\}_{n=1}^{\infty}$ in the unit ball of X^* . From this we have that for all $n \in \mathbb{N}$, $x_n^*(F(t, \cdot))$ is λ -measurable for *m*-almost all $t \in [0, 1]$. By Corollary 4 of [2, p. 42] we have that $F(t, \cdot)$ is λ -measurable for almost all $t \in [0, 1]$.

Define
$$K(t) = \begin{cases} F(t, \cdot) & \text{if } F(t, \cdot) \text{ is } \lambda \text{-measurable,} \\ 0 & \text{otherwise.} \end{cases}$$

For each $t \in [0, 1]$, $K(t): G \to X$ is λ -measurable and for *m*-almost all $t \in [0, 1]$, $x^*(K(t)(g)) = x^*(F(t, g)) = (F_{x^*}(t))(g)$ for λ -almost all $g \in G$. $\|F_{x^*_*}\|_{L^{\infty}([0, 1], L^{\infty}_{\lambda}(G))} = \|T_{x^*_*}\| \le \|x_{n^*}\| \|T\| \le \|T\|$.

Therefore, for *m*-almost all $t \in [0, 1]$ and for all $n \in \mathbb{N}$, $||F_{X_n^*}(t)||_{L_{\Lambda}^{\infty}(G)} \leq ||T||$. Consequently, for *m*-almost all $t \in [0, 1]$ and for all $n \in \mathbb{N}$, $|F_{X_n^*}(t)(g)| \leq ||T||$ for λ -almost all $g \in G$. From this we get that for *m*-almost all $t \in [0, 1]$ and for all $n \in \mathbb{N}$, $|x_n^*(K(t)(g))| \leq ||T||$ for λ -almost all $g \in G$. Since $\{x_n^*\}_{n=1}^{\infty}$ is a norming set we have that for *m*-almost all $t \in [0, 1]$, $||K(t)(g)||_X \leq ||T||$ for λ -almost all $g \in G$. Thus, for *m*-almost all $t \in [0, 1]$, $||K(t)||_{L^{\infty}(G, X)} \leq ||T||$.

Now define $K_1: [0, 1] \to L^{\infty}(G, X)$ by

$$K_1(t) = \begin{cases} K(t) & \text{if } ||K(t)||_{L^{\infty}(G, X)} \leq ||T||, \\ 0 & \text{otherwise.} \end{cases}$$

For $t \in [0, 1]$, $\gamma \notin \Lambda$ and $x^* \in X^*$

$$x^*\left[\widehat{K_1(t)}(\gamma)\right] = \int_G x^*(K_1(t)(g))\overline{\gamma(g)}d\lambda(g).$$

If $||K(t)||_{L^{\infty}(G,X)} \le ||T||$, then

$$\begin{aligned} x^*(\widehat{K_1(t)}(\gamma)) &= \int_G x^*(K(t))(g))\overline{\gamma(g)}d\lambda(g) = \int_G (F_{x^*}(t))(g)\overline{\gamma(g)}d\lambda(g) \\ &= \widehat{F_{x^*}(t)}(\gamma) = 0 \end{aligned}$$

[6]

since $F_{x^*}(t) \in L^{\infty}_{\Lambda}(G)$. If $||K(t)||_{L^{\infty}(G, X)} > ||T||$, then $x^*(K_1(t)(\gamma)) = 0$. Hence $K_1: [0, 1] \to L^{\infty}_{\Lambda}(G, X)$.

At this stage, we need to show K_1 is *m*-measurable. Since $L^{\infty}_{\Lambda}(G, X)$ is separable, it suffices to show that K_1 is scalarly measurable on a total set of linear functionals on $L^{\infty}_{\Lambda}(G, X)$ [1]. Note that for $\gamma \in \widehat{G}$ and $x^* \in X^*$, the map $x^* \otimes \gamma: L^{\infty}_{\Lambda}(G, X) \to \mathbb{C}$ defined by $(x^* \otimes \gamma)(f) = x^*(\widehat{f}(\cdot))(\gamma)$ is a bounded linear functional. The total set we will use is the set $\{x_n^* \otimes \gamma: n \in \mathbb{N}, \gamma \in \Lambda\}$ where $\{x_n^*\}$ is a norming set in X^* . Note that this set is countable since Λ is countable.

