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SOME INEQUALITIES RELATED TO 
PLANAR CONVEX SETS 

BY 

R. J. G A R D N E R , S. K W A P I E N , A N D D. P. L A U R I E 

ABSTRACT. B. Griinbaum and J. N. Lillington have considered 
inequalities defined by three lines meeting in a compact convex 
subset of the plane. We prove a conjecture of Lillington and 
propose some conjectures of our own. 

1. Introduction. In [1], B. Griinbaum defines a measure of symmetry to be a 
real-valued function / defined on the family JCn of all convex bodies in En such 
that: 

(1) 0 < / ( X ) < l for all X G F ; 
(2) f(X) = 1 if and only if X e f n has a center of symmetry; 
(3) /(X) = /(T(X)) for every X e f n and every nonsingular affine 

transformation T of En onto itself; 
(4) /(X) is a continuous function of X. 
(More precisely, Griinbaum calls such an / an affine invariant measure of 

symmetry.) 
The above paper of Griinbaum is a survey of the many different known 

measures of symmetry, and of some functions defined on jf{n which are likely 
candidates, but which have not yet been proved measures of symmetry. 
Griinbaum himself introduced one such candidate, as follows. 

Suppose three concurrent lines, L1? L2, L3, divide a compact convex subset X 
of the plane into six regions, as shown in Fig. 1. 

Griinbaum ([1], p. 260) assumed that \X1\ = \X2\ = \X3\ = a and |y 1 | = |Y2| = 
|Y3| = b (here we use \E\ to denote the area of the set E). He conjectured that 
f(X) = inf(alb), the infimum taken over all such partitions, satisfies § < / ( X ) < 1, 
with /(X) = § if and only if X is a triangle, and f(X)= 1 if and only if X is 
centrally symmetric. It would easily follow that / is a measure of symmetry. 

The conjecture was the motivation of J. N. Lillington's paper [2]. Here, a 
function k(X) is defined by: 

IXI 
fc(X; Li, L2, L3) = max 7-77 1 z 5J i<i<3 y 
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and 

Figure 1. 

k(X)= inf k(X; Lu L2, L3), 

in the notation of Fig. 1, and without restriction on the areas involved. 
Lillington proved that fc(X)<l, with equality if and only if X is centrally 

symmetric; it follows that if X is centrally symmetric then /(X) = l. By 
considering the lower bound of a further function, and using rather compli
cated geometric arguments, Lillington also showed that f{X)>\, with equality 
if and only if X is a triangle. (So, to prove Grunbaum's conjecture, it only 
remains to show that f(X) = 1 only for centrally symmetric sets.) Though it 
easily follows from Lillington's work that k(X) is a measure of symmetry, he 
could only conjecture a lower bound: k ( X ) > | , with equality if and only if X is 
a triangle. 

In this paper we take up the challenge and study lower bounds of /, fc and 
another function defined on compact convex subsets of the plane. We intro
duce the function /(X), defined by: 

/ (X ;L 1 ,L 2 ,L 3 )= max 
\Yt\ 

and 

j(X) = Linf LJ(X;L17L2,L3). 

(Here and throughout, values of i lying outside the set {1, 2, 3} are defined by 

In Section 2 we note, as did Lillington, that in considering lower bounds of 
all the above functions, X may be assumed to be a triangle. Here our approach 
differs from his; we obtain fairly simple algebraic expressions for all the areas 
involved and, in Section 3, use these to prove that / (X)> 1, with equality if and 
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only if X is a triangle. As a corollary, we get a concise, algebraic proof of the 
lower bound for f(X) conjectured by Grùnbaum. A much more involved 
argument is needed to prove Lillington's conjecture; this is presented in 
Section 4. 

In the final section we give some stronger conjectures of our own, the 
algebraic forms of which should be of independent interest. 