For $n \in \mathbb{N}$ and $\gamma \in \Lambda$,

$$(x_n^* \otimes \gamma)(K_1(t)) = \int_G x_n^*(K_1(t)(g))\overline{\gamma(g)}d\lambda(g) = \int_G x_n^*(F(t,g))\overline{\gamma(g)}d\lambda(g).$$

However, since $x_n^*(F(t, g))$ is a measurable function of t, so is the above integral and hence $(x_n^* \otimes \gamma)(K_1(t))$ is a measurable function of t. Therefore, K_1 is an *m*-measurable function.

To complete the proof we must show that for all $A \in \mathscr{A}$, $T(1_A) = \int_A K_1(t) dm(t)$. For $A \in \mathscr{A}$ and $B \in \mathscr{B}(G)$,

$$\int_{B} T(1_{A})(g)d\lambda(g) = \int_{B} \int_{A} F(s, t)dm(t)d\lambda(g) = \int_{B} \int_{A} K_{1}(t)(g)dm(t)d\lambda(g).$$

Thus, for λ -almost all $g \in G$,

$$T(1_A)(g) = \int_A K_1(t)(g) dm(t)$$

and so as elements of $L^{\infty}_{\lambda}(G, X)$, $T(1_{A}) = \int_{A} K_{1}(t) dm(t)$. Hence $L^{\infty}_{\Lambda}(G, X)$ has the Radon-Nikodym property.

REMARK. The converse of the theorem is also true: if $L^{\infty}_{\Lambda}(G, X)$ has the Radon-Nikodym property and X is separable, then $L^{\infty}_{\Lambda}(G, X)$ is separable. The proof can essentially be found in [5].

COROLLARY 1. Let G be a compact abelian metrizable group, Λ a subset of \widehat{G} and X a complex Banach space with the Radon-Nikodym property. If $\mathscr{L}(L^1(G)/L^1_{\Lambda'}(G), X)$ is separable, then it has the Radon-Nikodym property $(\Lambda' = \{\gamma : \overline{\gamma} \notin \Lambda\}).$

PROOF. Since X has the Radon-Nikodym property, $\mathscr{L}(L^1(G)/L^1_{\Lambda'}(G), X)$ is isometrically isomorphic to $L^{\infty}_{\Lambda}(G, X)$ [2, p. 63]. Now apply the Theorem.

REMARK. A close analysis of the proof of Theorem 1 allows one to generalise Corollary 1 to obtain the following: Let (Ω, Σ, μ) be a probability space such that $L^{1}(\mu)$ is separable. Let Y be a closed subspace of $L^{1}(\mu)$. If X is a Banach space with the Radon-Nikodym property and if $\mathscr{L}(L^{1}(\mu)/Y, X)$ is separable, then $\mathscr{L}(L^{1}(\mu)/Y, X)$ has the Radon-Nikodym property.

COROLLARY 2. Let G be a compact abelian metrizable group, let Λ be a subset of \hat{G} and let X be a complex Banach space. If Λ is a Rosenthal set and X has the Radon-Nikodym property and the Schur property, then $C_{\Lambda}(G, X)$ has the Radon-Nikodym property.

PROOF. It suffices to show that every separable subspace of $C_{\Lambda}(G, X)$ has the Radon-Nikodym property. Notice that each separable subspace of $C_{\Lambda}(G, X)$ is a subspace of $C_{\Lambda}(G, Y)$ for some separable subspace Y of X. We will be finished if we can show that $C_{\Lambda}(G, Y)$ has the Radon-Nikodym property for every separable subspace Y of X.