2. Algebraic expressions for the areas. Suppose K is a compact convex set 
in the plane and concurrent lines L1? L2 and L3 meet in a point o in K. Then a 
triangle X may be found such that functions such as /, j and k do not take 
larger values at X than at K. (See Fig. 2.) The details are given in Theorem 1 
of [2]. 

Let p l5 p2, p3, ql7 q2, q?, be the intersections of L l 5 L2 and L3 with the sides of 
X, as in Fig. 2. 

We use areal coordinates, setting Ax = (1, 0, 0), A 2 = (0 ,1 , 0), A 3 = (0, 0,1), 
and o = (*!, x2, x3), where x1 + x2 + x3 = |X| = 1. For i = 1, 2, 3 we take Lt to be 
the line x f + 1 -x i + 1 = A i(x i_1-xf_1). 

It follows that 

p i=(p<
1

i ) ,P^pi°) and qi=(qT,q^,q^\ 

where, using x1 + x2 + x3=l, we have 

pï-i = *i-i + W A i , p|° = x i +( l - l /A i )x £ + 1 , p&i = 0 and 
4 i - l u ? 

^ ( 0 _ î +(1 — Ai)xi_1, qj l
+ 1 — Xi+i + AjX^i 

Applying the determinant formula for area, we find 

\Xi\ = x2
i(\i+1 + (ll\i^)-l) 

and 

|Y i| = (xi_1 + x i+1)2-A i_1x?+1-x?_1/A i+1, i = 1, 2, 3 

(1) 

Figure 2. 
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where we have used \Yt\ = |A(Aipi+1o)| + |A(Aioqi+2)|, i = 1, 2, 3, and the equal
ity X! + X2 + X3= 1. 

In (1), all Aj>0, Xi>0, and, from the geometry, 

O^Xj+CL-l/AOXi+i and 0<x f+(1-A i )x i_ 1 , i = 1, 2, 3. (2) 

3. Grunbaum's inequality. Before proving Theorem 3.1, which will yield 
Grunbaum's inequality as an easy corollary, we will comment briefly on the 
difficulty in establishing lower bounds for functions such as /, ; and k. This 
seems, to us, to stem from the fact that 

l^l + IX^ + IXal^èdYil + l^l + lYal) (3) 

clearly does not hold in general. Equality holds here (and for all our other 
functions) when 

[Xi, x2, x3, A1? A2, A3) = (3, 3, 3 , 1 , 1 , 1 ) , 

but (3) is not even true in a neighborhood of this point. To see this, suppose 
\<d<\ and put xx = x2 = d, x3=l-2d, kx = dl(l-2d), A2 = ( l -2d ) /d , A3 = l. 
Then (3) becomes - ( l - 3 d ) 2 > 0 , which is false if d±\. This means one cannot 
utilize the considerable algebraic simplification which results from adding the 
areas as in (3). 

THEOREM 3.1. / ( X ) > 1 with equality if and only if X is a triangle; further, 
equality holds only if the lines Lt pass through the centroid of X and are parallel 
to Ai+1Ai+2(i = 1, 2, 3). 

Proof. Suppose X is a triangle and / (X)< 1, i.e. the lines Lu L2, and L3 are 
such that 

IX^MX^KIY;!, i = l,2,3. 

From (1), we have 

2xf_1((l/Ai+1) - 1 ) + 2x?+1(Ai_1 - 1 ) + (xi+1 - A ^ m , < 0 

which implies, dropping the last term, that 

xU((U\i+1) - 1 ) + xf^ik^ - 1 ) < 0, i = 1, 2, 3. (4) 

For these inequalities to have a solution, either A( < 1 for i = 1, 2, 3 or Af > 1 
for i = 1, 2, 3. Suppose the former. 

The inequalities (4) give 

( l - A 1 ) ( l - A 2 ) ( l - A 3 ) , 2 

(H(H(H ' " 
which is impossible. The other case is dealt with similarly. In view of the 
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remarks of Section 2, this suffices to prove that / ( X ) > 1 , with equality if and 
only if X is a triangle. 

Suppose that j(X) = 1. Then we obtain a contradiction as above unless 

I X ^ M X ^ H ^ l i = l , 2 , 3 , so that 

2xf_1((l/Ai+1) - 1 ) + 2xf+1(K_! - 1 ) + (x i+1 - Kx^)2/^ = 0, for Î = 1, 2, 3. 

If, for some i, (x i + 1-À ix i_ 1)^0, then for this i, 

xU((VK+i) - 1 ) + xf^ik^ - 1 ) < 0, 

and once again we have a contradiction as before. So À, = xi+1IXi^u i — 1, 2, 3, 
and 

xU((l/\i+1) -1) + x î U V i - 1 ) = 0, i = 1, 2, 3. 

Substituting in the latter for kt, we obtain 

xi\xi-l + *i+l) = * i - l " ' " ^ i + l? ï = 1? 2, 3. 

Adding two of these equations and subtracting the third gives 

from which it easily follows that xx = x2 = x3. So À, = 1, i = 1, 2, 3, and L< passes 
through (i i | ) parallel to Ai+1Ai+2, i = 1, 2, 3. 

COROLLARY 3.2. / (X)>§ , with equality if and only if X is a triangle. 

Proof. From the first part of Theorem 3.1 it follows that f ( X ) > | / ( X ) > i 
with equality only if X is a triangle. If X is a triangle, x1 = x2 = x3, and kt = 1, 
i = l , 2 , 3 , then \Xl\ = \X2\ = \X3\ and | ^ i | = |^ 2 | = l^sU furthermore |X;| = è|Yi|, 
so / (X) = i 

The method of Theorem 3.1 can be applied to Lillington's conjecture, but 
seems to give a proof only in the special case when kt < 1 for i = 1, 2, 3, or 
when A( > 1 for i = 1, 2, 3. 

4. Lillington's Conjecture. 

THEOREM 4.1. k(X)>§, with equality if and only if X is a triangle. 

Proof. Suppose X is a triangle and fc(X)<|, so that the lines Ll9 L2, and L3 

are such that 

\Xi\<k\Yil î = l , 2 , 3 . 

We may rewrite these inequalities, using (1), as 

xf(\i+1 + (lfri-i) -1) < è[(x?_! + x?+1) - ki-lXf+1 - xlJ\i+l] (5) 

for i = 1, 2, 3. Note that both sides of (5) must be non-negative. 
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To prove the theorem it suffices to show that these inequalities are inconsis
tent. We will need several lemmas in the course of the proof. We remind the 
reader that we have x1 + x2 + x3 = 1, for we will often use this equality. 

LEMMA 4.2. Without loss of generality we may assume that xi<<j2 — l, for 
i = 1, 2, 3. 

Proof. Suppose that for some i, xt>yj2-l. Then (xi_1 + xi+1) = (l-xi)< 
2 - V 2 . It follows that 

x2(Ai+1 + (1/A^) - 1 ) s> (Ai+1 + (1/Vx) -1) (3 - 2V2) 
> |(Ai+1 + (1/A^) - IX*- ! + xi+1)

2. (6) 

By expanding it can be verified that the last quantity is equal to 

2[(*i-l + *i + l) — K-lxi + l ~ *i-lMi + lJ + 2-A, 

where 

A = Ai+1(xi+1 + (1 - (l/A^x))*-!)2 + ( l / A ^ X x ^ + (1 - A ^ x ^ ) 2 , so A ^ 0. 

This, together with (6), implies that k(X)>\. 
Next we rearrange the inequalities (5) as 

hf+iK-i + xVK-i + xfK+i + i*2-i/Ai+1 < è(l -xt)
2 + xf, (7) 

for i = 1,2,3. Adding the inequalities for i = 2 and 3 in (7), and using 
xlk1 + xilh1>2x2x3, we obtain 

(i* i A2 + x|/A2) + (xl A3+èx2/A3) < | (1 - x,)2 + xx - 6x2x3 (8) 

and we also have from (7), with i = 1, 

(*?A2 + |x2/A2) + (±x2A3 + x2/A3) < | (1 - x,)2 + x\. (9) 

Our aim is to replace (8) and (9) by inequalities involving only xt, i - 1, 2, 3. 