Let Y be a separable subspace of X. We will show that $C_{\Lambda}(G, Y)$ is isomorphic to $L^{\infty}_{\Lambda}(G, Y)$. By Theorem 5 of [2, p. 63], $L^{\infty}_{\Lambda}(G, Y)$ is isomorphic to $\mathscr{L}(L^{1}(G)/L_{\Lambda'}(G), Y)$. However, since $L^{\infty}_{\Lambda}(G)$ is a separable dual, $L^{1}(G)/L^{1}_{\Lambda'}(G)$ does not contain a copy of \mathscr{L}^{1} . Hence every bounded linear operator from $L^{1}(G)/L^{1}_{\Lambda'}(G)$ to Y is compact because Y has the Schur property. $L^{\infty}_{\Lambda}(G)$ has the approximation property so the space of all compact operators from $L^{1}(G)/L^{1}_{\Lambda'}(G)$ to Y is isomorphic to $L^{\infty}_{\Lambda}(G) \otimes Y$. But $L^{\infty}_{\Lambda}(G) \otimes Y = C_{\Lambda}(G) \otimes Y$, which in turn is isomorphic to $C_{\Lambda}(G, Y)$. Thus we have shown that $C_{\Lambda}(G, Y)$ is isomorphic to $L^{\infty}_{\Lambda}(G, Y)$. $C_{\Lambda}(G, Y)$ is separable since Y is separable and so $L^{\infty}_{\Lambda}(G, Y)$ has the Radon-Nikodym property by the Theorem. Hence $C_{\Lambda}(G, Y)$ has the Radon-Nikodym property and so the proof is complete.

REMARK. In [6], Lust-Piquard shows that if G is a compact abelian metrizable group and Λ is a subset of \widehat{G} is such that $L^{\infty}_{\Lambda}(G)$ has the Schur property, then Λ is a Rosenthal set.

COROLLARY 3. Let G_1 and G_2 be two compact abelian metrizable groups and let Λ_1 and Λ_2 be subsets of \hat{G}_1 and \hat{G}_2 , respectively. If Λ_1 is a Rosenthal set and $L^{\infty}_{\Lambda_2}(G_2)$ has the Schur property, then $\Lambda_1 \times \Lambda_2$ is a Rosenthal subset of $\hat{G}_1 \times \hat{G}_2$.

PROOF. To show that $\Lambda_1 \times \Lambda_2$ is a Rosenthal set, it suffices to show that $C_{\Lambda_1 \times \Lambda_2}(G_1 \times G_2)$ has the Radon-Nikodym property [5]. $C_{\Lambda_1 \times \Lambda_2}(G_1 \times G_2)$ is isomorphic to $C_{\Lambda_1}(G_1, C_{\Lambda_2}(G_2))$. Since $L^{\infty}_{\Lambda_2}(G_2)$ has the Schur property,

P. N. Dowling

 Λ_2 is a Rosenthal set, by the preceding Remark, so $C_{\Lambda_2}(G_2)$ has the Radon-Nikodym property. An application of Corollary 2 completes the proof.

REMARK. Corollary 3 was proved independently by F. Lust-Piquard in [8, Chapter 4, Theorem 5].

Acknowledgement

The author wishes to thank the referee for many insightful comments and suggestions and for providing him a copy of [8].

References

- A. V. Bukhvalov, 'Radon-Nikodym property in Banach spaces of measurable vectorvalued functions', *Mat. Zametki* 26 (1979), 875-884. English translation: *Math. Notes* 26 (1979), 939-944.
- [2] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys Monographs, 15 (Amer. Math. Soc., Providence, 1977).
- [3] J. Diestel and J. J. Uhl, Jr., 'Progress in vector measures-1977-1983', in: Measure Theory and its Applications, Lecture Notes in Mathematics, 1033 (Springer, Berlin, 1983), pp. 144-192.
- [4] N. Dunford and J. T. Schwartz, *Linear operators, Part I (Interscience Publishers, New York, 1957).*
- [5] F. Lust-Piquard, 'Ensenbles de Rosenthal et ensembles de Riesz', C. R. Acad. Sci. Paris Sér. I Math. 282 (1976), 833-835.
- [6] F. Lust-Piquard, 'L'espace des fonctions presque-periodiques dont le spectre est contenu dans un ensemble compact denombrable á la propriete de Schur', Colloq. Math. 41 (1979), 273-284.
- [7] F. Lust-Piquard, 'Propriétés geometriques des sous-espaces invariants par translation de $L^{1}(G)$ et C(G)', Séminaire sur la geometrie des espaces de Banach, Ecole Polytechnique (1977-78), Exposé 26.
- [8] F. Lust-Piquard, 'Propriétés harmoniques et geometriques des sous-espaces invariants par translation de L[∞](G)', (Ph.D. Thesis, Université Paris-Sud, 1978).

Miami University Oxford, Ohio 45056 U.S.A.