LEMMA 4.3. Suppose that for some positive u, v: 

Q>u + p2lu) + (y+\q2lv)<a and (u+^p2/u) + & + q2/v)<b (10) 

Then a>V2(p + q), b>y/2(p + q), and one of the following conditions holds: 

a>5V2(p + q)/4 (11) 

b>5V2(p + q)/4 (12) 

a2 + b2-5afc/2 + 9(p + q) 2 /8<0 (13) 

Proof. First choose a and b so that we have equality in (10). Then 
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The curve a2 + b2- 5ab/2 + 9(p + q)2l$> = 0 in the (a, b)-plane lies to the right of 
the tangent a = \/2(p + q) at (>/2(p + q), 5V2(p + q)/4), and above the tangent 
b=V2(p + q) at (5V2(p + q)/4, V2(p + q)). From this it is easily seen that if 
a'>a and b'> b, then one of the conditions (11)—(13) (with a' replacing a, and 
b' replacing b) must hold. 

We apply Lemma 4.3 to the inequalities (8) and (9), with u = x2À2, v = x2À3, 
p = xxx3 and q = x1x2. We see that one of the following conditions holds: 

| (1 - xx)
2 + Xl - 6x2x3 - 5 V2Xi/4 + 5 V2x?/4 > 0 (14) 

(è(l - *i)2 + xf — 5j2xJ4 + 5 V2x2/4 > 0) and 

(1(1 - *i)2 + *i ~ 6x2x3 - 72%! + V2x2 > 0) (15) 

(1(1 - xxf + X l - 6x2x3)2 + (Kl ~ ^ ) 2 + xl)2 -§(1(1 - xx)2 + xx 

- 6x2x3)(è(l " xx)2 + x2) + f x2(l - x2) < 0 (16) 

In (15), we have included the inequality b>j2(p + q) from Lemma 4.3; the 
inequality a > V 2 ( p + q ) is not useful. 

The idea of the rest of the proof of Theorem 4.1 is to show that none of the 
conditions (14)-(16) hold in the set 

S = { x 1 < v / 2 - l , x 2 < l / 3 , x 3 < l / 3 } U { l / 3 < x 2 < V 2 - l , l / 3 < x 3 < V 2 - l } . 

By symmetry it will follow that (14)-(16) do not hold in the region 
{xt < V2 — 1, i = 1, 2, 3}, and by Lemma 4.2 this is enough to prove the theorem. 

The first step is to rewrite the conditions (14)-(16) in more recognizable 
forms: 

( l + ^ ) ( x i + x i ) + ( ^ " 3 ) X 2 X 3 ~ ( 1 + ^ ) ( X 2 + ; C 3 ) + 1 > ( ) ; (17) 

( f + ^ ) ( x 1 - ( 2 - V 2 ) ) ( x 1 - ( ^ - i ) ) > 0 and (18a) 

( | + V 2 ) ( X | + X|) + ( 2 V 2 - 3 ) X 2 X 3 - ( 1 + V2)(X2 + JC3) + 1 > 0 ; (18b) 

(Kx2*3 - è)(x2 + (5 + 2V6)x3 - (2 + 2V6/3))(x2 + (5 - 2N/6)X3 - (2 - 2V6/3)) < 0; 
(19) 

With the conditions in this form, it is a matter of simple but tedious 
computation to show that none hold in the set S. Inequality (17) represents the 
exterior of an ellipse in the (x2, x3)-plane; by the symmetry in x2 and x3 and 
convexity it suffices to check that the points a = (V2 - 1 , § - V2, | ) , b = 
( 1 - 7 2 , 1 , 7 2 - 1 ) and c = (3-2V2, V 2 - 1 , V2-1 ) (or rather the points rep
resented by their last two coordinates) lie inside this ellipse. By direct computa
tion one shows that (17) does not hold for a, b, or c. 

The points b and c do not satisfy (18b), which again represents the exterior 
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of an ellipse. However the point a, and in fact the point o = ($, 5, 5) do satisfy 
(18b). Now (18a) represents the exterior of an infinite strip, and it can be 
verified that a and o do not satisfy (18a). Next, check that the point d = 
( 2 ^ - i , i, 1 2 - 2 ^ ) , where the line {x1 = ^ - 7 } meets the boundary of S, does 
not satisfy (18b). Then, by symmetry in x2 and x3, and convexity, it follows that 
(18a) and (18b) do not jointly hold at any point in S. 

Finally, we must show that (19) is not satisfied in S. Note that the three 
factors of (19) represent a hyperbola (symmetric in x2 and x3) and a pair of 
straight lines. By checking the points a and b, one verifies that S lies inside the 
hyperbola (i.e. in the region x2x3>j^). Each of the straight lines meets S only 
in the point o; then it is easily seen that for points in S the product of the two 
corresponding factors in (19) is non-negative. Consequently (19) does not hold 
in S, and the theorem is proved. 

5. Conjectures. We propose the following conjectures. 

CONJECTURE 5.1 

jxil ixy ,1x^3 
\Yt\ \Y2\ \Y3\~2' 

CONJECTURE 5.2 

|x2|+|x3| | \x3\+\xt\ | |x1|+|x2L3 
\Yi\ 

In Conjectures 5.1 and 5.2, we further conjecture that equality holds if and 
only if X is a triangle and the lines Lt pass through the centroid parallel to 

^ i + l ^ i + 2 ? l — 1? 2, 3. 

Note that Theorem 4.1 follows from Conjecture 5.1, while Conjecture 5.2 
implies our Theorem 3.1. 

We thank Mr. Neill Robertson for writing computer programs which yield 
strong evidence for the truth of these conjectures. 

Substituting from (1), we see that Conjecture 5.1 is equivalent to 

xK^HVK-i)-!) (20) 
i = l (*i-l + *i + l) K-lxi+l *i-lMi + l 2 

where xt >0, Xt>0, and 

0 < x i + ( l - l / A i ) x i + 1 and OfSjCj+CL-Aj)*-!, i = 1, 2, 3. (21) 

As (20) is homogeneous in the Xj's, all six variables may be taken as 
independent. Notice that (20) ensures that numerators and denominators in 
(20) are non-negative. 

It is possible to show, by the usual calculations involving derivatives, that 
(20) holds in a neighborhood of (1 ,1 ,1 ,1 ,1 ,1) . In the special case X\ — x2 — -̂ 3? 
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and in the case Ax = A2 = A3, (20) may be verified by an appropriate use of the 
geometric-arithmetic mean inequality. The following partial result is more 
interesting: 

THEOREM 5.3. Conjecture 5.1 is true i/À1À2À3 = l . 

Proof, Replace the term (2Xj_!Xi+1) in the denominators of (20) by 
(Ài_1Ài+1xf+1 + xf_1/Ài_1Ài+1); the sum cannot increase. Then (20) reduces to 

i=iK-ixî+i + xi-il^i+i 2 

or, using A!A2A3 = 1, to 

A 2 ^ l x2i^-l X3 ~* 

(xl/AO + x! xj + \2xl A2x? + (xl/A1)~2* 

But this is equivalent to the known inequality (see below) 

a b c 3 _ _ 
+ 4- - > - (22) 

b+c c+a a + o 2 
for a, b, c > 0 . 

The inequality (22) and its natural generalization to one with n terms have 
been the subject of many papers. For a proof of (22), due to L. J. Mordell, and 
an interesting historical account, see D. S. Mitrinovic ([3], p. 144). 
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